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Abstract. In this paper we show a methodology to infer the dependence structure
between the coordinates of a k-variate Markovian source. The methodology is based
on the Bayesian information criterion (BIC). It is consistent in the sense that if the
source is Markovian and the dataset is large enough, the exact dependence structure
will be retrieved. Consider a set of k sources, for each realization at time t each
source produces a letter in the alphabet A = {0, 1}. The sources interact between
them depending on the past states of the set of k sources. In this paper it is proposed
a methodology which obtains in a consistent way, a partition of the past such that
two possible pasts are in the same part of the partition if, and only if, the set of
interacting coordinates given any of this two pasts, is the same. We also obtain, for
each possible past, the set of sources which interact between them.
Keywords: Multivariate Markov chain, Dependence structure, Partition Markov
model.

1 Introduction

Parameter estimation in multiple interacting processes is a difficult task, even
if the joint multivariate process is Markovian. Since the number of parameters
grows exponentially not only with the dimension of the underlying alphabet
but also with the length of the joint process memory. To mitigate this problem
we will use the family of partition Markov models (PMM) (see [3] and [4])
which are generalizations of variable length Markov chain models (VLMC) (see
[5], [7], [1] and [2]). The PMM family is more economic than the VLMC
family, in relation to the number of parameters required to describe a given
Markov process. Also the PMM family is especially convenient to develop an
estimation strategy of the interaction structure, which will be exposed in this
paper. The strategy is based on the Bayesian Information Criterion (BIC),
which allows a consistent estimation of the interaction structure and also a
consistent estimation of the PMM model.
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2 Stochastic equivalences

Let Xt be the state of the set of k sources at time t, Xt = (X(1)t, ..., X(k)t),
where X(i)t ∈ {0, 1} and it is the state of the i-source at time t for i = 1, ..., k.
Xt ∈ A = {0, 1}k. We will assume that Xt is an order M Markov chain, with
M < ∞. Denote the string amam+1 . . . an by anm, where ai ∈ A, m ≤ i ≤ n,
this means that anm is the concatenation of elements from A.
Given the state space of strings of size M that is S = AM , for each s ∈ S,
a ∈ A, b ∈ {0, 1}, we denote the conditional joint probability of the process by
P (a|s) = Prob(Xt = a|Xt−1

t−M = s) and the conditional marginal probability of

the source i ∈ {1, ..., k} by Pi(b|s) = Prob(X(i)t = b|Xt−1
t−M = s).

On the next definition it is introduced the notion of equivalence between
strings from the state space S, induced by the joint probability of the pro-
cess. Also following that concept, will be introduced the notion of equivalence
between strings of the state space based on the marginals probabilities of the
stochastic process.

Definition 1. Let Xt be an order M Markov chain, with alphabet A = {0, 1}k
and state space S = AM ,M <∞.

i. For each s, r ∈ S, s ∼ r if P (a|s) = P (a|r) ∀a ∈ A.
ii. For each i ∈ {1, ..., k} and s, r ∈ S, s ∼i r if Pi(b|s) = Pi(b|r) ∀b ∈ {0, 1}.

Remark 1 For each s, r ∈ S, s ∼ r ⇒ s ∼i r ∀i ∈ {1, 2, ..., k}.

The next proposition shows that if all the sources are independent ∀t then,
definition 1 (i.) is true if, and only if definition 1 (ii.) is true for all the
coordinates i = 1, ..., k.

Proposition 1. Let Xt = (X(1)t, ..., X(k)t) be an order M Markov chain,
with alphabet A = {0, 1}k and state space S = AM ,M < ∞. If ∀t {X(i)t}ki=1

are independent, for each s, r ∈ S,

s ∼ r ⇐⇒ s ∼i r ∀i ∈ {1, ..., k}.

In the next section we will introduce the notion of partition L corresponding
to ∼ . Also we will give a summarized introduction to the Partition Markov
Models (PMM), for more technical details about those models see [3] and [4].

2.1 Partition Markov Models

We note that the model introduced in this section, can be formulated not only
for A = {0, 1}k, that is the case treated in this paper.

Definition 2. Let Xt be an order M Markov chain, with alphabet A and state
space S = AM ,M < ∞. We will say that Xt has partition L if this partition
is the one defined by the equivalence relationship ∼ introduced by definition 1
(i.).
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We observe that the set of parameters for a Markov chain over the alphabet A
with partition L is given by the set of conditional probabilities

{P (a|L) : a ∈ A,L ∈ L}.

where P (a|L) = P (a|s), for any s ∈ L. If we know the equivalence relationship
for a given Markov chain, then we need (|A| − 1) transition probabilities for
each part L to specify the model. And the total number of parameters will be
|L|(|A| − 1).
To choose a model (in this case, a partition L) in a consistent way (see [3] for
a more comprehensive explanation) we can use a distance in the state space S
formulated from a sample xn

1 of the process Xt.

2.2 Interaction structure on a multivariate PMM

[6] defines the dependence structure between coordinates for VLMC models and
shows that this dependence structure can be estimated using BIC criterion in
the following way. First is fitted a VLMC and then, for each context, the BIC
criterion is used on the transition probabilities corresponding to that context
to find a partition of the coordinates on dependent sets. The results in [6] are
valid for any family of Markovian models as they only depend on the individual
transition probabilities and not on the model structure.

For simplicity in order to introduce the notion of interaction (or not) we
will assume that a PMM has been already obtained and the partition L is the
partition corresponding to ∼ . Our goal is to obtain for each part of the parti-
tion of the state space, a partition of the set of coordinates of the multivariate
process. This last partition will discriminate the set of coordinates in indepen-
dent sets. After that, we will put together all the parts of L with the same
partition in the space of coordinates.
Let (Xt) be a Markov chain on A = {0, 1}k, with partition L, of the state
space S. For a collection of coordinates u = {u1, ...ul} ⊂ {1, 2, ..., k} and
a = (a1, ..., ak) ∈ A, define, au = (au1

, ..., aul
) that is a vector composed only

by the u coordinates of a. For each part L ∈ L define the transition probability
from that part to a vector au, P (au|L) = Prob(Xu

t = au|Xt−1
t−M = s) ∀s ∈ L.

The previous definition is allowed because L is a part of the partition L follo-
wing definition 1 (i.).
In general, for A = {0, 1}k, given L ∈ L and a partition of {1, 2, ..., k}, IL of
independent coordinates, we have that

P (a|L) =
∏

C∈IL

P (aC |L) ∀a ∈ A,

while, the number of parameters needed for the part L will be
∑

C∈IL(2|C|−1).

Definition 3. Let Xt be a discrete time, order M Markov chain on a fi-
nite alphabet A with M < ∞ and partition of the state space L. For each
L ∈ L define DL as the largest partition of {1, 2, ..., k} such that P (a|L) =∏

C∈DL
P (aC |L) ∀a ∈ A. We will say that DL = {DL}L∈L is the structure of

interaction for the process.
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Consider now I = ∪{L∈L}DL, that will contain each kind of partition of the
coordinates appearing in DL. Each element of I corresponds to a particular
type of dependence identified in the model structure. For each P ∈ I, let be

MP = ∪{L∈L:DL=P}L and M = {MP }P∈I .

M is a partition of S such that two sequences s, r ∈ S are in the same part of
M if and only if, given each of this two strings, the set of sources interacting is
the same. The partitionM tell us for each possible past, which of the different
sources interact.

Example 1. Set A = {0, 1}2 and define the state space as S = A2. Consider
also the following set of conditional probabilities,

s P1(0|s) P2(0|s) P ((0, 0)|s) ∼ I F
(0, 0), (0, 0) 0.1 0.1 0.01 L1 M1 F1

(0, 0), (0, 1) 0.1 0.1 0.01 L1 M1 F1

(0, 1), (0, 0) 0.1 0.1 0.01 L1 M1 F1

(0, 1), (0, 1) 0.1 0.1 0.01 L1 M1 F1

(0, 0), (1, 0) 0.1 0.1 0.02 L2 M2 F2

(0, 0), (1, 1) 0.1 0.1 0.02 L2 M2 F2

(0, 1), (1, 0) 0.1 0.1 0.02 L2 M2 F2

(0, 1), (1, 1) 0.1 0.1 0.02 L2 M2 F1

(1, 0), (0, 0) 0.2 0.2 0.04 L3 M1 F1

(1, 0), (0, 1) 0.2 0.2 0.04 L3 M1 F1

(1, 1), (0, 0) 0.2 0.2 0.04 L3 M1 F1

(1, 1), (0, 1) 0.2 0.2 0.04 L3 M1 F1

(1, 0), (1, 0) 0.2 0.2 0.02 L4 M2 F3

(1, 0), (1, 1) 0.2 0.2 0.02 L4 M2 F3

(1, 1), (1, 0) 0.2 0.2 0.02 L4 M2 F3

(1, 1), (1, 1) 0.2 0.2 0.02 L4 M2 F3

We observe, that for any s, r ∈ S, s ∼ r if, and only if Pi(0|s) = Pi(0|r), i =
1, 2 and P ((0, 0)|s) = P ((0, 0)|r). We will remark two situations, (i) when the
sources 1 and 2 interact and (ii) when the sources 1 and 2 are independent.

(i) iff P1(0|s) 6= P ((0,0)|s)
P2(0|s) iff 1 6= P ((0,0)|s)

P1(0|s)P2(0|s) .

(ii) iff P ((0, 0)|s) = P1(0|s)P2(0|s).

In this example, each marginal equivalence ∼i has two parts, this means that
each marginal state space will be composed by two parts. In addition, the
partition L corresponding to ∼ has four parts, the fifth column of the table
indicates the part to which each s ∈ S (listed in the first column) belongs.
In the parts L2 and L4 the two sources are interacting while in the parts L1

and L3 the sources are independent. The partition (of coordinates) M =
{L1 ∪ L3, L2 ∪ L4} indicates when the two sources interact. Note that the
partitionM indicates if the sources interact but not how. By complement, the
partition F = {L1 ∪ L3, L2, L4} indicates exactly if the two sources interact
and it indicates also which kind of interaction occurs.
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3 Estimation

In this section we will introduce the methodology of estimation, which consists
of distances and algorithms that take advantage of the BIC criterion to produce
consistent estimates of the structure of interaction as well as of the parameters
of a PMM model.

3.1 Partition Markov Model Estimation

In this section it is assigned a distance to the state space S. It will allow the
estimation of the true partition of a PMM model. Based on this distance,
it is also proposed the construction of an algorithm that allows to obtain an
estimator of the partition which converges almost surely eventually, to the true
partition of the state space S.
Consider a sample xn

1 of the process Xt, a ∈ A and s ∈ S. We will denote
by Nn(s) the number of occurrences of s in the sample and by Nn(s, a) the
number of occurrences of s followed by a in the sample,

Nn(s) =

n+1∑
m=M+1

1{xm−1
m−M

=s}, Nn(s, a) =

n∑
m=M+1

1{xm−1
m−M

=s,xm=a}.

The equivalence between two strings coming from the state space, s and r will
depend on the sample and denoted by s ∼n r

s ∼n r ⇐⇒ Nn(s, a)

Nn(s)
=

Nn(r, a)

Nn(r)
∀a ∈ A.

Definition 4. Let xn
1 be a sample of Xt, for any s, r ∈ S,

dn(s, r) =
2

(|A| − 1) ln(n)

∑
a∈A

{
Nn(s, a) ln

(
Nn(s, a)

Nn(s)

)
Nn(r, a) ln

(
Nn(r, a)

Nn(r)

)
− (Nn({s, r}, a) ln

(
Nn({s, r}, a)

Nn(s) + Nn(r)

)}
,

with Nn({s, r}, a) = Nn(s, a) + Nn(r, a).

We note that dn can be generalized to subsets of the state space S and it has
the property of being equivalent to the BIC Criterion to decide if s ∼ r for any
s, r ∈ S (for details, see [3]).
From the next result will be possible to use the distance dn as a consistent
criterion to allocate the strings of the state space in parts that compound the
partition.

Theorem 1 Let Xt be a discrete time, order M Markov chain on a finite
alphabet A with M < ∞, with partition L. Let xn

1 be a sample of the process,
then for n large enough, for each s, r ∈ S, dn(r, s) < 1 iff s and r belong to the
same part of the partition L.
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Algorithm 1 (Partition selection algorithm)
Input: dn(s, r) ∀s, r ∈ S; Output: L̂n.
B = S
L̂n = ∅
while B 6= ∅

select s ∈ B

define Ls = {s}
B = B \ {s}
for each r ∈ B, r 6= s

if dn(s, r) < 1

Ls = Ls ∪ {r}
B = B \ {r}

L̂n = L̂n ∪ {Ls}

Return: L̂n = {L̂i}i

That means that if the source is Markovian, for n large enough, the algorithm
returns the true partition for the source.

Corollary 1. Under the assumptions of theorem 1, L̂n, given by the algorithm
1 converges almost surely eventually to L, where L is the partition of S defined
by the equivalence given by definition 1 (i.).

3.2 Dependence Structure Estimation

In this section we present the maximum likelihood expression that allows the
estimation of the underlying dependence structure DL, introduced by definition
3. So, based on an estimate of the partition of the state space S, the BIC
criterion enables to obtain an estimated structure that converges eventually
almost surely to the true dependence structure.
To estimate the probabilities, we introduce, for s ∈ S the number of occurrences
of the string s followed by a vector that has the coordinates listed by u equal
to au Nn(s, au) =

∣∣{t : M < t ≤ n, xt−1
t−M = s, xu

t = au}
∣∣. In addition for each

part L ∈ L NLn (L, au) =
∑

s∈L Nn(s, au) and NLn (L) =
∑

s∈L Nn(s).
In the next paragraph we emphasize the count of two quantities, the number
of occurrences of s followed by any vector with i-th coordinate equal to b, and
the number of occurrences of s followed by any vector with coordinates listed
in u equal to c.

Nn(s, a{i} = b) =

n∑
t=M

1{xt−1
t−M

=s,xi
t=b},

with i ∈ {1, . . . , k}, b ∈ {0, 1}.

Nn(s, au = c) =

n∑
t=M

1{xt−1
t−M

=s,x
uj
t =cj , 1≤j≤l},
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with c ∈ {0, 1}l.
Given a sample of the process xn

1 , if we write P (xn
1 ) = Prob(Xn

1 = xn
1 ), we

obtain under the assumption of a hypothetical partition L of S,

P (xn
1 ) = P (xM

1 )
∏

L∈L,a∈A

∏
C∈DL

P (aC |L)N
L
n (L,a).

The maxima for
∏

L∈L,a∈A
∏

C∈DL
P (aC |L)N

L
n (L,a) is

ML(L,DL, xn
1 ) =

∏
L∈L,a∈A

∏
C∈DL

(
NLn (L, aC)

NLn (L)

)NLn (L,a)

,

and the BIC expression under this formulation will be

BIC(L,DL, xn
1 ) = ln (ML(L,DL, xn

1 ))−
∑
L∈L

∑
C∈DL

(2|C| − 1)
ln(n)

2
.

For a Markovian source the BIC model selection methodology is consistent as
we show in the next result.

Theorem 2 Let Xt be under the assumptions of theorem 1, with partition of
the state space L and structure of conditional dependence DL. Define,

DL̂n
= arg max

D∈D
{BIC(L̂n,D, xn

1 )},

Where D is the set of all possible structures of dependences for A and L̂n, L̂n

obtained using algorithm 1, then, eventually almost surely as n→∞,

DL = DL̂n
.

3.3 Simultaneous estimation of the partition and the interaction
structure

In this section, we will simultaneously estimate the partition of PMM models
and the interaction structure using the BIC criterion. A consistent strategy of
estimation will be introduced.

We will introduce the following measure of dependence between pairs of
coordinates conditioned to a past s ∈ S,

Definition 5. Let xn
1 be a sample of Xt, for any s ∈ S, and i, j ∈ {1, 2, ..., k}

dns (i, j) =
2

ln(n)

∑
b∈{0,1}

{
Nn(s, a{i} = b) ln

(
Nn(s, a{i} = b)

Nn(s)

)

+ Nn(s, a{j} = b) ln

(
Nn(s, a{j} = b)

Nn(s)

)}
−

∑
c∈{0,1}2

{
Nn(s, a{i,j} = c) ln

(
Nn(s, a{i,j} = c)

Nn(s)

)}
.
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The next theorem shows that this distance between coordinates can be used to
find the structure of interactions for a given past s ∈ S in a consistent way.

Theorem 3 Let Xt be under the assumptions of theorem 1, with state space
S. For n large enough, for s ∈ S and i, j ∈ {1, ...k}, dns (i, j) < 1 iff i and j are
dependent.

Remark 2 The concept dns can be extended to parts of the partition defining
a PMM, replacing s by L.

Using the distances in definition 4 and definition 5, we can define the following
algorithm to estimate DL.

Algorithm 2 (Coordinate partition selection algorithm)
Input: for a fixed s ∈ S, dns (i, j)∀1 ≤ i, j ≤ k.
Output: D̂n

s ;
B = {1, 2, ..., k}
D̂n

s = ∅
while B 6= ∅

select i ∈ B
define Di = {i}
B = B \ {i}
for each j ∈ B, j 6= i

if dns (i, j) < 1
Di = Di ∪ {j}
B = B \ {j}

D̂n
s = D̂n

s ∪ {Di}

Return: D̂n
s

We will show later, that the distance introduced in the next paragraph can be
used to find the PMM and also the dependence structure.

Definition 6. Let xn
1 be a sample of Xt, for any s, r ∈ S,

d′n(s, r) =

=
2

M(s, r) ln(n)

∑
a∈A

 ∑
C∈D̂n

s

Nn(s, a) ln

(
Nn(s, aC)

Nn(s)

)

+
∑

C∈D̂n
r

Nn(r, a) ln

(
Nn(r, aC)

Nn(r)

)

−
∑

C∈D̂n
{s,r}

(Nn({s, r}, a)) ln

(
Nn(s, aC) + Nn(r, aC)

Nn(s) + Nn(r)

) ,

with
M(s, r) =

∑
C∈D̂n

s
(2|C| − 1) +

∑
C∈D̂n

r
(2|C| − 1)−

∑
C∈D̂n

{r,s}
(2|C| − 1).
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Following the steps pointed here, can be estimated the dependence structure
for each element of the estimated partition.

Step 1. Given the state space S, apply the algorithm 2, obtaining D̂n
s , ∀s ∈ S;

Step 2. Apply algorithm 1, replacing dn (def. 4) by d′n (def. 6), obtaining L̂n =
{L̂i}i≥1;

Step 3. Apply algorithm 2, replacing dns (def. 5) by dn
L̂

(Remark 2), obtaining

D̂n
L̂
, ∀L̂ ∈ L̂n.

Once DL is estimated, we can identify the specific kind of interaction using
standard statistical methods on each interacting set. For example, fixed a part
L ∈ L if DL = {C1, ..., CmL

} (composed by independent sets of coordinates)
we only need to work with the marginals XCi , i ∈ {1, ...,mL} to determine the
kind of dependence between the coordinates of elements into A.
In addition, recallingM = {MP }P∈I with I = ∪{L∈L}DL and MP = ∪{L∈L:DL=P}L,
for each part MP , each marginal XC , C ∈ P, being independent from the oth-
ers coordinates can be analyzed by itself, which in general requires less data
than the simultaneous analysis of all k coordinates.

4 Conclusion

The PMM models are flexible structures that permit the incorporation of con-
cepts of dependence or interaction, as illustrated in this paper. The operation
of dividing the state space in parts of a partition L, governed by the equiva-
lence ∼ allows that the characterization of the interaction can be made in each
part of the partition L, this is, locally on the state space S. Theorem 2 shows
how to estimate the structure of interaction, using a consistent estimate of the
partition of the state space. Also, in this paper we simultaneously estimate the
partition of the space state L of a PMM model and also the interaction struc-
ture DL, through the Bayesian information criterion. In this way, a consistent
strategy of estimation was introduced.
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Detecting regime changes in Markov models
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Abstract. Let C be a data collection, indexed by time. C = {D(t1), ..., D(tn)},
where D(ti) was collected at time ti, ti ≤ tj if i ≤ j. Also, each D(ti) follows a
Markovian model with finite alphabet A, denoted by M(ti). We device a consistent
procedure to detect changes in the model at time ti0 that allows to decide if D(ti0)
and D(ti0−1) are coming from the same Markovian source. The procedure is based
on the equivalence relationship introduced by the Minimal Markov Models (see [7]),
that allows to associate to each Markovian model a minimal number of parameters
enough to describe a Markovian source. The model’s estimation can be consistently
performed through the Bayesian Information Criterion, see for details [1] and [7], also
for related topics about those models, see [8], [10] and [5]. Under the possibility of
regime change, we can have situations in which D(t1), ..., D(ti0−1) are coming from
a Markovian model, M(ti0−1) different to the Markovian model M(ti0) appropriated
for D(ti0). We apply the procedure to detect prosodic changes from classical to mod-
ern European Portuguese (see [2], [3], [4]). Taking in consideration that rhythm is a
consequence of several characteristics, like number of syllables in the words, position
in the word of the stressed syllable, simple and complex syllabic structure, etc., it
is possible to look for temporal changes in the rhythm, using written texts. In this
context, each D(ti) is a written text in European Portuguese and ti is the author’s
date of birth from 16th century to the 19th century. In this analysis we detect two
main change points, the first one at the turn of the 16th century to the 17th century.
The second one, in the second half of the 18th century that spreads to the end of the
century. Our findings complement the results attained in [3], which study the changes
of the European Portuguese in the same period of time, through the analysis of clitic
placement. The processing and types of statistical models are completely defined by
the differentiated nature of the data. For example, for acoustic signal processing see
[6] and for recent research about the statistical modeling see [8], [9] and [10].
Keywords: Minimal Markov models, Model selection, Bayesian information crite-
rion, Historical linguistics.

1 Introduction

Our goal in practical terms is to explore whether using Markov structures can
be extracted rhythmic properties of texts written in European Portuguese. We
also want to demonstrate that such models may be useful for the study of the
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prosodic changes in texts sorted by chronological time.
In [2] it is proved that in fact the European Portuguese has undergone a sig-
nificant alteration, perceived from the 16th century to the 17th. This finding
is consistent with the conjecture that the Portuguese is losing some of its fea-
tures of “romance language” with the passing of the centuries. In [2] significant
changes are verified on two phonological features, the size of the words and the
position of the stress. Thus, from the 16th century to the centuries 17th, 18th
and 19th, [2] shows: (a) a pattern of increase in the proportion of monosyllables
(in the universe defined by words of at most two syllables) and (b) a pattern
of increase in the proportion of words with stress on the last syllable (in the
universe defined by words with atress positioned in the penultimate or in the
last syllable).
This paper aims to investigate the problem by incorporating the Markovian
structure inherent to written texts. Supported by a model of this nature we
can leverage all the available information about the data. Given that the model
used in [2], based on the beta-binomial distribution, requires preprocessing of
the data to obtain the independence between the realizations (or words), in-
terfering with the maintenance of the rhythm and at the same time produces a
reduction of the sample size of the written texts. So, (i) the number of syllables
in each word and (ii) the placement of stress, will be investigated under a rich-
est model that allows to incorporate a dependence structure between words
through each text and enables consider jointly, the features (i) and (ii). To
achieve a more comprehensive view of linguistic phenomena studied at present,
it should be noted that linguistic structures can be studied in their formats
“spoken language” and “written language”. The processing and types of sta-
tistical models are completely defined by the differentiated nature of the data.
For example, for acoustic signal processing see [6] and for recent research about
the statistical modeling see [8], [9] and [10].
Using the linguistic problem as a motivating basis, we introduce in this paper
a consistent method for to find changes of regime in Markov processes. The
method takes advantage of the conception of minimal Markov models [7] and
was formulated using the Bayesian Information Criterion (BIC). The latter al-
lows to define a rule for deciding whether or not there is a change of regime in
Markov process. Finally, we will apply this procedure in the linguistic problem.

2 Historical data

Tycho Brahe corpus is an annotated historical corpus, freely accessible at [4]
(http://www.tycho.iel.unicamp.br/ tycho/corpus/en/index.html).
This corpus uses the chronological criterion of the author’s birthdate to assign
a time for written text. The subset of historical written texts included in this
study, listed in Table 1 is composed by 17 texts from 15 authors, coming from
four genres. In Table 1 we report also the number of orthographic words (ow)
by text. The data collection C = {Dt1 , ..., Dtn} is now given by the written
texts listed in Table 1.
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Dt Gândavo Pinto Sousa Brandão Vieira Vieira

t 1502 1510 1556 1584 1608 1608
Type N N N N L S
ow 22850 39941 50218 43192 47888 49275

Dt Chagas Bernardes Oliveira Aires Costa Alorna

t 1631 1644 1702 1705 1714 1750
Type P P L P L L
ow 48670 49479 16629 56055 24538 43318

Dt Garrett Garrett Fronteira Camilo Ortigão

t 1799 1799 1802 1826 1836
Type L N N N L
ow 30070 45800 54826 20142 27420

Table 1. Subset of Tycho Brahe corpus used in this study, coming from four genres:
narrative (N), letters (L), philosophical (P) and sermons (S).

2.1 Encoding texts

Each written text was processed with a slightly modified version of the perl-
code “silaba” that can be freely downloaded for academic purposes at
www.ime.usp.br/ tycho/prosody/vlmc/tools/sil4.pl . The software was
used to extract two components of each orthographic word, denoted by (i, j),
where i is the total number of syllables that make up the word, i = 1, 2, ..., 8
and j indicates the syllable in which is registered the stress in the word, j =
0, 1, 2, .., 8. Where, j = 0 means no stress in the word and this just happens
in orthographic words with one syllable. The period (final of sentence) was
codified as (0, 0).
The alphabet was defined as exposed in Table 2. Note that the set of words
represented by (i, 0), i ≥ 2 corresponds to the empty set.

orthographic word element alphabet

(0, 0) a
(1, 0) b
(1, 1) c
(2, 1) d
(2, 2) e

(i, 1), i ≥ 3 f
(i, 2), i ≥ 3 g

(i, j), i, j ≥ 3 h

Table 2. Definition of the alphabet A.
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3 The Markovian model

The minimal Markov models applied in this paper, were introduced in [7].
Those models are generalizations of Variable Length Markov Chains models,
used to discover the differences between branches of the Portuguese in [5].
Let (Xt) be a discrete time (order M <∞) Markov chain on a finite alphabet
A. Let us call S = AM the state space. Denote the string amam+1 . . . an by
anm, where ai ∈ A, m ≤ i ≤ n.
For each a ∈ A and s ∈ S, P (a|s) = Prob(Xt = a|Xt−1

t−M = s).
Let L = {L1, L2, . . . , LK} be a partition of S, for a ∈ A, L ∈ L, P (L, a) =∑

s∈L Prob(Xt−1
t−M = s,Xt = a), P (L) =

∑
s∈L Prob(Xt−1

t−M = s) and P (a|L) =
P (L,a)
P (L) with P (L) > 0.

Definition 1. Let (Xt) be a discrete time order M Markov chain on a finite
alphabet A. We will say that s, r ∈ S are equivalent (denoted by s ∼p r) if
P (a|s) = P (a|r) ∀a ∈ A. For any s ∈ S, the equivalence class of s is given by
[s] = {r ∈ S|r ∼p s}.

The previous definition allows to define a Markov chain with a “minimal par-
tition”, that is the one which respects the equivalence relationship.

Definition 2. let (Xt) be a discrete time, order M Markov chain on A and let
L = {L1, L2, . . . , LK} be a partition of S. We will say that (Xt) is a Markov
chain with partition L, if this partition is the one defined by the equivalence
relationship ∼p introduced by definition 1.

In a given sample xn
1 , coming from the stochastic process, we denote the number

of occurrences of elements into L followed by a for,

NLn (L, a) =
∑
s∈L

Nn(s, a), L ∈ L,

where the number of occurrences of s in the sample xn
1 is denoted by Nn(s)

and the number of occurrences of s followed by a in the sample xn
1 is denoted

by Nn(s, a). The accumulated number of Nn(s) for s in L is denoted by,

NLn (L) =
∑
s∈L

Nn(s), L ∈ L.

The model, in this context given by the “minimal partition L”, can be selected
consistently, using the Bayesian Information Criterion. This means, the best
partition is the one that maximizes

BIC(xn
1 ,L) =

∑
a∈A,L∈L

NLn (L, a) ln
(NLn (L, a)

NLn (L)

)
− (|A| − 1)|L|

2
ln(n),

over the space of partitions.
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3.1 Criterion of remoteness between processes

The BIC allows to compare datasets as we will show in the next result. If two
variables X and Y have the same distribution we will assume the next notation
X =d Y. Also, if (x)ni=1 and (y)mi=1 are samples of X and Y respectively, we
will denote by (x)ni=1 ⊥ (y)mi=1 the independence between the samples.

Theorem 1. Given the stochastic process Xti of order M < ∞ with sample
(xti)

ni
1 of size ni, i = 1, 2, such that (xt1)n1

1 ⊥ (xt2)n2
1 . Xt1 6=d Xt2 if, and only

if

BIC
(

(xt1)n1
1 , (xt2)n2

1 ,L
)
<
∑
k=1,2

BIC((xtk)nk
1 ,Lk)

with

BIC
(

(xt1)n1
1 , (xt2)n2

1 ,L
)

=
∑

a∈A,L∈L
NLn1+n2

(L, a) ln
(NLn1+n2

(L, a)

NLn1+n2
(L)

)
− (|A| − 1)

2
|L| ln(n1 + n2).

Corollary 1. Under the assumptions of Theorem 1, d1,2 > 1, with

d1,2 =
2
∑

a∈A B(L1, n1, a) + B(L2, n2, a)−B(L, n1 + n2, a)

(|A| − 1) {|L1| ln(n1) + |L2| ln(n2)− |L| ln(n1 + n2)}

and B(L, n, a) =
∑

L∈LN
L
n (L, a) ln

(
NL

n (L,a)
NL

n (L)

)
.

Given the dataset Dti consider the stochastic process Xti of order M <∞
generator of Dti , with sample (xti)

ni
1 of size ni.

Following the codification given by Table 2, each sample will be composed by
the concatenation of symbols from A = {a, b, c, d, e, f, g, h} . Based on previous
works, that investigate similar data (see, for example [5]) the value of M con-
sidered here was 4.
Assuming that the data collection is made up of independent texts (which is
the case treated here, as each text is a complete work in itself), under the
assumption:

Xti =d Xtj and (xti)
ni
1 ⊥ (xtj )

nj

1 , i 6= j

BIC
(

(xti)
ni
1 , (xtj )

nj

1 ,L
)
>
∑
k=i,j

BIC((xtk)nk
1 ,Lk)

and
di,j < 1.

That means that both: Dti and Dtj come from the same model, given by the
minimal partition L. In another case Dti and Dtj come from different models,
Li and Lj respectively.
In the next section we use the values of di,j to measure the distance between
the models associated with written texts. Thus, texts that are identified with
the same model show no change points in the timeline. When di,j exceeds the
value 1, a change point is identified.
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4 Results and Conclusions

In the Figure 1, each horizontal line represents the text written by a particular
author. On the line of each text is shown the value of d computed for two
consecutive texts in time. Thus, for example, the text titled as “Gândavo
(1502)” was compared with the author’s text immediately following, that is
the text titled as “Pinto (1510)” and the value of d displayed in Gândavo
(1502)’s line. Now, when the line shows two points (two values of d), such
as the case of the Brandão (1584)’s line, is because there are two texts in the
sample of the same year. For instance, those texts are from Vieira (1608):(a)
letters and (b) sermons.
In this analysis we detect two main change points, the first one at the turn of

-5 0 5 10 15

d

Gandavo(1502)

Pinto(1510)

Sousa(1556)

Brandao(1584)

VieiraL(1608)

VieiraS(1608)

Chagas(1631)

Bernardes(1644)

Oliveira(1702)

Aires(1705)

Costa(1714)

Alorna(1750)

GarrettL(1799)

GarrettN(1799)

Fronteira(1802)

Camilo(1826)

Pinto
Sousa
Brandao
VieiraL
VieiraS
Chagas
Bernardes
Oliveira
Aires
Costa
Alorna
GarrettL
GarrettN
Fronteira
Camilo
Ortigao

Fig. 1. Each horizontal line represents a written text from European Portuguese,
those were ordered by time from down to top. The vertical line represents d = 1,
greater values of d indicates the presence of a change point.
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the 16th century to the 17th century. The second one, in the second half of the
18th century that spreads to the end of the century. Our findings complement
the results attained in [3], which study the changes of the European Portuguese
in the same period of time, through the analysis of clitic placement.
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Abstract. Graphical modeling (GM) plays an important role in providing efficient
probability calculations in high dimensional problems (computational efficiency). In
this paper, we address one of such problems where we discuss fragmenting puff mod-
els and some distributional assumptions concerning models for the instantaneous,
emission readings and for the fragmenting process. A graphical representation in
terms of a junction tree of the conditional probability breakdown of puffs and puff
fragments is proposed.
Keywords: Environmental statistics, Graphical modeling, Junction trees.

1 Introduction

Graphical models, as statistical models, embodying a collection of marginal
and conditional independencies which may be summarized by means of a
graph, are quickly becoming an integral part of modern statistics. The graph-
ical representation of a statistical model can help in many ways: the graph
provides an effective means for elicitation and simplification of a problem, it
depicts the dependency structure posited in the model and it may be trans-
formed into a structure that can be used for efficient calculations of various
quantities of interest. Graphical methods have been used in the early 1980’s
for the analysis of statistical problems where no decision variables or util-
ities are explicitly represented. In a series of papers by( Darroch et al.[1];
Lauritzen et al.[6]; Kliveri et al.[5]; Lauritzen et al.[6]; Lauritzen and Wer-
muth[7] ) the authors addressed the problem of how graphs such as influence
diagrams can help in understanding the conditional independence properties
that a given factorization of a probability density implies. Another issue of
importance is how graphs can be used to perform efficient probability calcu-
lations in high dimensional problems (computational efficiency). This issue is
discussed in a number of papers by ( Kim and Pearl[4]; Pearl[11]; Lauritzen
and Spiegelhalter[8]; Spiegelhalter et al.[18]; Smith and Anderson[17] ). In
Section 2 we give some graph-theoretic results and a background material
on graphs, which are necessary for the development of the paper. In Section
3 we show how to propagate information on junction trees. Section 4 de-
scribes an environmental application of a high dimensional process, namely,
the atmospheric fragmenting puff models. In this section we propose a graph-
ical representation of the conditional probability breakdown of puffs and puff
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fragments as a junction tree representation of a high dimensional problem. In
Section 5 we give an example of clique representation for puff distributions.
Section 6 concludes the paper.

2 Background Material

This section introduces some graph-theoretical terms, which will be used in
the paper. A network or graph is a pair G = (V,E) that consists of a finite
set of vertices V = 1, 2, . . . , v and a set of edges (arcs) E ⊆ V ×V of ordered
pairs of distinct vertices. An edge from vertex i (parent) to vertex j (child) is
a directed edge (arrow) denoted by i→ j if (i, j) ∈ E and (j, i) 6∈ E. If both
(i, j) and (j, i) are ∈ E, then the edge between i and j is undirected (line).
If the graph has only undirected edges, it is undirected graph and if all edges
are directed, the graph is said to be a directed graph. A path of length m ≥ 0
from i to j is an ordered sequence (i = i1, i2, . . . , im = j) of distinct vertices
i1, i2, . . . , im such that (il, il+1) is in E for each l = 1, 2, . . . ,m. If there is a
path from i to j we say that i leads to j. A subset C ⊆ V is said to be a (i, j)
separator if all paths from i to j intersect C. The subset C is said to separate
A from B if it is an (i, j) separator for every i ∈ A, j ∈ B. For A ⊆ V, the
set of parents of A denoted by Pa(A) is the set of all these vertices in V, but
not in A that have a child in A. An m-cycle is a path of length m with the
exception that the end points are equal; that is i = j. A graph is acyclic if it
has no cycles.

2.1 Influence diagrams

An influence diagram (ID) is a schematic representation of conditional in-
dependence relationships. It is used for deducing new independencies from
those used in the construction of the diagram. Influence diagrams were first
developed in the mid 1970’s by Miller et al.[10], Howard and Matheson[3]
extended the theory to decision analysis. Shachter[13] gave a procedure for
evaluating a decision problem using an influence diagram. In this section we
present a brief introduction on how to use influence diagrams, as a modeling
framework, that underpins a probability distribution in order to learn about
and calculate various quantities of interest efficiently. We begin by defining
a chance influence diagram.
In graph-theoretic terms a chance influence diagram or influence diagram
(ID) is a directed graph G = (V,E), where V is a set of nodes represented by
circles and called chance nodes and E is the set of directed edges or arrows
joining these nodes. Chance nodes label random variables (uncertain) quan-
tities relevant to the problem being modeled and directed edges represent
probabilistic dependencies.
A chance node labels a random variable X1 must be a parent of a chance
node labels a random variable X2 if and only if the distribution of the ran-
dom variable X2 is calculated conditional on the value of the random variable
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X1 and X1, X2 are not independent. The generalization to higher dimensions
is given below.
Let X = (X1, . . . , Xm) be an ordered set of m random variables with a joint
probability function

p(x) = p(x1)

m∏
r=2

p(xr|x1, . . . , xr−1) (1)

Suppose p(xr|x1, . . . , xr−1) is a function of xr and the parent set P (r) ⊆
{x1, . . . , xr−1} only. This will imply that given P (r), Xr is independent of
R(r), where

R(r) = {X1, . . . , Xr−1} \ P (r)

is the set of random variables listed before Xr, which do not appear explic-
itly in the conditional probability function p(xr|x1, . . . xr−1). This can be
expressed, as in Dawid[2]’s notation

Xr ⊥⊥ R(r)|P (r) r = 2, . . . ,m (2)

Then the graph of an influence diagram overX1, . . . , Xm is any directed graph
with nodes representing random variables X1, . . . , Xm satisfying property (2).
Influence diagrams are clearly acyclic, because only nodes of lower index can
be connected to nodes of higher index. As a simple illustration, suppose
X = {X1, . . . , X8}. Then from (1)

p(x) = p(x1)

8∏
r=2

p(xr|x1, . . . , xr−1).

Suppose the parents are: P (2) = {X1}, P (3) = {X1, X2}, P (4) = {X3}, P (5) =
{X3, X4}, P (6) = {φ} ( the empty set), P (7) = {X5, X6}, P (8) = {X7}.
The influence diagram (G) of this example is given in Figure 1

2.2 Clique marginal representation

The clique marginal representation is one of many ways of specifying a joint
probability distribution (see, for example, Lauritzen and Spiegelhalter[8];
Smith[14]). We start by identifying the cliques of an influence diagram G and
p(x) by looking at the small sets of variables called precliques, see Smith[15]
of the form

C̃(r) = {Xr, P (r)} (P (1) = φ), 1 ≤ r ≤ m.

Then we delete from this collection any preclique C̃(r) for which there exists
a C̃(k) (k > r) such that

C̃(r) ⊆ C̃(k).

The remaining sets of variables after such deletions are called the cliques of
p(x) and G. This set of cliques will be denoted by C = {C(1), . . . , C(n)}, 1 ≤
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1x 3x 5x 7x 8x

2x 4x 6x

Fig. 1. An Influence Diagram ID I

n ≤ m− 1.
After identifying the cliques, we can determine p(x) in terms of the joint
probability functions p1(x), . . . , pn(x) over the cliques {C(1), . . . , C(n)}. A
sufficient condition for this is that p(x ∈ P (r)) > 0 for each x ∈ P (r), 2 ≤
r ≤ m whenever P (r) 6= φ. Then (1) can be expressed as:

p(x) =

∏m
r=1 p(x : x ∈ C̃(r))∏m
r=2 p(x : x ∈ P (r))

(3)

where p(x ∈ P (r)) = 1 if P (r) = φ, the empty set.
Since by definition p(x : x ∈ C̃(r)) (and hence also p(x : x ∈ P (r)) can
be obtained from p(x : x ∈ C(k)) where C(k) is a clique of p(x) such that
C̃(r) ⊆ C(k), 2 ≤ r ≤ m. Then (3) can be simplified to

p(x) =

∏n
k=1 pk(x)∏n
k=2 qk(x)

(4)

where pk(x) as defined above and qk(x) = p(x : x ∈ P (r)) for a C̃(r) re-
maining in the clique set, such that C̃(r) = C(k), 1 ≤ k ≤ n. A set of parents
P (r) associated with a clique C(k) is called a preseparator and denoted by
S̃(k), 2 ≤ k ≤ n. The clique representation (4) of p(x) has many computa-
tional advantages as we shall see later on.
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2.3 Decomposable influence diagrams

An ID G is called decomposable if the set P (X) of direct predecessors of X
is completely connected (i.e. each node in P (X) is connected by an edge to
another node), this being true for all X in G. Figure 2 illustrates two graphs,
one is decomposable and the other is not, since the parent nodes a and b are
not joined.

� � �

� � �

� � �

� � �

����	
������
�� 
 ��������	
������
 ��

Fig. 2. Graphs of decomposable and non-decomposable ID’s

Decomposable influence diagrams have several properties, which make
them useful to study. One property is that their structure helps in propa-
gating probabilities as the joint distribution of the system can be stored as
margins of cliques. The cliques of a decomposable influence diagram can be
ordered. Tarjan and Yannakaskis[19] gave a simple technique for ordering
nodes called the maximum cardinality search (MCS), so that in each of its
disconnected subgraphs they satisfy the so called running intersection prop-
erty (RIP) which states that: there exists an ordering C[1], . . . , C[n] of the
cliques C(1), . . . , C(n) such that for all 2 ≤ i ≤ n

C[i] ∩ [∪i−1j=1C[j]] = S(i) ⊆ C(pi),

for some pi, pi, 1 ≤ pi ≤ i− 1.
This means that the intersection of the ith clique with all the preceding ones
is a subset of one of the preceding cliques.
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3 Junction trees and Probability propagation

The clique representation (4) of p(x) can be used efficiently to propagate
information through the system, working indirectly with the margins pk(x)
and qk(x) successively, updating them rather than updating the whole joint
probability function p(x) directly. This can be done by passing ”simple
messages” along the edges of a new graph called a junction tree, constructed
from the influence diagram of p(x). However, in the application cited below,
distributions will not always remain decomposable. Because of this we need
to define a new graph called junction graph, which is an influence diagram
on vectors of variables in the original influence diagram of the process. We
then show that the definition of a junction tree is just a special case of
the undirected version of a junction graph. The use of junction graphs will
become apparent later in the paper. A formal definition of a junction graph
follows.
A junction graph G of any density satisfying (4) is a directed graph with n
nodes labeling the n cliques C(1), . . . , C(n). There is an edge to node C(i)
from node C(j), i > j if and only if

i) S(i) ∩ C(j) 6= φ
ii) there exists no j′ < j such that

S(i) ∩ C(j′) ⊇ S(i) ∩ C(j).

A minimal junction graph G is a junction graph which has no other junction
graph G′ as a proper subgraph.
In general a joint probability function will have several junction graphs and
minimal junction graphs over a chosen ordering of its cliques. An influence
diagram and its junction graph are shown in Figure 3. The undirected ver-
sions of junction graphs are called junction trees when the separator of any
clique is contained in exactly one previously listed clique or separator. Note
that all junction graphs with no unmarried parents and the same undirected
version (junction tree) embody an equivalent set of conditional independence
statements.
In the case when p(x) is decomposable, a collection of disconnected junction
trees will be called a junction forest.

3.1 Propagation of information on junction trees

Let C = {C(1), . . . , C(n)} denote the set of cliques of the joint probability
function p(x). Suppose we learn the values of some or all of the variables lying
in some arbitrary clique C(1) ∈ C and we want to compute the conditional
distribution of all variables in the system given a subset of variables in C(1).
To described a propagation algorithm paralleling that given in Lauritzen and
Spiegelhalter[8]. It is clear that we can obtain a new probability function
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Fig. 3. An influence diagram (ID) and its Junction graph

p∗(x) of the variables x(1) in C(1) from p(x(1)) its original probability func-
tion using Bayes rule. Smith[15] shows how to update probabilities over the
variables in the other cliques given the values of some of the variables in C(1).
The updating is possible using the junction tree of the system. For detailed
discussions, see the above references.

4 Graphical representation of Puff models

4.1 Puff Models

Most interest in the study of probabilistic networks has centered around
problems where the junction tree ( or variables in that tree) are fixed. How-
ever, there is a whole class of spatial temporal processes on which the effi-
cient probability propagation algorithms developed for static networks can
be used. For example, one of the methods of modeling atmospheric disper-
sion after an accidental release of radioactive pollutants is called the puff
model Mikkelsenet al.[9] According to this model, instead of assuming a con-
tinuous release from a source, it is assumed that the mass is released in a
series of discrete puffs. These puffs can then be transported and dispersed
around the local terrain based on the current wind field and local terrain.
This method has been incorporated into the RisØ-Meso-scale Puff model,
RIMPUFF Thykier-Nielsen and Mikkelsen[20]. To add to the accuracy of
the RIMPUFF model, its designers added a further level of detail, puff split-
ting or pentafurcation. As puffs are released and transported over the local
terrain, they grow in size. When their diameter reaches a chosen threshold,
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they can split into five smaller puffs. The mass associated with the parent
puff is distributed amongst the children which are also smaller in size. In
such examples, new variables (puffs) are being continually added so that, at
any time in the process, the joint density of all variables up to that time
satisfy equation (1).

4.2 Dynamic fragmenting of Puff models

The fragmenting Puff model described above can be reconstructed as a dy-
namic junction tree Smith et al.[16]. In this section we describe briefly the
reconstruction procedure starting with notation and distributional assump-
tions.
Let m(t, l) = m(t, l1, . . . , lk) be the puff fragment which is the lkth child of the
lk−1th child, ..., of the l1th child of the puff released at time t. In RIMPUFF
1 ≤ li ≤ 5, 1 ≤ i ≤ k. The index k relates to the number of fragmentations
that have taken place before fragment m(t, l) appears. Let:
IT denote the set of all puffs(puff fragments) appearing on or before time T.
Q(l) denote the true mass under m(t, l).
Q̄(l) denote the vector of true masses under the set of the children of m(t, l).
Q(l) = (Q(l), Q̄(t, l))T . Here we consider the following process.

The observation process: Let QT be the vector of masses of all puffs
and puff fragments emitted on or before time T. Let Y (t, s) denote a vec-
tor of observations taken at time t at a selection of site(s) s. Assume that
Y (t, s)|θ(t, s) is independent of all other variables in the system. Here θ(t, s)
can be interpreted as a random vector relating to the actual mass at time t
on site s. As a simple process, Y (t, s)|θ(t, s) is defined to have a Gaussian
distribution with mean θ(t, s) and a fixed covariance matrix V. An important
feature of puff models is that at all points (t, s) of the observation grid, θ(t, s)
can be written as

θ(t, s) = F (t, s)Qt + ε(t, s)

The matrix F (t, s) is a very complicated but known function of (t, s), which
defines the density of contamination contributed at sites s by each puff or
puff fragment at time t. Each row of this matrix corresponds to the weighings
used in a dispersal model at a site which is a component of the vector of sites.
Notice that F (t, s) has non-zero components only on fragments that still exist
and have not fragmented further. In practice it is found that only a few puff
fragments will be observed at a site at a given time, which implies that for
most (t, s) many components of each row of F (t, s) will be zeros. The error
process ε(t, s) will be Gaussian with zero mean and fixed covariance matrix
U. In the particular case of observations at source s = 0, where θ(t, s) is
a scalar we set θ(t, s) = Q(t) and hence ε(t, s) = 0. To specify the joint
distribution of Qt at any time T we need to specify the following processes.

The fragmentation process: This process assumes that a vector of
mass fragments (children) Q̄(l) of a parent m(t, l) is independent of all masses
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Qt given the mass Q(l). This can be written as

Q̄(l) ⊥⊥ {Qt \Q(l)}|Q(l).

Thus, the masses inherited by fragments depend only on the mass of the
parent unfragmented puff and no other puff. Thus to specify the joint dis-
tribution of puff fragments, it is only necessary to specify the conditional
distribution of Q̄(l)|Q(l) for each puff/puff fragment m(t, l). To model the
dispersal of gas, these conditional distributions are usually chosen to conserve
mass. For example, in RIMPUFF model we set

E[Q̄(l)|Q(l)] = αQ(l),

α = (α1, . . . , α5)T ,

5∑
i=1

αi = 1, αi > 0,

and
V ar[Q̄(l)|Q(l)] = B∗,

where 1TB∗1 = 0 and 1 denotes a vector of ones.
Obviously, if Q̄(l)|Q(l) is chosen to be conditionally Gaussian, then this
uniquely defines the joint distribution of Qt.

The Emission process: The emission process is modeled as a Dynamic
Linear Model (DLM) West and Harrison [21] with state space (Q(t),ψt)

T

where ψt is a vector of dummy variables. Special cases of these models
set ψ(t) as null when the process becomes 1-dimensional; Q(t)|Q(t − 1) ∼
N [Q(t−1)+µ(t)−µ(t−1),W ] where W is a fixed variance and µ(t) is a trend
term which is a function of time t. This is just a standard state space model
on the univariate process {Q(t), t = 1, 2, . . . , }. Here, setting the conditional
variance V (t, 0) of Y (t, 0), the source readings, given Q(t) large relative to W
gives a process, which after source readings are taken, still preserves strong
relationship between masses Q(t) and Q(t− 1). On the other hand, if V (t, 0)
is set to be negligible relative to W , this assumes source readings Y (t, 0), 1 ≤
t ≤ T, are very accurate. As a consequence it is not hard to prove that
after observing Y (1, 0), . . . , Y (T, 0), {Q(1), . . . , Q(T )} are independent and
future source emissions Q(T + k), k = 1, 2, ... have expectation µ(T + k) −
Gk[E[Q(T )] − µ(T )] (say). When the shape of the emission profile is very
vague, this can be modeled by setting µ(t) = 0, t = 1, 2, ... (a steady model).
Here the forecast future emission E[Q(T + k)] = E[Q(T )], k = 1, 2, ... i.e.
constant. If Y (T, 0) is very accurate i.e. V (T, 0) is very small relative to W
then E[Q(T + k)] ' Y (T, 0), the last observed emission.

4.3 Clique representation of Puff distributions

Let XT denote a vector of state random variables of interest (vector of mass
emissions and their fragments in our context) existing on or before time T. It
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is easy to check that because of the conditional independencies in the system,
the joint density pT (x) of XT can be written as

pT (x) = p(Q(1),ψ(1))

.

T∏
t=2

p(Q(t),ψ(t)|Q(t− 1),ψ(t− 1))

.
∏
IT

p(Q̄(l)|Q(l)) (5)

where Q(t),ψ(t), Q̄(l), Q(l) and IT are as defined above. The density can be
expressed in a suitable form, namely, the clique marginal representation form
of equation (4). For an efficient propagation of probabilities.
Let

C∗(t) = {Q(t),ψ(t), Q(t+ 1),ψ(t+ 1)},
C(l) = {Q(l), Q(l, l1), . . . , Q(l, l5)}, l ∈ IT

where C∗(t), C(l) are cliques, 1 ≤ t ≤ T − 1.
Applying equation (4), pT (x) can be written as

pT (x) =

∏
1≤t≤T−1 p(C

∗(t))
∏

l∈IT p(C(l))∏
2≤t≤T−1 p(S(t))

∏
l∈IT [p(Q(l))]rT (l)

(6)

where p(C∗(t)) and p(C(l)) denote respectively the joint densities of the
variables in the cliques C∗(t) and C(l), S(t) = {Q(t),ψ(t)} and rT (l) is the
number of offsprings of Q(l) produced before or at time T. Using this sim-
plified representation, the joint density pT (x) can be stored as a moderate
number of joint densities of low dimension instead of a single density of a
high dimension.

5 An Illustrative Example

The structure of the joint density pT (x) can be represented by a dynamic
influence diagram see, for example, Queen [12] and Smith et al.[16]. The
nodes of the ID are the random variables (or vectors) defined on the cliques.
For example the ID given in Figure 4 represents the conditional probability
breakdown of puff and puff fragments in the early stages of an accidental
release. As an example, let us assume that a source has emitted 4 puffs at
time T , the first puff has pentificated, the 2nd and 5th fragments have then
pentificated and further fragmentation has occurred on the 2nd offspring of
the 2nd fragment. The second puff has also pentificated and its 2nd puff also
split into 5. The 3rd and 4th puffs have yet to fragment.
Here we note that it is easy to check that the ID of Figure 4 is decomposable
(all parents of a given child are connected) with its cliques having the running
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Fig. 4. An ID of early emissions
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Fig. 5. A junction tree of an ID of early emissions

intersection property (RIP), that is at any time T , the cliques can be ordered
as C[1], . . . , C[9] such that

C[i] ∩ [∪i−1j=1C[j]] = S[i] ⊆ C[pi] 2 ≤ i ≤ 9.

for some pi, 1 ≤ pi ≤ i− 1. Also we note the following:

(i) If C[i] = C∗(t) then C[pi] = C∗(t− 1) and S[i] = Q(t).
(ii) If C[i] = C(l), if l = t then C[pi] = C∗(t) and S[i] = {Q(t)}, if l =

(t, l1, lk) then C[pi] = C(t, l1, lk−1) and S[i] = {Q(l)}.

Since the ID is decomposable we can form a junction tree whose nodes are
the cliques of pT (x) and whose node C[i] is attached to node C[pi] by an edge
represents a separator S[i]. The junction tree which corresponds to the ID of

279



Figure 4 is shown in Figure 5. A typical clique C̄[i] of this junction tree will
have a probability defined conditionally in terms of a particular separator
S̄[i] of the junction tree. That separator will take one of the forms:

(a) When C̄[i] = C∗(t) it will take the form S(t) of equation (4).
(b) when C̄[i] = C(l) it will take the form Q(l).

Now an exact algorithm for quick absorption of information on such junction
trees which evolve dynamically can easily be adopted.

6 Conclusion

In this work we showed how the continuous release of gas or radioactive ma-
terial can be described as a series of puffs of contaminated mass emitted
sequentially at discrete times and then dispersed and diffused (puff mod-
els). We also described a stochastic version of these dispersal models. This
version made it possible to incorporate and adjust to uncertain information
about contamination readings at different sites. We then proceeded to show
that all relevant uncertainties could be modeled by describing the evolution
of puffs and puffs fragments within the system by a high dimensional Gaus-
sian process exhibiting many conditional independencies. Finally, a graphical
representation (a clique representation) of these fragmentation processes was
described. This representation is suitable for an efficient propagation of evi-
dence as it arrives.
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Abstract. The theory of Time Operators has recently been applied into real life
problems with the estimation of innovation probabilities. Based on the assumption
that the asset values follow Geometric Brownian Motion with constant variance within
each trading day, the internal Age of an asset turns out to be a new statistical in-
dex, assessing the average innovations. Moreover, the unpredictability of the t-th
observation Xt is estimated by the distribution of innovations of Xt. The innovation
probabilities and internal Age are estimated using nonlinear stochastic variance mod-
els.
Keywords: Time Operator, Innovation, Financial Data, Stochastic Variance Mod-
els.

1 Introduction

The Time Operator of Dynamical Systems [1–3] has been extended to stochastic
processes and has been related to the complexity of the stock price dynamics
[4]. The application presented in [4] refers to a specific stock from the Athens
stock market during the important Greek elections of June 2012, where the
distribution of innovations within the eigenspaces of the Time Operator has
been computed. In this work, we propose specific models from the literature for
the prediction of the distribution of innovations of an asset, within a predefined
trading period.

In section 2, we present the Time Operator associated with a stochastic
process Xt, t = 1, 2, . . ., through the construction of its eigenprojections, with
eigenvalues the times t = 1, 2, . . .. The average value of the Time Operator
(Rayleigh quotient) defines the internal Age of the process (section 3). When
the process is the evolution of an asset’s price, it is shown [4] that the internal
Age is a function of the variances of each trading day. The values Open Oτ ,
High Hτ , Low Lτ and Close Cτ are known for τ = 1, 2, . . . , T so using the
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more efficient daily variance estimator we find, in section 4, the distribution of
innovations and their mean, i.e. the internal Age.

The novelty of this work is the estimation of the innovation probabilities pτ
from future variances σ2

τ where Open, High, Low, Close values are unknown. In
section 5, we shall employ nonlinear stochastic variance models for the evolution
of σ2

τ and obtain an explicit innovation probability formula corresponding to
each model.

In section 6, we present an application to a stock market index. The esti-
mated variances σ2

τ from stock market data are transformed using the Box-Cox
transformation [5]. The nonlinear stochastic variance model is selected, among
the existing ones, as the one with the best fit to the data.

2 Innovations and Time Operator of Stochastic
Processes

Consider a stochastic process X1, X2, . . . with the correlation scalar product
< X,Y >= E[XY ] and denote by S the σ-algebra generated by the random
variables X1, X2, . . .. Assuming that X1, X2, . . . have finite mean and finite
correlations, they live in the Hilbert space L2(Ω,S, µ), where Ω is their sample
space.

The random variablesX1, X2, . . . , Xt generate the σ-algebras St, t = 1, 2, . . .
which define the natural filtration {Ω, ∅} = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ S of the
stochastic process X1, X2, . . .. From the natural filtration St, t = 1, 2, . . . of
the stochastic process we construct the corresponding sequence of subspaces of
L2(Ω,S, µ):

H0 = span{1Ω}, Ht = L2(Ω,St, µ), t = 1, 2, . . . (1)

where H0 is the Hilbert space of constant random variables. The orthocom-
plement of H0 is the Hilbert space H of fluctuations H = L2(Ω,S, µ) 	 H0.
Every random variable in H has the form:X − E[X]1Ω , X ∈ L2(Ω,S, µ). The
family Ht, t = 1, 2, . . . is a resolution of the identity of the Hilbert space H, i.e.
∧t∈NHt = ∅,∨t∈NHt = H and Ht ⊆ Ht+1, t ∈ N.

The projections: Et : H → Ht, t = 0, 1, 2, . . . onto the spaces Ht are the
conditional expectations:

Et := E[.|St], t = 0, 1, 2, . . . (2)

and define the resolution of identity operator in H : Et, t = 0, 1, 2, . . ..

Definition 1. The self-adjoint operator with spectral projections the condi-
tional expectations Et (2) on the space of fluctuations H is called the Time
Operator of the stochastic process Xt, t = 1, 2, . . .:

T =

∞∑
t=1

t(Et 	 Et−1) =

∞∑
t=1

tPt (3)
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The eigenspaces of the Time Operator are the Hilbert spaces Nt := Ht 	
Ht−1, t = 1, 2, . . . and they are called Innovation Spaces. The projections Pt =
Et 	 Et−1 onto the innovation spaces Nt, t = 1, 2, . . . quantify the innovative
part PtZ of a random variable Z at time step t.

For example, The Time Operator of Bernoulli Processes [3,4] is applied to
the one-dimensional non-stationary random walk

X0 = 0, Xt = Z1 + Z2 + · · ·+ Zt, t = 1, 2, . . . (4)

as follows [4]:

TXt =

∞∑
τ=1

τPτXt =

∞∑
τ=1

τ(Zτ − E[Zτ ]) (5)

where

Zt =

{
1 with probability πt
−1 with probability 1− πt

, t = 1, 2, . . . (6)

3 The Internal Age of an Asset

The innovation probability of a random variable A at time t, is defined as the
probability to observe the random variable A in the innovation space Nt:

pt(A) = prob{A ∈ Nt} =
‖PtA‖2

‖A− E[A]‖2
=
V ar[PtA]

V ar[A]
(7)

The Rayleigh quotient (expectation) of the Time Operator T for the random
variable A is called the internal Age of A and is given by the formulas [4]:

Age(A) =
< A− E[A],T(A− E[A]) >

‖A− E[A]‖2
=

∞∑
t=1

tpt(A) (8)

The internal Age is the average innovation time of the random variable A and
pt(A), t = 1, 2, . . . is the distribution of innovations within the eigenspaces of
T.

When the Time Operator of Bernoulli Processes is applied to one-dimensional
non-stationary random walk Xt (4), the internal Age of Xt is a function of the
variance of the increments (6) [4, Theorem 5.2]:

Age(Xt) =

t∑
τ=1

τ
σ2
τ∑t

ν=1 σ
2
ν

, t = 1, 2, . . . . (9)

where σ2
τ = V ar[Zτ ], and the innovation probabilities of the random walk Xt

are:

pτ =
σ2
τ∑t

ν=1 σ
2
ν

, τ = 1, 2, . . . . , t (10)

Formulas (9) and (10) allow estimation of the innovation probabilities and
internal Age through the estimation of the variances σ2

τ .
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In order to estimate the internal Age and the innovation probabilities of an
asset (stock, currency, etc.), we assume that the asset’s prices Xt, t = 1, 2, . . .
are a non-stationary random walk and the index set Xt, t = 1, 2, . . . of the
random walk observations Xt refers to trading days. Some hours of the day
the market is open (trading period) and the rest of the day the market is closed.
The values Open Oτ , Close Cτ , High Hτ and Low Lτ of the τ -trading day are
the available price information of each trading day. Moreover, we assume that
the prices of an asset follow Geometric Brownian Motion within each trading
day [6]. The variance σ2

t is assumed constant with each trading day, but variable
from one trading day to another.

At time t = T the observation XT corresponds to the present asset’s price,
at the end of today’s trading period, so that the values Open Oτ , Close Cτ ,
High Hτ and Low Lτ are available. Hence, t = T+1 will stand for “tomorrow”,
i.e. the following trading day.

4 Innovation Probability Estimators from High, Low,
Open and Closing Prices

In this section we discuss the estimation of the variance σ̂2
τ = ˆV ar[Zτ ] of the

increment Zτ for each trading day τ for times τ ≤ T . In previous work [4],
we have presented five popular unbiased estimators, namely the close-to-close
estimator σ̂2

CC [7], the high-low Parkinson estimator σ̂2
P [7], the Garman-Klass

estimator σ̂2
GK [8], the Rogers-Satchell estimator σ̂2

RS [9] and the Yang-Zhang
estimator σ̂2

Y Z [10]. Among these known variance estimators:

• Parkinson’s estimator σ̂2
P [7] and the classic close-to-close estimator σ̂2

CC

[7] are less efficient than the Rogers-Satchell estimator σ̂2
RS [9]

• The Yang-Zhang estimator σ̂2
Y Z [10] is not able to estimate the variance

using data from only one trading day.
• The Garman-Klass estimator σ̂2

GK [8] assumes that there is no upward or
downward trend, while the Rogers-Satchell estimator σ̂2

RS [9] does not.

Due to the above three reasons, the Rogers-Satchell estimator σ̂2
RS [9] is the

most efficient drift-independent variance estimator, allowing intraday estima-
tions. Hence, the variance of the τ -trading day is given as follows:

σ̂2
RS(τ) = uτ (uτ − cτ ) + dτ (dτ − cτ ) (11)

where uτ = lnHτ − lnOτ , dτ = lnLτ − lnOτ , cτ = lnCτ − lnOτ .

Corollary 1. The innovation probabilities of the asset’s price at day t, t =
1, 2, . . . , T are estimated as follows:

p̂τ =
uτ (uτ − cτ ) + dτ (dτ − cτ )∑t
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(12)

The internal Age of the asset’s price at day t is given by:

Âge(Xt) =

t∑
τ=1

τ
uτ (uτ − cτ ) + dτ (dτ − cτ )∑t
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(13)
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Corollary 1, may be used for the estimation of the internal Age and distri-
bution of innovations of an asset’s price at day t, when t ≤ T . In the following
section, we modify Eq. (12) and Eq. (13), using nonlinear stochastic variance
models for estimations at day t = T + 1, i.e. the following trading day.

5 Innovation Probability Estimators from Nonlinear
Stochastic Variance models

We shall estimate the distribution of innovations and the internal Age of the
random variable XT+1. The formula which gives the innovation probability of
XT+1 for the following trading day (T + 1) is:

p̂T+1 =
σ̂2
T+1

σ̂2
T+1 +

∑T
τ=1 σ̂

2
τ

(14)

where σ̂2
T+1 is estimated from a stochastic variance evolution model and σ̂2

τ

are estimated from Open, High, Low and Closing values τ = 1, 2, . . . , T . The
values OT+1, CT+1, HT+1 and LT+1 have not been observed yet.

In [11] we find a classification of stochastic variance (volatility squared)
models. They all assume that an asset’s price, or stock market index, fol-
lows a Geometric Brownian Motion with variance σ2

τ evolving according to its
own stochastic process. We list the models and the corresponding innovation
probability estimators p̂T+1, in Table 1.

Reference Stochastic Variance Model Innovation Probability p̂T+1

[12] lnσ2
T+1 = α+ βεT

exp (α+βεT )

exp (α+βεT )+
∑T
τ=1 σ

2
τ

[13] lnσ2
T+1 = γ(lnσ2

T − α) + α+ βεT
exp (γ(lnσ2

T−α)+α+βεT )

exp (γ(lnσ2
T
−α)+α+βεT )+

∑T
τ=1 σ

2
τ

[14,15] lnσ2
T+1 = lnσ2

T + α+ βεT
σ2
T exp (α+βεT )

σ2
T

exp (α+βεT )+
∑T
τ=1 σ

2
τ

[16–18] σT+1 = γ(σT − α) + α+ βεT
(γ(σT−α)+α+βεT )2

(γ(σT−α)+α+βεT )2+
∑T
τ=1 σ

2
τ

[19] σ2
T+1 = γ(σ2

T − α) + α+ βεT
γ(σ2

T−α)+α+βεT
γ(σ2

T
−α)+α+βεT+

∑T
τ=1 σ

2
τ

[11] h(σ2
T+1, δ) = α+ γ(h(σ2

T , δ)− α) +
βεT

g(α+γ(h(σ2
T ,δ)−α)+βεT )

g(α+γ(h(σ2
T
,δ)−α)+βεT )+

∑T
τ=1 σ

2
τ

h(σ2
T+1, δ) = h(σ2

T , δ) + α+ βεT
g(h(σ2

T ,δ)+α+βεT )

g(h(σ2
T
,δ)+α+βεT )+

∑T
τ=1 σ

2
τ

Table 1. Forecasting the innovation probability of the following trading day using
stochastic variance models

In Yu et al. [11] the model involves the Box-Cox transformation of the
variance σ2

τ :

h(σ2
τ , δ) =

{
(σ2
τ )
δ−1
δ if δ 6= 0

lnσ2
τ if δ = 0

(15)
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and the innovation probability pT+1 the inverse Box-Cox transformation of the
variance σ2

τ :

g(h(σ2
τ , δ)) =

{
(1 + δ · h(σ2

τ , δ))
1
δ if δ 6= 0

exp(h(σ2
τ , δ)) if δ = 0

(16)

The latest model of Yu et al. [11] is a generalization of the previous, most
popular models:

• For δ = 0, the model of Yu et al. [11] becomes the Wiggins model [13].
• For δ = 0.5, the model of Yu et al. [11] becomes the Stein model [17].
• For δ = 1, the model of Yu et al. [11] becomes the Andersen model [19].

Combining the most appropriate model (the one with the best fit to our
data) with the Rogers-Satchell estimator:

Âge(XT+1) = (T + 1)p̂T+1 +

T∑
τ=1

τ
uτ (uτ − cτ ) + dτ (dτ − cτ )

σ̂2
T+1 +

∑T
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(17)
where p̂T+1 are given from Table 1 and uτ , cτ , dτ are the quantities of Eq. (12).

In the case of the general model of Yu et al. [11] the transformed variances
are assumed to follow an Ornstein-Uhlenbeck process [11], which is a mean-
reverting process with parameters: α is the long-run variance, γ is the rate at
which the transformed variance h(σ2

τ , δ) reverts to α, β is the constant variance
of the Gaussian increment:

h(σ2
τ , δ)− γ(h(σ2

τ−1, δ)− α)− α (18)

In Zhang and King [20] we find Monte Carlo simulation techniques for
the estimation of the parameters α, β, γ, δ. The process with the independent
increments (18) assumes that the variances of an asset, or an index, revert to
a constant value α in the long-run. This is an empirical assumption [6] and for
statistically significant values of γ estimated to be close to 1 (as in [20]) the
model (19) can be simplified to assume that the variance increments

h(σ2
τ , δ)− h(σ2

τ−1, δ) (19)

are normally distributed, with constant mean and variance. This is the case
we examine in the following section. The most related work to this model
in the literature is the NARCH model of Higgins and Bera [21,22] where the
transformed errors of a time series follow an AR(p) process, generalizing the
ARCH and GARCH models of Engle [23] and Bollersev [24] respectively.

6 Application to Athens Stock Market General Index

We assume that the variance σ2
τ within each trading day is constant and we use

the Rogers-Satchell estimator (11) [9] which is more efficient than the classic
close-to-close estimator.
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δ p-value Decision δ p-value Decision

0,20 0,019 Reject 0,33 0,106 Accept

0,21 0,029 Reject 0,34 0,112 Accept

0,23 0,06 Accept 0,36 0,092 Accept

0,24 0,069 Accept 0,37 0,086 Accept

0,25 0,092 Accept 0,38 0,076 Accept

0,26 0,112 Accept 0,39 0,061 Accept

0,27 0,122 Accept 0,40 0,061 Accept

0,28 0,148 Accept 0,41 0,051 Accept

0,29 0,143 Accept 0,42 0,043 Reject

0,30 0,164 Accept 0,43 0,036 Reject

0,31 0,14 Accept 0,44 0,025 Reject

0,32 0,106 Accept 0,45 0,02 Reject

Table 2. The normality of the increments is tested for several values of δ using the
Kolmogorov-Smirnov test

0.25 0.30 0.35 0.40 0.45
∆

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p-value

Fig. 1. The region δ ∈ [0.23, 0.41] involves transformed variances which are normally
distributed (with significance level 0.05). The highest p-value (0.164) is attained at
δ = 0.30

We found evidence that the variances σ2
τ the Athens General Stock Market

Index from 18th February 2009 to 17th February 2014 are determined by the
model:

h(σ2
τ , δ)− h(σ2

τ−1, δ) = α+ β · ετ (20)

where â = 0.0001, β̂ = 0.1016, δ̂ = 0.30 and ετ are Gaussian zero centered, unit
variance random variables.

We could not reject the hypothesis that the transformed variances h(σ2
τ , δ)−

h(σ2
τ−1, δ) of the Athens General Stock Market Index from 18th February

2009 to 17th February 2014 are normally distributed for δ ∈ [0.23, 0.41]. The
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Kolmogorov-Smirnov tests and their corresponding decision are shown in Table
2. Figure 1 shows the p-value of each Kolmogorov-Smirnov test corresponding
to each selection of the power δ. Data have been obtained from [25] and the
computations have been done in SPSS Statistics 20.

Fig. 2. Histogram of the transformed variances with the estimated normal curve, for
δ = 0.30

We report some of the statistics of the variable h(σ2
τ , 0.30)− h(σ2

τ−1, 0.30).
The sample has 1245 values having mean −0.0001, standard deviation 0.1016,
skewness 0.077 and kurtosis 0.556. The spectrum of the sample is in the interval
[−0.3348, 0.3339].

Corollary 2. The innovation probability pT+1 for the Athens stock market
general index is:

pT+1 =
σ2
T+1

σ2
T+1 +

∑T
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(21)

where σ2
T+1 = 0.30

√
(uT (uT − cT ) + dT (dT − cT ))0.30 + 0.03εT .

Proof. The highest p-value (0.164) is attained at δ = 0.30, so the variance
evolution model is:

(σ2
τ )δ − 1

δ
−

(σ2
τ−1)δ − 1

δ
= α+ βετ (22)
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Fig. 3. Q-Q plot of the transformed variances for δ = 0.30

where α = −0.0001, β = 0.1016, ετ : zero mean, unit variance normally dis-
tributed random variable. Equivalently, (σ2

τ )δ − (σ2
τ−1)δ = δα + δβετ . There-

fore, the variance is σ2
τ = δ

√
(σ2
τ−1)δ + δα+ δβετ and the innovation prob-

ability pT+1 (21) is proved after substitution of the Rogers-Satchell estima-
tor (11) to the variances σ2

τ , τ = 1, 2, . . . , T and taking into account that
δα = −0.00003 ∼= 0.

From the definition of the internal Age (8), formula (9) and Corollary 2,
the internal Age computation is straightforward:

Corollary 3. The internal Age of the following trading day is:

Âge(XT+1) = (T + 1)p̂T+1 +

T∑
τ=1

τ
uτ (uτ − cτ ) + dτ (dτ − cτ )

σ̂2
T+1 +

∑T
τ=1 uτ (uτ − cτ ) + dτ (dτ − cτ )

(23)
where σ2

T+1 = 0.30
√

(uT (uT − cT ) + dT (dT − cT ))0.30 + 0.03εT and p̂T+1 is given
by Corollary 2.

The transformed variance increments (σ2
τ )δ − (σ2

τ−1)δ are expected to be
practically zero:

E[(σ2
τ )δ − (σ2

τ−1)δ] = E[δα+ δβετ ] = δα+ δβE[ετ ] = δα = −0.00003 ∼= 0

Therefore, we may apply Corollaries 2 and 3 in any period of T trading days
for the estimation of the innovation probability based on Corollary 2 (expected
innovation probability) and compare to the innovation probability estimations
based on Open, High, Low and Close prices. Moreover, we may also estimate
the internal Age, based on Corollary 3 (expected internal Age) and compare
to the internal Age estimations based on Open, High, Low and Close prices.
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Fig. 4. The innovation probability of the following trading day based on Open, High,
Low and Close prices (solid line). The expected innovation probability (dashed line)
is based on Corollary 2.
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Fig. 5. The internal Age of the following trading day based on Open, High, Low
and Close prices (solid line). The expected internal Age (dashed line) is based on
Corollary 3.

We apply previous analysis on March 2013. This month has an extreme
value related to the Cyprus bailout deal where large deposits were seized and
the second-largest bank closed [26].

Based on the previous 3 trading days and the available information at the
end of the present trading day (T = 4), we find the innovation probability and
the internal Age of the following trading day. The values Open, Close, High,
Low of the 5th trading day are not known yet and the expected innovation
probability and the expected internal Age are estimated from Corollaries 2 and
3 respectively. At the end of the 5th trading day, we estimate the innovation
probability and the internal Age using the Rogers-Satchell estimator (Corollary
1). The expected innovation probabilities (Corollary 2) are compared to the
innovation probabilities (Corollary 1) in Figure 4. The expected internal Age
(Corollary 3) is compared to the internal Age (Corollary 1) in Figure 5.
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The internal Age of 5 successive trading days in March 2013 attains its
maximum value at 27th March, i.e. one day after the announcement trading day
date (26th March 2013). Greek firms with large deposits in Cypriot banks and
projects running in Cyprus caused a strong impact on the Athens stock market
index. This impact is quantified through the innovation probabilities and the
internal Age of the corresponding dates demonstrating the high complexity of
this trading period.

The estimations close to the 27th of March 2013 are not satisfactory, due
to the external force that changed the dynamics of the stock value process. As
long as the prices fluctuate according to its own innovations, the prediction of
the innovation probabilities is satisfactory. The change in the dynamics was
caused by a political decision, unpredictable so far for many scientists.

7 Concluding Remarks

We used the Rogers-Satchell estimator of the daily variance, which is more
efficient than the classic close-to-close estimator and drift-independent. The
most recent variance estimator of Yang and Zhang [10] uses data from more
than one trading days.

From Corollary 3 we see that internal Age estimations are computed from
past variances, using the Rogers-Satchell estimator, and future variances, using
a model from Table 1. The most appropriate model is selected as the one with
best fit to the corresponding data.

In case the independent increments Zτ of Eq. (4) of the asset price dynamics
are not Gaussian, Mandelbrot [27] proposed the Pareto distribution to model
the changes in the logarithm of cotton prices. These distributions have infinite
variance:

V ar[Zτ ] = σ2
τ =∞ (24)

In case Eq. (24) is true, i.e. the increments Zτ of Eq. (4) have infinite
variance, the innovation probability is always 100%:

lim
σ2
T+1→∞

pT+1 =
σ2
T+1

σ2
T+1 +

∑T
τ=1 σ

2
τ

=
1

1 +
∑T
τ=1 σ

2
τ

σ2
T+1

→ 1 (25)

The prediction in such a complex environment is not expected to be suc-
cessful, no matter how many previous observations are used.

As shown in Figure 6, the survival function in logarithmic scale does not
fit to a straight line. Therefore, the Pareto distribution does not fit to the
differences of the logarithms of the closing prices.

In case the predicted variance σ̂T+1 of the following trading day is estimated
from a constant known value c (for example the 100-year average variance), Eq.
(14) is of the form:

p̂T+1 =
σ̂2
T+1

σ̂2
T+1 +

∑T
τ=1 σ̂

2
τ

=
c

c+ x
(26)
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Fig. 6. LogLogPlot of the survival function Prob[lnCt − lnCt−1 > k]
. Not power-law scaling.

Eq. (24) shows that periods of low uncertainty and variance (x→ 0) imply
high innovation probability p̂T+1 → 1 the following trading day. Moreover,
periods of high uncertainty and variance (x→∞) imply low innovation prob-
ability p̂T+1 → 0.

We estimated the innovation probabilities and the internal Age of the
Athens general stock market index observations during March 2013. The signif-
icant event associated with this month is the recent bailout program of Cyprus,
resulting to a severe local downward trend at the Athens General stock market
index. The high complexity (measured here from the innovation probabilities
and the internal Age) of specific trading dates is not affected by the sign of
the local drift, i.e. it does not matter whether the local trend is upward or
downward. We have recently illustrated the increasing distribution of innova-
tions as we approach the important Greek elections of June 2012 [4], leading
to an upward trend. The average innovation time is important for the risk
assessment of specific trading days.
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Abstract. Power TGARCH models are a natural extension of threshold GARCH
processes that allows taking into account both long memory and asymmetry in the
stochastic volatility. In Gonçalves, Leite, Mendes-Lopes[5] such models, with real
power δ and general error process, have been developed by establishing their main
probabilistic properties. The aim of this paper is to enhance the practical interest
of real power models by showing their adequacy to describe a physical time series,
namely the areas of the plage regions of the Sun, that is, the bright regions in the
chromosphere of the Sun, measured by the percentage area of the regions of solar
activity in one of the hemispheres relatively to its visible area. With this goal, after
recalling the main probabilistic properties of the real power models, we describe the
dynamical behavior of daily solar activity modeling the evolution of the plage regions
observed in the South solar hemisphere and measured in the Ca II K3 Coimbra’s
spectroheliograms between 1976 and 2006.

Keywords: Stochastic modeling, Time series, Power TGARCH models..

1 Introduction

Time series modeling has undergone an important development in last years.
The linear formulation present in the classical autoregressive moving average
(ARMA) models have been found to be insufficient to describe adequately
some data, like financial, monetary and physical one. In fact, this kind of time
series presents features of non-linearity behavior, particularly the fact that its
conditional volatility depends strongly on the past. In order to best describe
this fact, several conditional heteroscedastic models appeared in the literature
following the seminal paper of Engle[4].

Another fact often found in those time series is the asymmetrical reaction
of the volatility according to the sign of past observations, namely its different
behavior during a rising or falling period. This feature is taken into account
in the threshold ARCH models in which the conditional standard deviation of
the process at time t is a piecewise linear function of negative and positive val-
ues of past observations. Similarly, the presence of long memory in the shocks
of the conditional variance contributed to the proposal of power conditional

3rdSMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal
C. H. Skiadas (Ed)
c⃝ 2014 ISAST
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heteroscedastic models, among others, by Ding, Granger and Engle[3]. Follow-
ing this original idea, we developed in Gonçalves, Leite and Mendes-Lopes[5] a
natural extension of TGARCH processes that allows to take into account both
long memory property and the asymmetry in the stochastic volatility namely,
the TGARCH model with real power δ (δ-TGARCH).

In this paper we present this model referring some of their principal prob-
abilistic properties, namely stationarity, ergodicity and δ-order moments exis-
tence; moreover a representation of the conditional volatility as function of the
present and past observations is considered.

We apply these processes to the study of the dynamical behavior of daily
solar activity, based on the plage region areas observed in the South solar
hemisphere and measured in the Ca II K3 Coimbra’s spectroheliograms between
1976 and 2006 analogously to what is done in Gonçalves et al.[6]. Our study
indicates that the temporal evolution of this series is well described by ARMA
processes with δ-TGARCH errors and that the conditional volatility, strongly
present in solar activity, is not well reproduced by these models with integer
power.

2 δ− TGARCH processes

2.1 Definition

Let X = (Xt, t ∈ Z) be a real stochastic process and, for any t ∈ Z, let us
consider X+

t = XtI{Xt≥0}, X−
t = −XtI{Xt<0} and Xt the σ− field generated

by (Xt−i, i ≥ 0) .
The stochastic process X = (Xt, t ∈ Z) is said to follow a δ-power threshold

generalized autoregressive conditional heteroscedastic (δ-TGARCH) mo- del
with orders p and q (p, q ∈ N) if, for every t ∈ Z, we have


Xt = σtεt

σδ
t = ω +

p∑
i=1

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
+

q∑
j=1

γjσ
δ
t−j

for some real constants δ ̸= 0, ω > 0, αi ≥ 0, βi ≥ 0, i = 1, ..., p, γj ≥ 0, j =
1, ..., q, and where ε = (εt, t ∈ Z) is a sequence of independent and identically
distributed real random variables such that εt is independent of Xt−1, for every

t ∈ Z. If δ < 0 we consider the following convention:
(
X+

t

)δ
= 0 if Xt ≤ 0 and(

X−
t

)δ
= 0 if Xt ≥ 0, for every t ∈ Z. ε is called the generator process of X.

If γj = 0, j = 1, ..., q, the δ−TGARCH(p, q) model is simply denoted
δ−TARCH(p).

We observe that for these processes the TGARCH equation propagates
not just the conditional standard deviation but, more generally, the absolute
moments of order δ.

With this general formulation we include the principal conditional het-
eroscedastic models, namely:
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1) GARCH (Engle[4], Bollerslev[2]): considering δ = 2 and αi = βi, i =
1, ..., p.

2) TGARCH (Zakoian[10]): considering δ = 1.
3) δ−GARCH, δ > 0 (Mittnik, Paolella and Rachev[7]): considering αi =

βi, i = 1, ..., p. In fact, αi

[(
X+

t−i

)δ
+
(
X−

t−i

)δ]
= αi

[
X+

t−i +X−
t−i

]δ
= αi |Xt−i|δ .

4) APARCH (Ding, Granger and Engle[3]), considering αi = ai (1− τi)
δ

and βi = ai (1 + τi)
δ
, where ai ≥ 0, |τi| ≤ 1, i = 1, ..., p, and δ > 0.

Some essential probabilistic properties of these processes are referred in the
following section.

2.2 Probabilistic structure

This class of power-transformed and threshold GARCH models was consid-
ered by Pan, Wang and Tong[8] for δ > 0, for which they established condi-
tions of the strict stationarity and the existence of moments. In a more general
framework, in what concerns the power δ, the coefficients and generator process
distributions (no moments assumptions and not necessarily symmetric genera-
tor process) we establish (Gonçalves, Leite, and Mendes-Lopes[5]):

i) the existence of an unique strict stationary and ergodic solution,
ii) a necessary and sufficient condition of existence of the order δ moment

under which the strict stationarity is satisfied,
iii) the weak stationarity up to the δ-order.

To establish the existence and unicity of a strict stationary and ergodic
solution it is crucial to find a Markovian representation of the model, involving
a strictly stationary and ergodic process from which that solution is deduced.
Following the idea present in Mittnik, Paolella and Rachev[7], the following
vectorial representation

Yt+1 = AtYt +B

is obtained considering the Rm-vectorial stochastic process Y = (Yt, t ∈ Z),
m = max(p, q), where the k-component, Y

(k)
t isY

(1)
t = σδ

t

Y
(k)
t =

m∑
i=k

[
αi

(
X+

t−i+k−1

)δ
+ βi

(
X−

t−i+k−1

)δ
+ γiσ

δ
t−i+k−1

]
, k = 2, ...,m,

with (At, t ∈ Z) a sequence of independent and identically distributed random
square matrices of order m and where B is a determinist vector of Rm given
by

At =

m−1∑
i=1

[
αi

(
ε+t

)δ
+ βi

(
ε−t

)δ
+ γi

]
ei Im−1

αm

(
ε+t

)δ
+ βm

(
ε−t

)δ
+ γm 0Tm−1

 , B =

[
ωe1
0

]
;

(e1, ..., em−1 is the canonical base of Rm−1, Im−1 the identity matrix of m− 1
order and 0m−1 the null vector of Rm−1).
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We remark that the probabilistic analysis developed has enormous impact
on statistical applications of such models, in particular, since we ensure the
existence of stationary and ergodic solutions under conditions of great simplic-
ity expressed in terms of the model coefficients. In the following theorem we
summarize the particular results obtained.

Supposing that

(H1): E
(
|εt|δ

)
< +∞ and P (εt = 0) ̸= 1,

and denoting E
(
|εt|δ

)
= ϕδ, E

[(
ε+t

)δ]
= ϕ1,δ and E

[(
ε−t

)δ]
= ϕ2,δ, we have

the following result.

Theorem 1:

1. Under (H1), E
(
|Xt|δ

)
exists and is independent of t if and only if

m∑
i=1

(αiϕ1,δ + βiϕ2,δ + γi) < 1. Moreover X is weak stationary up to the δ

order.

2. Under (H1) and if
m∑
i=1

(αiϕ1,δ + βiϕ2,δ + γi) < 1, then X is strictly

stationary and ergodic.

We finalize this brief review on the δ−TGARCH processes probabilistic
structure, presenting the representation of the conditional volatility as function
of the present and past observations of the process.

Let us consider G (x) = 1 − γ1x − ... − γqx
q. If γ1 + ... + γq < 1 we may

introduce the coefficients di such that 1
G(x) =

+∞∑
i=0

dix
i, |x| ≤ 1 and define for

j ∈ N, cj = α1dj−1 + ...+ αpdj−p, c̃j = β1dj−1 + ...+ βpdj−p, where dk−j = 0
if j > k.

Considering a δ−TGARCH process X with identically distributed compo-
nents such that

(H2): E
(
log+ |ε0|

)
< +∞ and E

(
log+ σ0

)
< +∞,

the following result is established.

Theorem 2: If γ1 + ...+ γq < 1 then

σδ
t = c0 +

+∞∑
i=1

ci
(
X+

t−i

)δ
+

+∞∑
i=1

c̃i
(
X−

t−i

)δ
, almost surely,

with coefficients ci and c̃i that decrease exponentially. If, in addition, ε+0 and
ε−0 are non-degenerated random variables, the given representation is unique.

We note that the condition γ1 + ... + γq < 1 is a necessary condition of
stationarity; so, for a strictly stationarity δ−TGARCH process X satisfying
(H2), a δ-TARCH(∞) representation exists and as the coefficients, cj and
c̃j , of this representation decrease exponentially to zero, as j −→ +∞, σt is
approximated, in a convergent way, using a finite sample of X.
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2.3 Application to real data

Solar activity features has been extensively studied using the classical ARMA
models as for the study of the temporal evolution of sunspots numbers. Con-
sidering another solar feature, the plage regions areas, we develop a temporal
analysis on the dynamical behavior of daily solar activity (Gonçalves et al.[6]).
This study is based on the areas of the plage regions observed in each one of the
solar hemispheres and measured in the Ca II K3 Coimbra’s spectroheliograms
between 1976 and 2006.

To illustrate the importance of considering δ−TGARCH processes to de-
scribe the dynamical evolution of this kind of data, we consider here the series
of plage region areas daily observed in South solar hemisphere. This series is
analyzed using a generalization of the classical Box-Jenkins methodology in
order to take into account the features of conditional volatility that we have
detected in the residual series of the model firstly deduced by the classical
procedure.

All statistical analysis were performed using the statistical software Eviews.

2.3.1. The sample: south plage region areas

Let us consider the series of the plage region areas daily observed in South
solar hemisphere between 1976 and 2006.

As the temporal evolution analysis requires observations equally spaced in
time, a random average methodology is implemented to estimate some miss-
ing observations due to weather conditions. In the Figure 1 we present the
trajectories of the observed plage regions areas series (in blue) and of the cor-
responding completed series (in red), in the South hemisphere. These series
are denoted respectively by SOUTHOBS and SOUTHCOMP.
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SOUTHCOMP SOUTHOBS

Fig. 1. Plage regions areas on the South hemisphere (in percent of the total area of
the hemisphere): observed series (blue) and completed series (red).

The probabilistic equivalence between the observed and the completed se-
ries was confirmed considering descriptive summaries (histogram and numerical
parameters), comparison tests of means, medians and variances, kernel density
estimation, quantile-quantile chart and Chi-squared test. To illustrate these
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studies, we present in Figures 2 and 3, respectively, the histograms and the
estimated densities graphic representations obtained with the two sets of data.
This density estimation is performed by the nonparametric kernel method (Sil-
verman[9]) using the Epanechnikov kernel with bandwidth h = 0.3401.
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Series: SOUTHOBS
Sample 3/01/1976 12/31/2006
Observations 7566

Mean       1.166334
Median   0.904738
Maximum  7.177550
Minimum  0.000000
Std. Dev.   1.060299
Skewness   1.291287
Kurtosis   4.729242

Jarque-Bera  3045.302
Probability  0.000000

0

500

1,000

1,500

2,000

2,500

0 1 2 3 4 5 6 7

Series: SOUTHCOMP
Sample 3/01/1976 12/31/2006
Observations 11263

Mean       1.137793
Median   0.862457
Maximum  7.177550
Minimum  0.000000
Std. Dev.   1.038302
Skewness   1.281984
Kurtosis   4.614526

Jarque-Bera  4308.389
Probability  0.000000

Fig. 2. Descriptive summaries of the observed and completed series of plage regions
areas.
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Fig. 3. Estimated densities for the observed and completed series of faculae regions
areas.

Moreover, using the χ2-test, the equality of the empirical distributions of
the two series is accepted with p-value 0.32 as referred in Table 1.

To discard a possible loss of information by aggregation, we have repeated
this analysis for the recorded and estimated observations, in each year, and
similar conclusions were obtained. So, the random average methodology used
to complete the series respects the original probabilistic structure.

2.3.2. Temporal evolution: south plage region areas

To characterize the temporal evolution of the series in study and according
to the Box-Jenkins methodology, we begin by analyzing the autocorrelation and
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Observed N Expected N Residual

]0.0,0.5] 2591 2663.2 -72.2

]0.5,1.0] 1478 1505.6 -27.6

]1.0,1.5] 1208 1180.3 27.7

]1.5,2.0] 824 802.0 22.0

]2.0,3.0] 937 923.1 13.9

]3.0,4.0] 359 340.5 18.5

]4.0,6.0] 169 151.3 17.7

Total 7566

Test statistics

Chi-squared 7.005

Degrees of freedom 6

p-value 0.320

Table 1. Chi-squared test of equality of the empirical distribution of the observed
and completed series of plage regions areas.

partial autocorrelation functions of the series. From these functions, presented
in Table 2, it is easy to conclude that this data is well fitted by an AR(2) model.
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1.2

2 4 6 8 10 12 14 16

Table 2. Empirical autocorrelation and partial autocorrelation coefficients for the
areas of plage regions series.

The estimation of this AR model leads to an heteroscedastic residual series
presented in Table 3. In fact, applying the ARCH-LM test to this residual,
the null hypothesis of homoscedasticity is rejected with p-value 0.0000. A
generalization of the Box-Jenkins methodology must be used.

The SOUTHCOMP series is reanalyzed considering the class of AR(2) mod-
els with general δ-TGARCH(1) error processes. In fact, the correlogram and
partial correlogram of the residuals squared exhibit a step one dependence
(Table 4). The parameters of the model and the corresponding standard error
produced by Eviews are presented in Table 5.
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Heteroskedasticity Test ARCH

F-statistic 996.9546 Prob. F(1,11258) 0.0000

Obs*R-squared 916.0139 Prob. Chi-Square(1) 0.0000

Test Equation

Dependent Variable:RESIDˆ2

Method:Least Squares

Sample(adjusted) 3/04/1976 12/31/2006

Included observations: 11260 after adjustments

Table 3. Empirical autocorrelations and partial autocorrelations of the residual series
of AR(2) model estimation and Output of ARCH-LM test.
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Table 4. Empirical autocorrelations and partial autocorrelations of the residual
square after AR(2) estimation.

Denoting by S = (St, t ∈ Z) the AR(2) process and ε = (εt, t ∈ Z) the
corresponding error process, the evolution of South series is well fitted by the
following AR(2)-δ-TARCH(1) model:

St = 0.211 + 0.721St−1 + 0.262St−2 + εt

where {
εt = σtZt

σ0.081
t = 0.68 + 0.2932(ε+t−1)

0.081 + 0.2811(−ε−t−1)
0.081 ,

and (Zt, t ∈ Z) are independent real random variables with a centered and
reduced Gaussian distribution.

According to Theorem 1, it is easy to establish the strictly stationarity
and ergodicity of this process. The residual series associated has properties
of homoscedastic error process. In fact, the residual correlogram is compatible
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Dependent Variable: SOUTHCOMP

Method: ML-ARCH (Marquardt)-Normal distribution

Included observations: 11261 after adjustments

Convergence achieved after 35 iterations

Variance backcast: ON

@SQRT(GARCH)ˆC(7)=C(4)+C(5)*(ABS(RESID(-1))-C(6)*(RESID(-1))ˆC(7)

Coefficient Std error z-statistics Prob

C 0.211178 3.44E-08 6140565 0.0000

AR(1) 0.721457 5.00E-05 14442.70 0.0000

AR(2) 0.262416 6.83E-05 3540.143 0.0000

Variance Equation

C(4) 0.680386 0.006421 105.9555 0.0000

C(5) 0.288426 0.004804 61.45183 0.0000

C(6) -0.249003 0.011459 -21.7298 0.0000

C(7) 0.080675 0.006538 12.33854 0.0000

R-squared 0.834036 Mean dependent var 1.137987

Adjusted R-squared 0.833948 S.D. dependent var 1.038293

S.E. of regression 0.423099 Akaike info criterion 0.775714

Sum squared resid 2014.610 Schwarz criterion 0.783270

Log-likelihood -4377.552 F-statistic 9426.001

Durbin-Watson stat 1.952839 Prob (F-statistic) 0.00000

Inverted AR Roots 0.99 -0.27

Table 5. Estimates of model AR(2) with δ-TARCH errors.

with that of a white noise and the ARCH-LM test applied to that series accepts
the null hypothesis of homoscedasticity with p-value 0.797887 (Table 6).
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ARCH Test:

F-statistic 0.065581 Prob F(1,11258) 0.797887

Obs*R-squared 0.065593 Prob. Chi-Square(1) 0.797876

Test Equation

Dependent Variable: WGT RESIDˆ2

Method: Least Squares

Sample (adjusted): 3/04/1976 12/31/2006

Included observations: 11260 after adjustments

Table 6. Empirical autocorrelations and partial autocorrelations of the residual series
of AR(2)-δ-TARCH(1) model estimation and Output of ARCH-LM test.

This model fitting leads us to the three trajectories present in Figure 4,
namely the completed series (in red), the series estimated by the model men-
tioned above (in green) and the corresponding residues trajectory (in blue).
We point out the fitting quality as the temporal model captures very well the
evolutionary characteristics of the observed series.
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Fig. 4. The series of the plage regions areas, the fitted series and the residual trajec-
tories.

Finally, we should stress that ARMA-TGARCH models with integer power
do not capture well the heteroscedasticity of the residual series that must cor-
respond to a long memory property in the shocks of the plage regions areas
volatility (Ding, Granger and Engle[3]).
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Modeling errors in temperature forecasts
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Abstract. In this work we use data transformations to find a probability density
function (pdf) to forecasting errors in daily maximum and minimum temperatures.
This kind of data is not Gaussian and has features of the so called nearly Gaussian
random variables (NG), see Lefebvre[6]. A NG random variable can be obtained
by simply raising a Gaussian random variable to an exponent c, where c = {(2k +
1)/(2j+ 1)}, k, j = {0, 1, . . .}. To the pdf’s obtained in this way from the Gaussian
pdf we call the power normal pdf family. For the NG variables it is possible to relate
the value of the kurtosis coefficient to the particular exponent of the transformation,
c. We analyze the daily temperature forecast errors in the city of Porto during the
year 2011. We compare the fit of the power normal model pdf to the fit of different
non Gaussian models such as the Laplace and the Pearson type IV. We conclude
that the power normal model gives the best fitting results with exponents close
to those obtained by Lefebvre[6]. For the case of errors in minimum temperature
forecasts we found that the data is already approximately Gaussian.
Keywords: Nearly Gaussian random variable, kurtosis, power transformation.

1 Introduction

Forecasting in temperature and precipitation is important to agriculture, to
estimate the demand of certain goods on over coming days. On daily ba-
sis, people use weather forecasts to determine what clothe to wear, to plan
outdoors activities and for the protection of life and goods. The problem of
modeling forecasts errors of temperatures has been addressed in Lefebvre[6]
and Wilks[8] among others. In temperature forecasts, common sense tell us
that we should expect a rather symmetrical error distribution with small de-
viation. For instance, on a forecast of 15 degrees Celsius it is not expected
to occur a temperature of 35 degrees Celsius. In this work we follow Lefeb-
vre[6] that considered power transformations as a way to find a pdf for NG
variables. The power transform gives rise to the power normal pdf’s family
that is useful to model NG variables. The data that we use in application
of this theory is the daily forecast errors in maximum and minimum tem-
perature in the city of Porto.1 (one observation and respective forecast per
day) and for the year 2011. On section (2) we present the nearly Gaussian
random variable. We calculate the ordinary central moment and the kurtosis
coefficient of a Gaussian variable X with zero mean raised to a power c. We

1 The data was collected by Instituto Português do Mar e da Atmosfera (IPMA)
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also describe a method to find the specific pdf of the power normal family
that models data. In section (3) we apply the method described on section
(2) to the data. Firstly, we consider the errors in maximum temperatures.
Using the Lilliefors and the Shapiro-Wilk test we conclude that normality is
rejected. Using the sample kurtosis and a table of the theoretical kurtosis
of a power normal random variable we found the exponents 9/11 and 7/9 to
be appropriated to transform the original data in a sample with Gaussian
distribution. This means that the original data can be well fitted by a Gaus-
sian distribution raised to the power 11/9 or 9/7. In the case of the one day
ahead forecast of minimum temperature errors we found that normality is not
rejected. In section (4), we compare the fit of the power normal distribution
to other distributions such as the Laplace and the Pearson type IV and we
compare the results of the Qui-square goodness-of-fit test to conclude that all
pvalues observed are greater than the usual significance levels but the pvalue
associated with the power normal is significantly greater than the others.

2 Power transformation and the power normal

In this section we will follow Lefebvre[6]. The pdf of a random variable
resulting form the power transformation of a normal random variable is given
in the following proposition.

Proposition 1. If Y = Xc is gaussian, Y ∼ N(µ, σ2), then the pdf of the
power transformation of a Gaussian variable, X = Y 1/c is,

fX(x) =
1√
2πσ

c|xc−1| exp

[
−1

2

(
xc − µ
σ

)2
]
.

This transformation is related to the Box-Cox transformation. We will call
it the power normal pdf. The more interesting case for applications is when
µ is zero and c ∈]0, 1[ that is the range of c values for which Y is a nearly
Gaussian random variable. An example pdf is given in figure (2). In order to
identify the exponent c from experimental data we must relate c with some
statistical measure. If X is a Gaussian random variable with parameters
µ = 0 and variance σ2, then for c > 0

E(Xc) =

∫ ∞
−∞

xc√
2πσ

e−
x2

2σ2 dx =
2c/2

2
√
π
σc[1 + (−1)c]Γ

(
c

2
+

1

2

)
,

where Γ is the gamma function. Hence, the following proposition (see Lefeb-
vre[6]) may be stated

Proposition 2. The kurtosis coefficient of the random variable Y = Xc

when X ∼ N(0, σ2) is given by

β2(c) =

∫∞
−∞

1√
2π
x4ce−x

2/2dx(∫∞
−∞

1√
2π
x2ce−x2/2dx

)2 =
√
π
Γ (2c+ 1

2 )

Γ 2(c+ 1
2 )
.
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Fig. 1. Pdf of a Gaussian variable raised to the power 0.7.

c β2(c) c β2(c)

7/9 2.237 17/15 3.58
9/11 2.358 15/13 3.08
11/13 2.447 11/15 2.11
13/15 2.514 19/21 2.643
15/17 2.566 23/25 2.697
17/19 2.6 29/31 2.753
13/11 3.828 31/33 2.767
23/19 3.979 21/23 2.672
11/9 4.042 35/37 2.79
9/7 4.404 37/39 2.8

Table 1. Kurtosis of the random variable Y = Xc where X ∼ N(0, 1) for a few
values of c.

We present the table (1) that shows β2(c) for some values of c. This table
will be used to select an exponent c, close to 1, so that, raising the values of
the nearly Gaussian sample to 1/c one obtains an approximately Gaussian
sample. Note that the identification of the exponent c requires that the
variable should have mean and skewness close to zero. To estimate the power
normal parameter for a given a sample x1, . . . , xn we center the data defining

zi = xi − x̄,

so that the mean of the zi is 0. Assuming that the skewness coefficient is close
to zero and the kurtosis is not close to 3 to be Gaussian then, by selecting
an appropriate c from table (1), we find the transformation W = Z1/c that
is likely to transform the data into a an approximately Gaussian.
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3 Application to temperature forecasts

In this section we apply the method described in the last section. Our goal is
to find statistical models for the forecasting errors of minimum and maximum
temperatures. The size of our data set is 347 (there is a few missing data).
We define X as X = TF − TO where TF is the forecast and TO the observed
temperatures. Firstly, we consider the one day ahead maximum temperature
forecasts during the year 2011.
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Fig. 2. Histogram and Gaussian fit to the errors X in maximum temperature fore-
casts.

The figure (2) is an histogram for the maximum temperature forecast
errors data with the Gaussian fit on top. We note that there are more obser-
vations in the center when comparing to the Gaussian density. This feature is
typical of the nearly Gaussian random variables. Hence, we will try to fit an
appropriate member of the power normal family of distributions. But, before
applying any statistical test we must make sure that there is none or very
little temporal correlation among the data. A way of measuring temporal
correlation is by computing the sample autocorrelation function (ACF). The
data with small temporal correlation has an ACF within the 95% confidence
bounds for white noise. Since we’ve found 3 out of 20 values outside the
bounds then we decided to take a subset of the data. We kept only one in
each pair of forecasting errors. This procedure reduces the data size to an
half (173). Using the software SPSS we performed the Lilliefors and Shapiro-
Wilk tests and we obtained pvalues of 0.023 and 0.1 respectively. The pvalue
of Lilliefors test is less that the usual significance levels (0.05 to 0.1) used in
statistical tests. So, we conclude that the Gaussian distribution is not a good
model for X. Next, we tried classic models for the forecast errors such as
the Laplacian and the Student’s T and in both cases it turned out that the
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models were not acceptable. Now, we turn our attention to the power normal
family. To find the right transformation we must compute some statistics of
the data first. Let us define the mean of X by

x̄ =

n∑
i=1

xi
n
,

and

µ̂k =

n∑
i=1

(xi − x̄)k

n− 1
,

for k = 1, 2, ..., is the estimated k-th order central moment. The sample
standard deviation sx =

√
µ̂2. The sample skewness coefficient is

b1 =
µ̂3

s3x
,

and the sample kurtosis is

b2 =
µ̂4

s4x
.

The observed statistics for the error in the maximum temperature are:

x̄ = −0.0458; sx= 1.616 b1 = 0.035; b2 = 3.567.

The mean is close to zero so there is no need to center the data. The kurtosis
of the reduced data set is 4.0583. Based on the kurtosis in table (1), we tried
the transformation

wk = x
9/11
k .

We found that the gaussian distribution is an acceptable model to the wk’s.
Applying the Lilliefors test (with Matlab) the p-value increased from 0.023
before the transformation to at least 0.2 and the p-value of the Shapiro-Wilk
p-value test is 0.439. Because the values of the sample kurtosis are not exactly
equal to those of the table we also tried another exponent close to 9/11. In
fact, trying

wk = x
7/9
k ,

and applying the Lilliefors and Shapiro-Wilks tests (with SPSS) we obtain
the p-values 0.2 and 0.439 which are equal to those obtained for the former
exponent. Hence, we can use a Gaussian distribution raised to the power
11/9 to model the data. Raising the original data to the power 9/11 we ob-
tain an approximately Gaussian distribution with mean -0.027 and standard
deviation 1.311

X(9/11) ≈ N(−0.027, 1.3112).
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4 Fitting results

In this section, we will compare the power normal family fitting results to
those of the symmetric Laplace and the Pearson IV distributions. Firstly, we
consider the Laplace distribution

f(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
.

The estimate for µ is of course zero and the maximum likelihood estimate for
b =

∑n
i=1 |Xi− µ̂|. Secondly, we considered the Pearson type IV distribution,

its pdf is

fX(x) = k

[
1 +

(
x− λ
a

)−m]
exp

{
−ν arctan

(
x− λ
a

)}
,

for x ∈ R and the parameters m, m > 1/2, ν, a and λ are real constants.
A normalizing constant k required, see Lefebvre([6]). Using the estimators
given by the method of moments (see Stuart and Ord[7]) we obtained

m̂ = 5.5666, ν̂ = −1.6843, â = 4.2831, λ̂ = −0.8211.

The results of the chi-square tests are presented in table (2). We see that the

interval nj X Lap Pearson IV

(−∞, -2.5) 8 10.6870 9.4782 4.4115
(-2.5, -2) 11 7.01236 5.2715 7.9234
(-2, -1.5) 12 10.4451 8.20341 12.8885
(-1.5, -1,0) 11 14.8661 12.7660 18.4764
(-1, -0.5) 16 20.4931 19.8660 22.9571
(-0.5, 0) 31 32.2387 30.9149 24.566
(0,0.5) 31 25.1018 30.9149 22.7495
(0.5, 1) 21 17.5664 19.8659 18.4937
(1,1.5) 10 12.4670 12.7659 13.4767
(1.5,2) 9 8.50495 8.20342 8.996
(2, 2.5) 7 5.54012 5.27154 5.6398
(2.5, ∞) 6 7.92306 9.47825 3.3908
d2 8.63832 14.0892 13.1724
p-value 0.47131 0.11919 0.15496

Table 2. Chi-Square goodness of fit test to determine whether a Gaussian
N(−0.027, 1.3112) distribution raised to the power 11/9 is a good model for the
raw data. The five columns give the chosen subintervals, the number nj of obser-
vations in each subinterval and the expected ej number of observations for each
subinterval and for the Gauss, Laplace and Pearson IV distributions in this order.

p-value of the observed statistic for the power transformation of the normal
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is considerably better than the others. Next, we turn our attention to the
forecasts errors of minimum temperatures. Like in the case of the maximum
temperature when computing the ACF there are 2 values outside the 95%
confidence bounds therefore we decided to eliminate one value in each two.
The observed statistics for the error in the minimum temperature for the
reduced data set are:

x̄ = 0.099; sx= 1.52 b1 = −0.04; b2 = 2.67.

Applying the Lilliefors and the Shapiro-Wilk tests (again with SPSS) we
found a pvalue of at least 0.2 for the Lilliefors test and a pvalue of 0.439 for
the Shapiro-Wilk test. This means that the data is already approximately
Gaussian and there is no need for transformations.

5 Concluding remarks

In this paper, we show that a using an appropriate exponent of the form
(2k + 1)/(2j + 1), k, j = 0, 1, ... the power transformation of a nearly Gaus-
sian random variable can be Gaussian. The transformation is bijective so
it may be used in both positive and negative data. We applied the method
described in section (2) to data consisting of the one day ahead forecast er-
rors in daily maximum and minimum temperatures. In the case of errors
in maximum temperatures we used both Lilliefors and Shapiro-Wilk tests
and we concluded that normality was rejected. Afterwards, using the sample
kurtosis and the table (1) we found the appropriate exponents 9/11 and 7/9
that transform the original data in a sample with Gaussian distribution. Fit-
ting results of the power normal, Laplace and Pearson IV distributions were
compared and the pvalue of the power normal was found to be significantly
greater than the other two. Surprisingly, in the case of the one day ahead
forecast for daily minimum temperature errors, normality was not rejected.
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Abstract. In this paper we present a quality control method for Global Navigation 

Satellite System (GNSS) receivers. A statistical quality control (SQC) approach for 

accuracy is proposed, focused on quantitative trueness, precision and location availability 

analysis of GNSS receivers’, based on an independent reference system. The location 
availability is described as the percentage of the total received data that can be 

considered precise under n-σ boundaries; being n the level of requested precision. As part 

of this accuracy-based location availability analysis several filter techniques are tested, in 

order to select the most reliable for this specific quality control method. A traditional 
SQC method is compared with Mahalanobis Ellipses Filter (MEF) method, while both 

are provided by particle filter (PF) position estimation, as the independent reference. The 

quality control methods are depicted in graphical representation. And the results are 

analysed from an end-user point of view. Finally a detailed description of the receiver’s 
characteristics and conditions of the measurements are presented as part of a case study. 

Significant differences between the presented approaches are shown and a quality-

oriented assessment is proposed. 

Keywords: Quality control, GNSS receivers, Mahalanobis Ellipses Filter, Particle Filter. 
 

1  Introduction 
The quality control for GNSS receivers is an important feature to all GNSS-

based applications. In this paper we describe the development of a quality 

control methodology by means of accuracy analysis. Accuracy is described by 

quantitative values of trueness and precision of the GNSS dataset; while the 

location availability is described as the percentage of the total received data that 

can be considered precise under n-σ boundaries; where n is the level of 

requested precision. Two approaches are presented. First a traditional statistical 

quality control (SQC) trial, by means of quality control chart (QCC) of the 

module deviation analysis and easting-northing (E/N) bivariate deviation 

analysis. Then a new Mahalanobis Ellipses Filter (MEF) approach is tested; by 

means of Mahalanobis distance evaluation trial of the deviation dataset. 

All three trials of both approaches and their correspondent results are used for 

outlier detection as the proposed quality control methodology. Also a reference 

based on Particle Filter (PF) is developed and tested for both approaches. 
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Fig. 1: GNSS quality description. 

 

A. GNSS Receivers quality control 
 

More and more GNSS-based applications are available for localisation 

purposes. But no quality control methodology for the GNSS receivers has been 

developed. One step to the future certification of GNSS receivers is to develop a 

multiple receivers’ quality methodology, focusing on the user side. 

In Fig. 1 it can be seen how both software and hardware quality control analysis 

are possibilities from the system point of view. However from the user point of 

view, a methodology focused on accuracy and precision will be more 

representative of the quality of the receiver, as presented in Hodon [1]. 

Previous studies of quality by means of these mentioned characteristics can be 

found in Hodon [1] and Grasso et al. [2]. A more detailed method is presented in 

Grasso et al. [3], providing the theoretical basis for the presented accuracy-

based quality control methodology. 

GNSS receivers’ accuracy, described in Grasso et al. [3], is presented in Fig. 2. 

Based on the True Score Theory model from Trochim [4], accuracy by means of 

trueness and precision of the GNSS receiver is based on the deviation analysis: 
 

𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏 = 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 + 𝑬𝒓𝒓𝒐𝒓  
 

From where deviation is defined as the error term and it can also be divided into 

two significant components: 
 

𝒆𝒓𝒓𝒐𝒓 = 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝒆𝒓𝒓𝒐𝒓+ 𝒔𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄 𝒆𝒓𝒓𝒐𝒓  
 

Where deterministic error is the intrinsic error of the receiver’s behaviour and 

stochastic error (or non-deterministic error) is randomly added error to the 

receiver’s behaviour. Location availability is then defined as “the percentage of 

the GNSS data provided by the system that is considered precise, after filtering 

with an n-σ from a defined precision threshold”: 
 
 

𝐿𝑜𝑐𝐴𝑣𝑁𝜎 =
𝑁𝜎 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100% 

 

316



 
Fig. 2: GNSS Quality attributes hierarchy, focused on accuracy. 

 

B. Particle Filter approach for reference estimation 
 

Particle filter (PF) is a kind of probabilistic suboptimal nonparametric filters, 

whose main idea is the implementation of sequential Monte Carlo estimation, 

using particle representation of the probability density function (pdf), as 

described in Doucet et al. [5] and Arulampalam et al. [6]. Advantages such as 

the possibility of using PF also for nonlinear systems and the ability of PF to 

filter any error probability distribution make them not only limited to normal 

Gaussian probability distribution errors. This is why this filter can be well suited 

for the problematic of target localization, as seen in Púchyová [7] [8], and 

GNSS receiver error filtration. Our aim is to estimate the position of the receiver 

with some error following discrete-time stochastic model: 
 

𝒙𝑘  =  𝑓(𝒙𝑘−1, 𝒗𝑘)  
 

where f is the known function of the state xk−1 and vk is process noise sequence. 

The measurements have relationship with the state of the receiver through 

measure equation: 

𝒛𝑘  = ℎ 𝒙𝑘, 𝒖𝑘
 ,  

 

where h is known function and uk is the process noise sequence. 

Noise sequence vk and uk are independent. The filtrated estimation xk based on 

the sequence of all the available measurements up to time 

k is searched, so it is necessary to construct the posterior pdf p(xk|Zk). Then in 

principle, pdf p(xk|Zk) can be reached recursively in three steps: prediction, 

update and resampling, involving update of pdf prediction with Bayesian rule: 
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For our filtration, a Sampling Importance Resampling (SIR) algorithm from 

Gordon et al. [9] was used, where the new particles are estimated from the prior 

 so this step is independent from the measurement vector Zk.  

The main advantage of this kind of filter is that the significant weights are easily 

accessed and therefore the pdf can be easily sampled.  

The measurement zk is used when weights of each particle are set: 
  

𝑤𝑘
𝑖 ∝ 𝑝(𝒛𝑘|𝒙𝑘

𝑖 )  
 

where index i expresses the i−th particle in the PF. The resampling phase is 

executed on each time step k. 
 

C. Particle Filter receiver’s behaviour estimator 
 

The PF in the present paper aims to the position estimation of the receiver. In 

order to provide the PF a probability distribution, the measurements from the 

first day dataset were computed to find the deviation distribution of the receiver.  

For both PF-Easting Estimator and PF-Northing Estimator the fitting values 

were a normal distribution with the mean value and sigma (σ) values describing 

the easting and northing behaviour of the receiver. 

These values resulted from the deviation between the actual reference point 

from the antenna and the receiver's output from the first day dataset. 

Based on Arulampalam et al. [6] a two part PF-based estimator was developed 

to be used in combination with the two quality control proposed approaches, as 

a reference frame for the receiver’s behaviour. These two filters estimate easting 

and northing positions of the evaluated receiver.  

As seen in Fig. 3 the inputs and outputs are: 

Inputs: 1) Deviation distribution of the location of the antenna: this is calculated 

from the actual location of the antenna and the actual deviation value. Mean 

value and standard deviation are used for the deviation distribution.  2) Position 

data: the value for the position provided by the receiver.  

Output: 1) Estimated reference: estimation based on provided deviation 

distribution. The used reference for the further quality control methodologies is 

the composition of both filters’ outputs, and it will be referred as PF-Estimator 

for the rest of the paper.  

Fig. 4 presents a short example of the PF adaptive period, showing the filter 

evolution of the Gauß-Krüger Northing part of the PF-Estimator. 

 

 
Fig. 3: Input-output diagram of PF.  Fig. 4: Evolution. 
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Fig. 5 displays the improvement (in percentage of LocAv1σ added) for the MEF 

quality control methodology, with the PF-Estimator for different number of 

particles. Due to computational complexity of PF is affected by rising number of 

particles; a compromise relation had to be found with the improvement of the 

data for quality control approaches. For this purpose the selected number of 

particles for each component of the PF-Estimator was 400. 

The MEF quality control methodology results and its improvements related to 

the usage of the PF-Estimator will be explained in detail in the section three of 

the present paper. Mathematically the PF-Estimator reference results in: 
 

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝑷𝑭 = 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝑹𝑬𝑨𝑳 + 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝒆𝒓𝒓𝒐𝒓 
 

 

In Fig. 6 the resulting 777600 samples (i.e. nine days of estimated reference) 

used for the quality control methodologies comparison are presented. These are 

estimated by the PF-Estimator, after the one-day (19.05.2011) adaptation period 

composed by 86400 samples. 

Using the PF-Estimator reference deviation can be studied as the direct function 

of the stochastic error of the receiver. 

This is the selected characteristic for determining the quality of the receiver by 

means of uncertainty measurement. 

The location provided by the receiver can be defined as:  
 

𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏 = 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝑷𝑭 + 𝒔𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄 𝒆𝒓𝒓𝒐𝒓  
 

In section three the proposed quality control methodologies, based on SQC and 

MEF approaches, are compared using deviation calculated with and without the 

developed PF-Estimator.  
 

 
Fig. 5: MEF improvement.  Fig. 6: Reference estimated by PF. 
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D. Statistical Approach 
 

Statistical quality control (SQC) is a set of statistical tools used by quality 

professionals that can be divided into three categories according to Reid [10]:  

1) Descriptive statistics; 2) Statistical process control (SPC); and 3) Acceptance 

sampling. 

For the GNSS receiver accuracy-based quality control methodology developed 

in the present paper the proposed SQC approach focuses on descriptive statistics 

(description of quality characteristics and relationships by statistics 

measurements such as the mean, standard deviation and distribution of data) of 

the totality of the receivers’ output dataset for further outliers’ detection by 

means of deviation analysis.  Two different trials are tested within this 

approach, focused on two separated calculations of the deviation. The first 

calculates the deviation by means of the Euclidean distance, and it’s called 

module deviation calculation. And the second calculates the deviation in two 

separated components, called the easting northing (E/N) deviations calculation. 
 

E. MEF approach 
 

In order to achieve a meaningful description of the quality of a localisation 

system a new approach has been developed, in the frame of the extended 

accuracy-based evaluation developed in Grasso et al. [11] Mahalanobis Ellipses 

Filter (MEF) is a filtering technique that allows a better understanding of the 

nature of the deviation datasets, and therefore a better ground for GNSS data 

validation, based on Mahalanobis [12]. 

MEF methodology focuses on the finding of outliers from the deviation dataset 

while describing the behaviour of the system (composed by the GNSS-receiver 

and the reference system) by means of the resulting Mahalanobis ellipses. 

MEFs provide not only a description of the bivariate (easting and northing) 

deviation, but also the resulting rotated ellipses describe the correlated 

behaviour of the deviation dataset. In Grasso et al. [11] it is proposed that 

quality control methods as well as validation procedures for certification of 

GNSS receivers can be performed by MEFs. In this paper the comparison 

between this new filter approach and the traditional SQC approach is conducted 

by means of outlier detection in the deviation resulting dataset. Results of this 

comparison and conclusions are presented in section three of the presented 

paper. 
 

2 Dataset description 
 

This section is focused on a short description of the used datasets for the quality 

control methodologies comparison, and their correspondent statistical analysis. 
 

A. Measurement description  
 

Using a receiver u-blox EVU-6H with EGNOS turn on, assembled with the 

antenna Novatel GPS-702-GG the location was determined geodetically on the 

roof of the Institut für Verkehrssicherheit und Automatisierungstechnik.  
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Fig. 7: Installed equipment and Google view of the reference. 

 

Fig. 7 presents the picture of the installed equipment and the Google Maps 

reference. Measurements of 10 days were collected with a 1 Hz frequency in the 

period between 19.05.2011 and 01.06.2011, resulting in 864000 positions. 
 

B. Statistical analysis of collected datasets 
 

All 10 datasets present similar characteristics: Each one has 86400 samples over 

a period of 24 hours, with a number of visible satellites between 7 and 12 

(average of 10) and a Horizontal Dilution of Precision (HDOP) value between 

0.69 and 1.51 (average of 0.91). According to Ming [13], these characteristics 

describe the scenario as ideal. Table I shows the statistical analysis for the 10 

datasets deviation analysis, referred to the PF-Estimator reference. The tenth 

dataset is a global dataset composed from the other 9 datasets. The first day 

(19.05.2011) dataset used for the PF adaptation period is not considered for the 

rest of the analysis. 

In section three these distribution fittings will be used to calculate the limits for 

the QCC, as part of the SQC approach. Fig. 8 presents the fittings for the 

deviation between the PF-Estimator reference and the position measurements 

from the global dataset. Fig. 8A displays a lognormal distribution for the 

module deviation, while Fig. 8B and 8C display normal distributions for the E/N 

deviations, independently. This fitting evaluation presented in Fig. 8 has already 

been used as the basis for reliability margins definition in Grasso et al. [2]. 
 

3 Quality control process  
 

This section focuses on the results for both SQC and MEF approaches. Both 

quality control methodologies are tested by three separated trials, using both the 

actual location of the receiver and the developed PF-Estimator, in order to 

conclude on its usefulness. 
 

A. SQC results  
 

The results presented here are provided by both the real reference and the PF-

Estimator reference regarding the deviation global dataset.  
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Fig. 8: Fitted distributions for global deviation analysis. 

 

The first trial is focused using the SQC methodology with module deviation, 

while the second trial uses the E/N deviation. 

 

B. SQC methodology with module deviation analysis 
 

The control limits of the QCC for the module deviation analysis are calculated 

considering the lognormal distribution, as shown in set of equations (1). 
 

𝑈𝐶𝐿𝑀 = 𝑒𝜇𝑀+𝑛𝑆𝑖𝑔𝑚𝑎𝑠∗𝜎𝑀       

𝐶𝐿𝑀    = 𝑒𝜇𝑀     (1) 
𝐿𝐶𝐿𝑀  = 0 

 
 

The fitting parameters presented in Table I for the global dataset are used and 

the control limits are calculated for 1σ result in: 
 

LCLM = 0, CLM = 0.8218, UCLM = 1.5782 
 

Fig. 9 shows a QCC in the left side for the module deviation analysis, based on 

the lognormal distribution fitting. UCLM separates accepted and rejected 

samples. Also Fig. 9 presents a in the right side a scatter-plot with the detailed 

marked limits. Using the limits from Table I from the lognormal distribution and 

the set of equations (1), the resulting location availability for 1-σ for the module 

deviation analysis is: 
 

𝐿𝑜𝑐𝐴𝑣1𝜎𝑀 =
𝑆𝑄𝐶 𝑚𝑜𝑑𝑢𝑙𝑒(1𝜎) 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100% 

 
 

The result without PF-Estimator is: LocAv1σM = 86.0739%. 

The result with PF-Estimator is: LocAv1σM = 85.7486%. 

This presents a decrease of the accuracy of the 1-σ filter of 0.3253 %. 

The lognormal limits for QCC show that module deviation analysis is too 

permissive for the analysed dataset. And also the PF-Estimator proves that the 

estimated reference behaviour in the SQC approach spreads the acceptance 

threshold even outside the data cloud. 
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Fig. 9: QCC and Scatter-plot for 1σ SQC filter based deviation module. 

 

C. SQC methodology with easting-northing deviation analysis 
 

The control limits of the QCC for the E/N deviation analysis are calculated 

considering the normal distribution, as shown in set of equations (2). 
 

𝑈𝐶𝐿𝐸 = 𝜇𝐸 + 𝑛𝑆𝑖𝑔𝑚𝑎𝑠 ∗ 𝜎𝐸    
𝐶𝐿𝐸 = 𝜇𝐸  
𝐿𝐶𝐿𝐸 = 𝜇𝐸 − 𝑛𝑆𝑖𝑔𝑚𝑎𝑠 ∗ 𝜎𝐸   (2) 
𝑈𝐶𝐿𝑁 = 𝜇𝑁 + 𝑛𝑆𝑖𝑔𝑚𝑎𝑠 ∗ 𝜎𝑁  
𝐶𝐿𝑁 = 𝜇𝑁  
𝐿𝐶𝐿𝑁 = 𝜇𝑁 − 𝑛𝑆𝑖𝑔𝑚𝑎𝑠 ∗ 𝜎𝑁  
  

 

The fitting parameters presented in Table I for the global dataset are used and 

the control limits are calculated for 1σ resulting in: 
 

LCLE = -0.2842, CLE = 0.2831, UCLE = 0.8503 

LCLN = -0.6555, CLN = 0.2533, UCLN = 1.1620 
 

Fig. 10 shows in the left side two QCCs for the E/N deviations, based on the 

normal distribution fittings. Also Fig. 10 presents in the right side a scatter-plot 

with the detailed marked limits. 

Using the limits from Table I from the normal distribution and the set of 

equations (2), the resulting location availability value for 1-σ for the E/N 

deviation analysis is: 
 

𝐿𝑜𝑐𝐴𝑣1𝜎𝐸𝑁 =
𝑆𝑄𝐶 𝐸/𝑁(1𝜎) 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100% 

 
 
 

The result without PF-Estimator is: LocAv1σEN = 49.4520%. 

The result with PF-Estimator is: LocAv1σEN = 50.9816%. 

This presents an improvement of the accuracy of the 1-σ filter of 1.5296 %. 
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E/N deviation analysis proves to be better than the module deviation analysis, 

due to the consideration of the deviation on each component of the horizontal 

position plane independently. Also the increase of the percentage of the 

LocAv1σEN with PF-Estimator results from the reduction of stochastic error in 

the deviation calculation, making the quality control analysis based only on the 

stochastic error of the receiver. 
 

D. MEF results 
 

Since the Mahalanobis distance measures the number of sigmas that separate all 

samples from the rest of the group, the MEF 1-σ filter provides the number of 

samples within 1-σ of Mahalanobis distance related to the group.  

Therefore, the location availability for 1-σ with the MEF Methodology is: 
 
 

𝐿𝑜𝑐𝐴𝑣1𝜎𝑀𝐸𝐹 =
𝑀𝐸𝐹 1𝜎  𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100% 

 
 

 
 

 
Fig.10: QCC and Scatter-plot for 1σ SQC filter based on easting and northing. 

 
 

324



 
 

Fig. 11 shows the Mahalanobis distance for each sample in the left side. The 1σ 

distance is marked by the UCL, separating the rejected samples from the 

accepted. 

Fig. 11 presents as well a scatter-plot in the right side with the detailed marked 

limits. The deviation mean value is marked in Fig. 11 as the intersection 

between semi axes. Also the rotation of those axes with respect to the coordinate 

system describes the degree of correlation between E/N deviations. These 

characteristics are numerically presented in Table II. 

The Mahalanobis distance is a descriptive statistic that provides a scale 

independent measurement of the distance of each sample with respect to the 

entire dataset, normalised with respect to σ. Therefore UCLMEF for 1σ 

corresponds to a unitary Mahalanobis distance. 

The Euclidean distance that is used in the SQC module deviation analysis and 

presented in Fig. 9, is not a descriptive statistic and is not scale-invariant. It 

measures the distance of independent position samples with respect to the 

reference.  

 

 
Fig. 11: Mahalanobis distance plot and Scatter-plot for 1σ MEF filter. 
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This distance is fitted to a lognormal distribution in order to perform a statistical 

analysis of the samples, and the UCLM for 1σ depends on the parameters of the 

fitted distribution. 

Table II shows the characteristics of the produced Mahalanobis Ellipse of 1-σ 

and also the location availability for 1-σ with and without PF-Estimator. The 

increase of the 1.8041% with PF-Estimator results from the reduction of 

stochastic error in the deviation calculation. 
 

E. Comparison of results  
 

Table III and Fig. 12 present the results of the comparison between the three 

analysed quality control trials for both SQC and MEF methodologies. 

SQC Module, SQC E/N and MEF results are presented by percentages values of 

the 1-σ outlier detection function with and without PF-Estimator as reference. 

The SQC Module filter test considers only the module of the deviation. It does 

not discriminate the deviation direction of the location samples, resulting in a 

high LocAv1σ that does not describe accurately the behaviour of the receiver. 

The SQC E/N filter test considers an independent evaluation of easting and 

northing deviations. It discriminates between two main deviation direction 

components, resulting in a lower LocAv1σ that represents better the receiver’s 

behaviour when low correlation between easting and northing deviation is 

present. 

Finally the MEF test performs a simultaneous evaluation of easting and northing 

deviations, taking into account the deviation correlation. The MEF approach 

also works considering all possible deviation directions by means of the 

normalised Mahalanobis distance; resulting in a lower LocAv1σ that represents 

better than the SQC E/N filter the receivers’ behaviour. 
 

Further work and conclusions 
 

As seen in Fig. 12, the SQC approach is separated in two trials: SQC module 

trial, testing the trueness and precision, regarding the receiver’s deviation; and 

SQC E/N trial that solves the trueness problem while improves the precision, 

although it is still not able to discriminate borderline outliers.  

On the other hand the MEF approach proves to be the best filter for the 

receiver’s deviation datasets, according to the receiver’s behaviour and 

coinciding with the theorised ellipse, described in Kaplan and Hegarty [14]. 
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The presented LocAv1σ comparison of outliers’ detection for GNSS-receiver 

quality control proves that the MEF methodology is better than SQC 

methodology for the three following reasons: 1) Even though the SQC E/N test 

was a better description than SQC module, only MEF approach has a 

simultaneous evaluation of easting and northing deviations, while considering 

their correlation. 2) Also the MEF approach is the only one from the tested 

approaches considering all possible deviation directions by means of the 

normalised Mahalanobis distance. 3) The MEF methodology follows the elliptic 

behaviour predicted theoretically for accuracy evaluation. In the accuracy 

metrics section of Kaplan and Hegarty [14] the probability of a measurement to 

be in the 1-σ ellipse is defined as 39 %; while the probability of being in the 2-σ 

ellipse is 86 %. These theoretical values are calculated in contrast to the one-

dimensional Gaussian result of the probability of being within ±1-σ of the mean 

value being 68 %. 

Based on these theoretical values proposed by Kaplan and Hegarty [14] the 

MEF methodology is proven to be a sufficient representation of the receiver’s 

behaviour and enough for validating the quality of the receiver tested in the 

present paper (both with and without the developed PF-Estimator). 

Also it has been proven that the usage of a PF-Estimator as estimated reference 

is effective for stochastic error reduction of the receiver. 

The results with 400 particles for the presented static case, in the 1-σ MEF case 

proves to improve up to 1.8041 % the inclusiveness of the location.  

 

 
Fig. 12: Comparison between all approaches with 1σ filters. 
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It is suggested as further work to test the PF-Estimator for dynamic cases. In 

dynamic scenarios the actual reference value must be calculated from an on-

board independent reference.  

The developed PF-Estimator approach will be a necessary part of quality control 

processes, as well as further validation and certification processes for static and 

dynamic reference system. Finally, as a general conclusion of the present paper, 

the combination of the MEF methodology and the developed PF-Estimator 

approach seems to be the best representation of the behaviour of the GNSS-

Receiver, and therefore the best base for its quality description. 
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Abstract. The major objective of this work is the analysis of the relationship of
employment and fertility in Germany, also regarding causality. Based on Germany’s
current panel analysis of intimate relationships and family dynamics (pairfam), Cox’s
proportional hazards model is used to investigate the influence of labor force partic-
ipation of women on the transition into motherhood. The obtained results serve as
validation of an earlier study presented in Schröder and Brüderl [25], where the effect
of employment on the fertility is analyzed for women based on the data of the West-
German Family Survey 2000, using a proportional hazards model with a piecewise
constant baseline hazard. In general, the estimated effects for the Cox model based
on the pairfam data are surprisingly consistent with the results from Schröder and
Brüderl [25], whereas indirect causality test results disagree.
Keywords: Pairfam, Employment, Fertility, Event data analysis, Cox’s proportional
hazards model.

1 Introduction

Today, there exist already several empirical studies in the literature, which
clearly indicate that there is evidence for an influence of female labor force
participation on the fertility. In this context, Schröder and Brüderl [25] men-
tion several works which use event data analysis for different western industrial
nations to show that employed women have a lower transition rate for delivering
a (further) child than non-working women, see e.g. Felmlee [11] and Budig [6]
for the US or Liefbroer and Corijn [23] for Flanders and the Netherlands. Apart
from a few studies such as Kohlmann and Kopp [17], Kreyenfeld [18], Dorn-
seiff and Sackmann [10], Lauer and Weber [20] or Kreyenfeld [19], which partly
have a different analytical focus or exhibit some methodical problems, the work
of Schröder and Brüderl [25] is the first study that explicitly analyzes if and
to what extent there is a relationship between the labor force participation
of women and their fertility in Germany, based on the West-German Family
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Survey 2000. This study is replicated and validated here for the territory of
the reunified Germany based on Germany’s current panel analysis of intimate
relationships and family dynamics (pairfam), release 4.0 (Nauck et al. [24]). A
detailed description of the study can be found in Huinink et al. [16]. So the
main focus in this work is the analysis of the influence of labor force participa-
tion of women on the transition into motherhood. Besides, like Schröder and
Brüderl [25] we also investigate the causality of a possible (negative) effect of
employment on the fertility, using a similar indirect causality test as proposed
there. Note that our analyses are also restricted on transitions of childless
women into motherhood, i.e. women delivering their first child.

The rest of the article is structured as follows. The most important soci-
ological theories concerning employment and fertility are shortly summarized
in Section 2. In Section 3 we discuss some theoretical aspects concerning the
causality of a potential negative effect of female labor force participation on
the fertility and propose a suitable indirect causality test. The data, the used
methods and the results are presented in Section 4, before we finally conclude
in Section 5.

2 Sociological theories concerning employment and
fertility

Though lively discussed in media and social sciences, according to Schröder and
Brüderl [25] only few theoretical approaches concerning the explicit mechanisms
of employment and fertility exist. Schröder and Brüderl [25] provide a compact
summary of the existing sociological theories and hypothesis in this context.
Among the most important and relevant theories are the following two:

The hypothesis of incompatibility of roles: the roles of a woman as mother on
the one hand and as employee on the other hand are generally incompatible,
as simultaneous childcare and labor force participation would either reduce the
productivity of the job performance or the quality of childcare.

The hypothesis of substitution: both of these roles are linked with certain re-
wards or incentives of e.g. emotional, social or financial kind; furthermore, the
rewards that go along with one role can partially be substituted by those of
the other role.

However, the gist of both theories does not directly explain why labor force
participation thus necessarily has a negative effect on the fertility, because
according to Schröder and Brüderl [25] employed women could simply give up
their role as employee by the time they want to have children. At this point
another theory has to be mentioned, which plays a major role in this context.

The economic theory of fertility: this theory is embedded in the well-known
rational choice framework for understanding and modeling social and economic
behavior. Here, the main idea is that couples are regarded as consumers, who
take their decision with regard to the number of children they want to have after
an extensive cost-benefit-assessment. Among the most famous protectionists
of the economic theory of fertility are Leibenstein and Becker.
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Leibenstein [21] considers children to implicate three different types of bene-
fit: a consume benefit, as children are a general enrichment for parents, bringing
affection and personal gratification to them; an income benefit, arising from
the productive activities of the children; and finally, an insurance benefit, as
children care and assist their parents in their old ages. At the same time,
children cause direct (food, clothes, education etc.) and indirect costs (the
raising of children goes along with a huge expenditure of time, strongly limit-
ing the engagement of the parents in other activities) for their parents. While
nowadays the last two types of benefit became more or less obsolete, at least
in western industrial nations, where child labor is illegal since many decades
and the requirement of insurance is transferred as far as possible to responsible
institutions (compare Huinink and Konietzka [15]), the consume benefit has
remained rather consistent and can already be achieved by a small number of
children, according to Leibenstein [21]. At the same time, with increasing eco-
nomic wealth, the costs of children have generally increased. Consequently, by
the theory of Leibenstein the number of children is decreasing with increasing
economic wealth.

A similar approach is presented in Becker [3], where children are regarded
as consumer products, offering psychological benefit to their parents. Both the
quantity and quality of children are included, the quality of children covering
several characteristics such as education, health or future income. For Becker
quantity and quality of children can (at least partly) be substituted, creating
an incentive for parents to invest into the quality of their children, i.e. to spend
more efforts on care and education, rather than to realize a higher number of
children. On the other hand, similar to Leibenstein’s indirect costs of children,
Becker associates the costs that arise by the time spent for children. The idea is
that child education is highly time-consuming and hence competes with other
activities, e.g. employment. The time used for education could instead be used
for employment, and the corresponding loss of earnings generates the so-called
opportunity costs. This aspect is especially relevant for an employed woman.
As soon as she stops working, even if only temporarily, her opportunity costs
increase. Besides, the higher the wage rate the higher the opportunity costs
(see Huinink and Konietzka [15]). Finally, as for Becker quantity and quality
of children are more or less exchangeable, an employed women can realize her
psychological benefit by investing in the quality of a child instead of deciding
to get another child. Accordingly, with more and more women being employed
and increasing income levels, also Becker’s theory indicates a general decline
in the number of children in developed nations. For more information about
the economic theory of fertility, see also Hotz et al. [14]. A useful introduction
and summary regarding important highlights of the attempts to develop an
“economic” theory of human fertility are found in Leibenstein [22].

Several models exist, which consider the connection between the decision of
women with respect to labor force participation and a demand for children, see
e.g. Willis [28]. In most of these models the decisions relating to fertility and
time allocation depend on basic economic variables such as man’s income and
woman’s wage rate. As in these models the decisions relating to the number of
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children and to the time that a woman spends for labor force participation are
usually ultimately determined at the beginning of the marriage, these models
are called static life time models.

As pointed out by Schröder and Brüderl [25], so-called dynamic life cycle
models are more realistic, where the whole life time is divided into periods
and then for each period the time is determined that a woman spends for
child education and employment (or leisure time, depending on the model)
together with the corresponding fertility decision. The major assumption in
these models is that the previous employment history and the current work
effort have an influence on the income. Consequently, employed women are
able to achieve higher wage rates than non-working women and hence, these
models expect a causal negative effect of employment on the fertility.

As already stated in the introduction, in fact several studies exist that
confirm this hypothesis. In particular, Schröder and Brüderl [25] have found
that practically all studies that base on event data analysis and investigate
the influence of female labor force participation and fertility in western indus-
trial nations have found such a negative effect, which is independent from the
country and from the parity of the child. Apparently, the existing empirical
studies confirm the theoretical considerations presented in this section. How-
ever, in spite of the results of existing studies, following Schröder and Brüderl
[25] one has to be careful when making statements with regard to causality of
this negative effect and a more sophisticated analysis seems necessary, see next
section.

3 Causality

In this section we discuss some theoretical aspects concerning the causality
of the negative effect of female labor force participation on the fertility. Ac-
cording to Schröder and Brüderl [25], one cannot directly conclude from the
results of the presented existing studies that the effect is causal, i.e. the reason
for the probability of birth being lower for employed women than for non-
working women is in fact their labor force participation. If so, reversely, this
would require that the decisions related to the labor force participation are
made independent from the fertility decisions. But Schröder and Brüderl [25]
point out that it is also conceivable that fertility decisions may have an in-
fluence on the labor force participation. Some studies have tried to account
for this problem by considering suitable control indicators for the fertility and
employment intentions, see e.g. Budig [6] or Cramer [9], but unfortunately
the operationalization of these variables is quite imprecise. However, in most
analyses the fertility intentions are not controlled at all. Otherwise, the results
of two studies for Sweden (Hoem and Hoem [13]) and Great-Britain (Wright
et al. [29]) indicate that fertility decisions also influence the labor force par-
ticipation. Hence, Schröder and Brüderl [25] conclude that the relationship
between employment and labor force participation is in fact quite complex. In
this context they also graphically illustrate how, beside the employment sta-
tus, also attitudes, moral concepts and long-term plans on the one hand, but
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also opportunities and restrictions on the other hand could have effects on the
fertility.

But for the present analysis the relationship between fertility decisions and
the preceding employment status is of most interest. In this context, one prob-
lem is that the exact time of a fertility decision cannot be observed and usually
birth is used as a simple indicator. Hence, neither the influence of the pre-
ceding employment status on the fertility decision nor a possible influence of
a fertility decision on the subsequent employment period can be analyzed in
a reasonable way. For this reason, Schröder and Brüderl [25] also mention
that it is possible that the effect of the current labor force participation on the
fertility, to which most of the studies mentioned in Section 1 refer, in fact is
an effect of the anticipated fertility on the employment status. Furthermore,
they point out that for an optimal analysis of the influence of the employment
status on the fertility a data set would be required, which contains the fertility
intentions as a time-dependent covariate with the same temporal preciseness
as the employment variable. For this purpose a panel with rather short inter-
view intervals would be required. Unfortunately, such data are currently not
available, neither for our analysis nor in Schröder and Brüderl [25].

Another important aspect in this context is the problem of so-called unob-
served heterogeneity, also known as self-selection or spurious correlation. Even
if the fertility intentions could be observed at any time and an effect of the
preceding employment status on the fertility would be discovered, statements
concerning the causality of this effect can only be made, if one can control for
all factors which may have an influence on both the employment status and the
fertility decision. If instead some of these factors are unobservable, then the
relationship between fertility and labor force participation is (at least partly)
a spurious correlation, i.e. non-working women would possibly be more likely
to get children than employed women anyway (also without a causal effect of
the employment status on the fertility), simply because they differ with respect
to some unobserved factors relevant for the fertility decision. Hence, the effect
of the employment status on the fertility would (at least partly) reflect this
unobserved1 , compare Schröder and Brüderl [25].

Regarding these theoretical considerations, a major task is now to find a
suitable method, which allows to empirically test the causality of the employ-
ment effect. Ideally, panel data containing the fertility intentions as a time-
dependent covariate with the same temporal preciseness as the employment
variable would be available, but as mentioned above such data are not (yet) on
hand. Hence, Schröder and Brüderl [25] propose two indirect2 causality tests.

1Possible candidates for such unobserved factors are the family, employment and
career orientation or the fertility intentions. In this context Schröder and Brüderl [25]
mention several research results, which indicate that such unobserved factors might
be relevant. For example, Stolzenberg and Waite [26] found a negative relationship
between (long-term) fertility intentions and employment plans and Cramer [9] and
Budig [6] show that fertility intentions actually have an effect on the fertility.
2Schröder and Brüderl [25] call these tests indirect, because they base on additional
assumptions, which cannot be checked on the basis of their data. Nevertheless, the
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The first test assumes that women have different family orientations and
can be divided into different (observable) groups according to their family ori-
entation. It analyzes the progress of the effect of employment on the fertility
over the cohorts and is based on the assumption that the differences with regard
to family orientation between employed on non-working women have increased
over the cohorts3 . However, in the following analysis we abstain from perform-
ing this test for two reasons. First, pairfam’s youngest cohort covers people
born in the years 1971-1973, so even women from the youngest cohort already
benefit from modern opportunities and working time organization models in-
creasing the compatibility of family and work, such as e.g. public financial
support, part-time work, trust-based working etc., when they reach their re-
productive age. Second, in total pairfam contains only three different cohorts
and people from the third cohort (1991-1993) are still in their teens at the time
of the third interview wave (2010/2011). So, our data basis contains basically
women belonging to only two different cohorts and hence, the corresponding
indirect causality test would not be very meaningful.

With their second indirect causality test Schröder and Brüderl [25] want to
check if the effect of the current employment status on the fertility in fact results
from a reverse effect of an anticipated fertility decision on the employment
status. The idea is that if some women would determine their employment
status due to a preceding fertility decision, then one could expect among the
group of women, who change from employment to unemployment and vice
versa, a high percentage of such women. For this reason women are divided
into the following four different groups: (a) mainly employed, (b) mainly non-
working, (c) changers from employment to unemployment and (d) changers
from unemployment to employment. For women belonging to group (c) one
would expect very high transition rates for the transition into motherhood,
while on the contrary for women belonging to group (d), very low transition
rates are expected. Finally, for the other two groups (a) and (b) one would
expect moderate transition rates lying in between. If instead only the current
employment status causally affects the transition rate into motherhood, one
would expect that the transition rate of currently employed women is much
lower than the one of currently non-working women, independent of the former
employment history. Following Schröder and Brüderl [25], we hope that if we
regard a survival model with a single categorical covariate for these four groups,
this allows us some conclusions about the causality of the effect of employment
on the fertility or whether the effect in fact results from a reverse effect of an

tests are quite transparent, compare e.g. Brüderl et al. [5] or Beck and Hartmann [2]
for similar test applications.
3The idea behind this assumption is that while in the 1950s and 1960s the bigger
part of the female population was extensively restricting their labor force partici-
pation when getting their children, nowadays women have many possibilities and
alternatives to combine their professional career with their family life, with the con-
sequence that today only women with a very strong child-orientation are supposed
to decide themselves against labor force participation. Hence, an increasing effect of
employment over the cohorts would indicate self-selection as described in Section 3.
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anticipated fertility decision on the employment status. We present the results
of the corresponding indirect causality test in Section 4.

4 Data, methods and results

In this section we first illustrate the data and shortly comment on operational-
ization. Furthermore, we explain the used methods and finally present the
results.

4.1 Data

Germany’s current panel analysis of intimate relationships and family dynamics
(pairfam, release 4.0; Nauck et al. [24]), started in 2008 and contains about
12,000 randomly chosen respondents, belonging to the birth cohorts 1971-73,
1981-83 and 1991-93. Pairfam follows the cohort approach, i.e. the main focus
is on anchor persons of certain birth cohorts, who provide in yearly conducted
interviews detailed information, orientations and attitudes (mainly concerning
the family situation) of themselves and their partners. A detailed description
of the study is found in Huinink et al. [16].

Here, for a subsample of 2,289 women the retention time (in days) until the
birth of the first child is considered as the dependent variable, starting at their
14th birthdays. In order to ensure that the independent time-varying covariates
are temporally preceding the events, the duration until conception (and not
birth) is considered, i.e. the time of event is determined by subtracting 7.5
months from the date of birth, which is when women usually notice pregnancy.
For each woman the employment status is given as a time-varying categorical
covariate with eight categories, compare Table 3. Note that due to gaps in the
women’s employment histories a category called “no info” is introduced. As in
the study of Schröder and Brüderl [25], for women who belong to this category
for longer than 24 months it is set to “unemployed”. Besides, several other
time-varying and time-constant control variables are considered. Tables 2-4
give an overview of all considered variables together with their proportions in
the sample. An extraction of the data set is shown in Table 1.

Id start stop birth employment education relationship cohort # siblings education level
level status of parents

111000 0 730 0 school apprenticeship single 1 1 traineeship
111000 730 1434 0 no info apprenticeship single 1 1 traineeship
111000 1434 1891 0 no info apprenticeship cohab 1 1 traineeship
111000 1891 1939 1 full-time apprenticeship cohab 1 1 traineeship
907000 0 365 0 school secondary educ. single 2 0 traineeship
907000 365 2438 0 no info secondary educ. single 2 0 traineeship

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 1: Structure of the data

For the indirect causality test we extract a second, smaller data set, called
event.data.test, with the employment status as the only covariate of interest.
Observations in the categories “school”, “education” or “no info” are dropped.
As in Schröder and Brüderl [25], we construct the time-varying covariate em-
ploy.test with four categories: (a) mainly employed, (b) mainly non-working,
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(c) changers from employment to unemployment, (d) changers from unem-
ployment to employment. Each category is computed proportionally on the
preceding intervals (threshold: > 50%) and also accounts for the current em-
ployment status. E.g., if a woman has been employed for more than 50 % of
her employment biography and is currently unemployed, then she is currently
in status (c).

One can observe that most of the variables have similar proportions com-
pared to the West-German Family Survey 2000 , with the major difference
that for the variable employment status we found higher proportions in the
categories “school” and “no info” and consequently lower proportions in the
categories “full-time employed”, “part-time employed” and “education”, see
Table 3.

4.2 Methods

In the following we use a semi-parametric approach, which is suitable for the
estimation of the influence of specific covariates on the survival time of certain
statistical objects. The most common class of models used in the literature is
the class of hazard rate models, in particular the so-called proportional hazards
rate (PH-)model. This model belongs to the class of semi-parametric regres-
sion models, as for the baseline hazard function no specific form needs to be
assumed. proportion

Birth cohort
1971-1973 0.49
1981-1983 0.41
1991-1993 0.10
# siblings
no siblings 0.20
one sibling 0.44
two siblings 0.21
three or more siblings 0.14
Education level of parents
university with PhD 0.015
university without PhD 0.095
A levels 0.003
college of higher education 0.138
apprenticeship 0.103
traineeship 0.440
general secondary education 0.005
secondary education 0.024
no graduation 0.007
other graduation 0.001
no info 0.169

Number of women 2,289
Number of events 1,371

Table 2: Distribution of the time-constant covariates in the sample
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# days proportion

Employment status
full-time employed 3,089,174 0.274
self-employed 85,560 0.007
part-time employed 252,396 0.022
marginally employed 107,087 0.009
education 165,165 0.015
school 2,634,246 0.233
unempl./job-seeking/housewife 216,639 0.019
no info 4,737,190 0.420
Education level
university with PhD 483,529 0.043
university without PhD 1,669,741 0.148
A levels 396,253 0.035
college of higher education 1,764,788 0.156
apprenticeship 2,226,048 0.197
traineeship 4,004,395 0.355
general secondary education 298,837 0.026
secondary education 299,438 0.027
no graduation 45,206 0.004
no info 99,222 0.009
Relationship status
single 5,471,726 0.485
partner 3,310,963 0.293
cohabitation 1,904,906 0.169
married 599,862 0.053

Number of women 2,289
Number of events 1,371
Number of days 11,287,457

Table 3: Distribution of the time-varying covariates in the sample

# days proportion

Combination employment history/
current employment status
continuously unemployed 150,340 0.040 (0.013)
change from employed to unemployed 66,299 0.018 (0.006)
change from unemployed to employed 85,717 0.023 (0.008)
continuously employed 3,448,500 0.919 (0.306)

Number of women 1,705
Number of events 863
Number of days 3,750,856

Table 4: Distribution of the four groups that are considered in the indirect causality
test; in brackets: proportion with respect to the main data set

The influence of explanatory variables is modeled parametrically, assuming
that these covariates directly influence an individual’s hazard rate. The hazard
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rate has the following well-known form:

λ(t,x) = λ0(t) exp(xtβββ) = λ0(t) exp(x1β1) · . . . · exp(xpβp),

with baseline-hazard λ0(t) and linear predictor xtβββ (usually containing no in-
tercept β0, as it is already covered by λ0(t)). The hazard rate is defined as
follows:

λ(t,x) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t,x)

∆t
,

representing the instantaneous risk of a transition at time t (here: a transition
into motherhood), given that the transition did not yet occur. Characteristic
property is the proportionality of the hazard rates: for two arbitrary individuals
with corresponding vectors of covariates xi,xj we get

λ(t,xi)

λ(t,xj)
=
λ0(t) exp(xtiβββ)

λ0(t) exp(xtjβββ)
= exp((xi − xj)

tβββ),

i.e. the proportion of the hazard rates of woman i and j at time t is not
depending on time, but solely on their covariate realizations; major objective
is the estimation of the covariate effects βββ.

4.3 Results

In the following we consider two rather similar PH-models, the famous Cox-
model (Cox [7]) and the so-called piece-wise constant (PWC-)model (e.g. Bloss-
feld et al. [4]). In the PWC-model the basic assumption is that the baseline
hazard can change on predefined intervals, but remains constant within these
intervals. In contrast, the Cox-model uses the so-called Nelson-Aalen estima-
tor (Aalen [1]) for the baseline hazard. The corresponding cumulative baseline
hazard functions are illustrated in Figure 1, showing that the PWC cumulative
hazard is coarser, but has the same general course as the Cox estimate. Exem-
plarily, a Cox model incorporating all covariates from Section 4.1 can be fitted
in R using the package survival (Therneau and Grambsch [27]) by the call:

>cox.obj <- coxph(Surv(start,stop,birth) ∼ employment + education

+ relationship+ siblings + edu.parents + cohort + cluster(id),

data=event.data, method="breslow") ,

presuming that all categorical covariates are already transformed into factors4 .
Similarly, a PWC-model can be fitted using the phreg function from the R
package eha. Figure 1 also shows the effect of the employment status on the
cumulative baseline hazard functions for both approaches: women, who are
still at school (blue), have the lowest transition rate into motherhood, whereas
women in the reference category (represented by the baseline hazard; black),
i.e. who are unemployed, job-seeking or housewives have the highest transition
rate. As the Cox estimates are smoother, exhibit no big jumps and hence

4The cluster(id) term in the formula implies that robust variance estimators are
used. The method argument specifies the method for tie handling.

338



more adequately model the data structure, in the following we focus on the
Cox model when comparing our results with those obtained in Schröder and
Brüderl [25].

Figure 2 shows the estimated fixed effects and 95%-confidence intervals
corresponding to the German Family Survey 2000 (Schröder and Brüderl [25];
dashed lines) and the pairfam data (solid lines). As not all covariates exhibit
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exactly the same categories for both studies, only the effects of those covariates
are shown where a comparison is (at least approximately) possible. Note that
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the effects of the parents’ education level are not shown here, as in the pairfam
study it is measured in more detailed levels compared to the German family
survey. First, it turns out that the estimated effects for the Cox model based
on pairfam are surprisingly consistent with those from Schröder and Brüderl
[25]. Second, standard errors and confidence intervals are larger for the pairfam
data, which is partly due to the used special variance-robustness method. All
estimated (exponential) regression coefficients together with standard errors
are presented in Table 6 in the Appendix.

In detail, we get the following results. Similar to Schröder and Brüderl [25],
we find a strong negative, significant effect when women still go to school. Be-
sides, the categories “part-time employed” and especially “full-time employed”
have negative effects on the transition into motherhood compared to unem-
ployed women, the first effect being close to significance and the latter being
significant. Hence, our results confirm a negative effect of female labor force
participation on the fertility for whole Germany. Later, we focus on the inves-
tigation of the causality of this effect.

With respect to the other control variables we find that the degree of insti-
tutionalization of the relationship shows the expected effects: married women
have the highest transition rate into motherhood, followed by (unmarried)
women who live together with their partner and women who live (apart) to-
gether with a partner; single women have the lowest transition rates. While
the birth cohort has no influence on the hazard rate, women who grow up with
many siblings have significantly higher transition rates. Besides, it is seen that
in comparison to the reference category “no graduation” higher educational
levels, except for the two types of secondary education, have negative effects,
with similar trends as in Schröder and Brüderl [25], though without being sig-
nificant. Similar tendencies, but with significance, are observed for the parents’
level of education see Table 6. Next, we consider several goodness-of-fit criteria
for the fitted model.

Goodness-of-fit
First, we check the proportional hazards (PH-)assumption for the hazard func-
tion. Grambsch and Therneau [12] propose a test on the validity of the PH-
assumption against the alternative of time-varying coefficients. While Table 6
in the Appendix shows that the global test rejects the PH-assumption, also
tests for single covariates should be considered, in particular those correspond-
ing to key variables. A closer examination of the single tests shows that for
the variables education level and relationship status the PH-assumption is gen-
erally violated (α = 0.05), as for at least one category the null hypothesis
is significantly rejected. In contrast, for the variables employment status, co-
hort, number of siblings and parents’ education level the PH-assumption is not
rejected.

The model’s overall performance can be graphically assessed by investigat-
ing the Cox-Snell residuals (Cox and Snell [8]), i.e. by comparing empirical and
theoretical cumulative hazard functions of the residuals. If the true underlying
model is close to the specified one, the estimated cumulative hazard rate of
the Cox-Snell residuals is close to the bisecting line, which is generally fulfilled
here, see Figure 3 in the Appendix. Besides, similar to the residuals of an or-
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dinary least-squares-estimator in linear regression, the Cox-deviance residuals
can be regarded, separately for each covariate. They should vary symmetrically
around zero and are also suitable to detect outliers. Figure 4 in the Appendix
shows the Cox-deviance residuals, exemplarily for the covariates employment
status and relationship status, which manifest a slight negative trend, i.e. sur-
vival times are slightly over-estimated by the model. Consequently, some model
assumptions might be violated. Nevertheless, all in all the fitted model seems
appropriate and provides an adequate fit.

Indirect causality test
To check if the effect of the current employment status on the fertility in fact re-
sults from a reverse effect of an anticipated fertility decision on the employment
status, we fit the following model:

>cox.obj2 <- coxph(Surv(start,stop,birth) ∼ employ.test + cluster(id),

data=event.data.test, method="breslow") ,

which is based on the smaller data set event.data.test and on the constructed
time-varying covariate employ.test, introduced in Section 4.1. Even though the
fitted effects in Table 5 show the same trend as in Schröder and Brüderl [25],
they are far from significance. Hence, our test does not directly indicate that
the estimated negative effect of female labor force participation is not causal.

exp(β)SB exp(β)pairfam

Combination employment history/
current employment status
continuously unemployed 1 1
change from employment to unemployment 1.822∗ ∗ ∗ 1.014
changers from unemployment to employment 0.449∗ 0.653
continuously employed 0.862 0.776

individuals 2,093 1,705
number of events 1,447 863

Table 5: Comparison of the indirect causality test results for the German Fam-
ily Survey 2000 data (Schröder and Brüderl [25]; exp(β)SB) and the pairfam data
(exp(β)pairfam)

5 Conclusion

In this work the relationship of employment and fertility in reunified Germany
is analyzed on basis of the pairfam data, also regarding causality. We find
that the estimated effects for a Cox proportional hazards model based on the
pairfam data are surprisingly consistent with the results of an earlier study
from Schröder and Brüderl [25], which is based on the West-German Family
Survey 2000. However, a corresponding indirect causality test cannot confirm
the opposite direction, namely that self-selection in terms of anticipated fertility
decisions also affects employment. We conclude that with respect to causality
a more sophisticated analysis seems necessary.
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Fig. 3: Cox-Snell residuals for the Cox-model
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Fig. 4: Cox-deviance residuals for the Cox-model
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exp(β) se(β) ρ χ2 P (· > χ2)

Employment status
(Ref.: unempl./job-seeking/housewife)
education 0.708 0.244 0.006 0.045 .832
full-time employed 0.747• 0.154 0.046 3.572 .059
marginally employed 0.604 0.318 0.006 0.051 .822
no info 0.882 0.157 0.037 2.444 .118
part-time employed 0.786 0.200 0.024 1.031 .310
school 0.247∗∗∗ 0.392 -0.014 0.292 .589
self-employed 0.794 0.279 0.048 3.679 .055
Cohort
(Ref.: cohort 1)
cohort 2 1.049 0.065 0.006 0.059 .809
cohort 3 0.884 0.348 0.016 0.392 .531
Relationship status
(Ref.: partner)
cohabitation 3.103∗∗∗ 0.084 0.008 0.125 .724
married 6.543∗∗∗ 0.098 -0.085 14.208 < .001
single 0.272∗∗∗ 0.131 -0.042 3.027 .082
Education level
(Ref.: no graduation)
A levels 0.730 0.717 0.040 9.826 .002
apprenticeship 0.546 0.696 0.040 10.362 .001
college of higher education 0.440 0.697 0.045 13.069 < .001
general secondary education 1.100 0.717 0.034 7.321 .007
no info 0.611 0.983 0.014 0.802 .370
secondary education 1.513 0.703 0.034 7.425 .006
traineeship 0.579 0.695 0.038 9.284 .002
university with PhD 0.342 0.711 0.046 13.158 < .001
university without PhD 0.358 0.697 0.049 15.783 < .001
# siblings
(Ref.: no siblings)
one sibling 1.042 0.082 0.045 0.09 7.68e-01
two siblings 0.967 0.097 0.036 2.59 1.08e-01
three or more siblings 1.291∗ 0.106 -0.004 0.03 8.54e-01
Education level parents
(Ref.: no graduation)
A levels 0.430 0.516 -0.018 0.345 .557
apprenticeship 0.492∗ 0.296 -0.056 3.557 .059
college of higher education 0.526∗ 0.293 -0.052 3.084 .079
general secondary education 1.156 0.553 -0.007 0.068 .795
no info 0.725 0.291 -0.076 6.448 .112
secondary education 0.578 0.343 -0.045 3.104 .078
traineeship 0.573• 0.286 -0.070 5.385 .020
other 0.134∗∗∗ 0.330 0.013 0.185 .667
university with PhD 0.429∗ 0.395 -0.043 2.347 .125
university without PhD 0.603• 0.298 -0.054 3.202 .074

Global test 158.451 < .001

Table 6: Estimated (exponential) regression coefficients together with robust stan-
dard errors (left) and test on the PH-assumption (right) for the Cox-model on the
pairfam-data; •p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.
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Abstract. In this paper we survey how an inner product derived from an Uvarov
transformation of the Laguerre weight function is used in the orthogonalization proce-
dure of a sequence of martingales related to a Lévy process. The orthogonalization is
done by isometry and it is based in previous works of Nualart and Schoutens (see [18]
and [19]), where the resulting set of pairwise strongly orthogonal martingales involved
are used as integrators in the so-called chaotic representation property. Finally, we
give an idea of how to generalize the above works.
Keywords: Orthogonal polynomials; Laguerre-type polynomials; Krall-Laguerre
polynomials; Inner products; Lévy processes; Stochastic processes.

1 Introduction

The Laguerre orthogonal polynomials are defined as the polynomials orthogonal
with respect to the Gamma distribution. Therefore, they are orthogonal with
respect to the inner product in the linear space P of polynomials with real
coefficients (see [2])

〈p, q〉α =

∫ ∞
0

pqxαe−xdx, α > −1, p, q ∈ P. (1)

From now on, {L̂αn(x)}n≥0 stands for the sequence of monic Laguerre polyno-
mials orthogonal with respect to (1). From the above inner product, let us
introduce the modified inner product

〈p, q〉 =

∫ ∞
0

pqxαe−xdx+ σ2p(c)q(c), α > −1, p, q ∈ P (2)

where σ2 ∈ R+, and c ∈ (−∞, 0]. Notice that 〈p, q〉 = 〈p, q〉α + σ2p(c)q(c),
so therefore (2) can be interpreted as a modification (or perturbation) of the
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C. H. Skiadas (Ed)
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Laguerre measure dµα(x) = xαe−xdx with a discrete measure given by a mass
point at x = c,

dµ̃α(x) = xαe−xdx+ σ2δ(x− c),
where δ(x− c) is the Dirac delta at x = c. This perturbation is known as the
Uvarov perturbation of the measure dµα(x) (see [5], [6], [7] and the references
given there). The case c = 0 has been deeply studied in the literature (see
[3], [4], [11] among others). These polynomials are called either Laguerre-type
polynomials (see, for instance, [3] and [14]) or Krall-Laguerre polynomials (in
[8]). They were also obtained by T.H. Koornwinder [12] as a special limit case
of the Jacobi-Koornwinder (Jacobi type) orthogonal polynomials, and they are
also known as Laguerre-Koornwinder polynomials.

A Lévy process is a stochastic process with independent and stationary
increments which consists of three basic stochastically independent parts: a
deterministic part, a pure jump part and a Brownian motion. Lévy processes
play an important role in many fields of science. For example, in engineer-
ing, they are used for the study of networks; in the actuarial science, for the
calculation of insurance and re-insurance risk and, in economics, for continu-
ous time-series models. In the last decades, the study of the relation between
orthogonal polynomials and Lévy processes have become increasing, see [17],
[18], [21] and [22].

Consider a Lévy process and let σ2 the constant of the Brownian motion
part and ν its Lévy measure. Nualart and Schoutens [17] and Schoutens [19]
have shown that there exists an isometry between the space of orthogonal
polynomials with respect to the inner product (2) when c = 0 and the space
of strongly orthogonal martingales which are the building blocks of a kind
of chaotic representation of the square functionals of the Lévy process. The
chaotic representation property (CRP) says that any square integrable random
variable measurable with respect to normal martingales X can be expressed as
an orthogonal sum of multiple stochastic integrals with respect to X. Based in
the aforementioned previous works of Nualart and Schoutens, we are interested
in finding new isometries that encompass the above cases using new families of
orthogonal polynomials that generalize the Laguerre-type orthogonal polyno-
mials used by Schoutens in [18]. Recently, several authors have begun to study
the case when c is a negative number, i.e., the mass point is located outside the
support of the Laguerre measure. The study of their asymptotic and analytic
properties can be founded in [5], [6] or [7].

Our main goal is to consider a natural generalization of the work done in
[18]. In other words, meanwhile Schoutens analyzed the connection between
Lévy processes and Laguerre-type orthogonal polynomials with respect to the
inner product (2) for the particular case c = 0, we study a more general case
where c ∈ (−∞, 0). In our opinion, the differences between these two cases
are sufficient to justify a new study of the isometry of these polynomials with
certain sets of martingales.

The structure of the manuscript is as follows. In Section 2, we summa-
rize some properties of Laguerre-type orthogonal polynomials to be used in the
sequel. We briefly review the concept of Lévy process and study the orthogo-
nalization procedure for a sequence of martingales related to the powers of the
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jumps of this stochastic process in Section 3. As an original contribution that
have not been published elsewhere, in Section 4 we provide the explicit coeffi-
cients of the generalize Laguerre-type orthogonal polynomials which eventually
can lead to the desired isometry with some new space of Teugel martingales.
We also discuss the work done so far and stress the problems founded to figure
out the desired isometry, and give some few ideas that may help to find isome-
tries for these new families of modified (standard and non standard) sequences
of orthogonal polynomials.

2 Laguerre-type orthogonal polynomials

First, we review some basic properties of classical Laguerre polynomials L̂αn(x)

useful in the sequel. Their corresponding norm is given by ||L̂αn||2α = n!Γ (n+α+
1). Dealing with Laguerre polynomials, it is customary to use the normalization
such that the leading coefficient of the n-th degree classical Laguerre polynomial

(denoted by L
(α)
n (x)) equals (−1)n

n! , i.e., L
(α)
n (x) = (−1)n

n! xn+ lower degree terms,
and therefore

L(α)
n (x) =

(−1)n

n!
L̂αn(x).

It is very well known that these polynomials satisfy the following three term
recurrence relation

xL̂αn(x) = L̂αn+1(x) + βnL̂
α
n(x) + γnL̂

α
n−1(x), n ≥ 1, (3)

with initial conditions L̂α0 (x) = 1, L̂α1 (x) = x − (α + 1), and recurrence coeffi-
cients βn = 2n + α + 1, γn = n(n + α) for every n ≥ 1 (see [16], [23] among
others). They constitute a family of classical orthogonal polynomials (see [13]
and [16]), and they are the eigenfunctions of a second order linear differential
operator with polynomial coefficients. The kernel polynomials (see [2, Ch.I,
Â§7]) associated with Laguerre polynomials will play a key role in order to
obtain some conclusions of the manuscript. Let

Kn(x, y) =

n∑
k=0

L̂αk (x)L̂αk (y)

||L̂αk ||2α

denotes the n-th kernel polynomial associated with the Laguerre orthogonal
polynomials. Thus, according to the Christoffel-Darboux formula, for every
n ∈ N we get the alternative expression

Kn(x, y) =
L̂αn+1(x)L̂αn(y)− L̂αn+1(y)L̂αn(x)

x− y
1

||L̂αn||2α
.

The limit when y → x is known as the confluent form of the n-th kernel, and
it reads

Kn(x, x) =

n∑
k=0

[L̂αk (x)]2

||L̂αk ||2α
=

[L̂αn+1(x)]′ L̂αn(x)− [L̂αn(x)]′ L̂αn+1(x)

||L̂αn||2α
.
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From now on, {L̂α,c,σ2

n (x)}n≥0 denotes the sequence of monic polynomials

orthogonal with respect to (2) when c ∈ (−∞, 0), and {L̂α,σ2

n (x)}n≥0 stands
for the monic Laguerre-type orthogonal polynomials with c = 0.

We next present some specific properties of L̂α,c,σ
2

n (x), showing the differ-
ences which appear when c = 0 or c ∈ (−∞, 0). The first remarkable fact is
that the position of the first (or least) zero of the Laguerre-type polynomials,
strongly depends on the value of the real and positive parameter σ2, and the
position of the mass point c (see [7] for detailed study). Obviously, if σ2 = 0,
the zeros of the Laguerre-type polynomials trivially reduces to the zeros of the
classical Laguerre polynomials. Moreover, if σ2 > 0 and c ∈ (−∞, 0), then one

can find values of σ2 for which the least zero of L̂α,c,σ
2

n (x), n ≥ 1, is located in
the interval (c, 0), i.e., outside of the support of the classic Laguerre measure,
whereas if σ2 > 0 and c = 0 this phenomenon does not occur at all, and all the
zeros of L̂α,σ

2

n (x), n ≥ 1, are located inside the interval (0,+∞) for any value

of σ2. For every n = 1, 2, . . ., the polynomials L̂α,c,σ
2

n (x) satisfy as well a three
term recurrence relation

xL̂α,c,σ
2

n (x) = L̂α,c,σ
2

n+1 (x) + β̃nL̂
α,c,σ2

n (x) + γ̃nL̂
α,c,σ2

n−1 (x), n ≥ 1,

with recurrence coefficients

β̃n = βn +
L̂αn+1 (c)

L̂αn (c)

(
1− 1 + σ2Kn−1(c, c)

1 + σ2Kn(c, c)

)
− L̂αn (c)

L̂αn−1 (c)

(
1− 1 + σ2Kn−2(c, c)

1 + σ2Kn−1(c, c)

)
,

γ̃n =

(
1 + σ2Kn(c, c)

) (
1 + σ2Kn−2(c, c)

)
(1 + σ2Kn−1(c, c))

2 γn.

where βn and γn are the recurrence coefficients in (3) for the classical Laguerre

polynomials. Notice that L̂αn (c) 6= 0 for every n = 0, 1, 2, . . ., because c does
not belong to the support of the classical Laguerre measure. Finally, a very
remarkable difference appear when we express the aforementioned families in
terms of Gauss hypergeometric functions. The classical Laguerre polynomials
L̂αn(x) can be expressed as hypergeometric functions of type 1F1 (see [9], [23]
among others). The addition of a mass point at c = 0 implies that the Laguerre-

type polynomials L̂α,σ
2

n (x), which are used in [18], are expressed in terms of

2F2 hypergeometric functions (see, for example [10]), meanwhile moving the
mass point to c < 0, as in our case, implies that the Laguerre-type polynomials
L̂α,c,σ

2

n (x) turn to be expressed in terms of 3F3 hypergeometric functions (see
[5]).

3 Lévy processes and Teugels martingales

Let X = {Xt, t ≥ 0} be a Lévy process (meaning that X has stationary and
independent increments and is continuous in probability and that X0 = 0),
cadlag and centered, with moments of all orders. Let us remind that a stochas-
tic process is cadlag if its sample paths are right continuous and have left-hand
limits. Denote by σ2 the variance of the Gaussian part of X and by ν its Lévy
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measure. The existence of moments of all orders of Xt implies that the Lévy
measure ν has moments of all orders ≥ 2. Write

mn =

∫
R
xnν(dx) for n ≥ 2.

For background on all these notions, we refer to Bertoin [1] and Sato [20].
Following Nualart and Schoutens [17], we introduce the square-integrable mar-
tingales (and Lévy processes) called Teugels martingales, related to the powers
of the jumps of the process:

Y
(1)
t = Xt,

Y
(n)
t =

∑
0<s≤t

(∆Xt)
n −mnt, n ≥ 2,

where ∆Xt = Xt −Xt− is the jump size at time t and

Xt− = lim
s<t,s→t

Xs, t > 0

is the left limit process. The compensated power jump process Y (n) of order n
is a normal martingale.

An important question is the orthogonalization of the set
{
Y (n), n = 1, 2, . . .

}
of martingales, called Teugels Martingales, as stochastic integrators of a kind
of chaotic representation as we briefly discuss in the Introduction. Specif-
ically, let M2 be the space of square-integrable martingales M such that
suptE(M2

t ) <∞ and M0 = 0 a.s. We recall that two martingales M,N ∈M2

are strongly orthogonal if and only if their product MN is a uniform integrable
martingale. Nualart and Schoutens [17] showed that every random variable F
in L2(Ω,F) has a representation of the form

F = E [F ] +

∞∑
j=1

∑
(i1,...,ij)∈Nj

∫ ∞
0

∫ t1−

0

. . .

∫ tj−1−

0

f(i1,...,ij)(t1, . . . , tj)dH
(ij)
tj . . . dH

(i2)
t2 dH

(i1)
t1

where f(i1,...,ij)’s are real deterministic functions, N = {1, 2, 3, . . .} and
{
H(i), i = 1, 2, . . .

}
is an orthogonalized set of martingales. A direct consequence is the weaker
predictable representation property (PRP) with respect to the same set of or-
thogonalized martingales, saying that every random variable F in L2(Ω,F) has
a representation of the form

F = E [F ] +

∞∑
j=1

∫ ∞
0

Φ(i)
s dH(i)

s ,

where Φ
(i)
s is predictable (see [17] for more details).

Nualart and Schoutens[17], by using the measure dµ = xrν(dx) +σ2δ0(dx),
where δ0 denotes the Dirac measure at point 0, σ2 is the variance of the Gaus-
sian part and ν the Lévy measure of a Lévy process, showed that the mapping
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xn−1 ←→ Y (n) defines an isometry between the space of polynomials P ⊆ L2(µ)
and Span(

{
Y (1), Y (2), Y (3), . . .

}
) ⊆ H2([0, 1]), where H2([0, 1]) is the space of

square integrable martingales on the time interval [0, 1]. This isometry is given
by the equality

〈xi−1, xj−1〉1 = mi+j + σ21{i=j=1} = 〈Y (i), Y (j)〉2, fori, j ≥ 1.

Here the scalar product 〈·,·〉1 in L2(µ) is given by

〈p(x), q(x)〉1 =

∫ +∞

−∞
p(x)q(x)x2ν(dx) + σ2p(0)q(0),

whereas 〈·,·〉2 denotes the scalar product inH2([0, 1]). We observe that, because
of the special structure of the Teugels martingales, forM,N ∈ Span(

{
Y (1), Y (2), Y (3), . . .

}
)

the relation 〈M,N〉2 = 0 is equivalent to the property that the martingales M
and N are strongly orthogonal.

Nualart and Schoutens[17] and Schoutens[18] used this isometry for an
orthogonalization procedure of the Teugels martingales: If the polynomials
P0, P1, . . . are an orthogonalization of the monomials

{
1, x, x2, . . .

}
in L2(µ) and

if these monomials
{

1, x, x2, . . .
}

in L2(µ) are substituted by
{
Y (1), Y (2), Y (3), . . .

}
,

then we obtain a system of strongly orthogonal martingales
{
H(1), H(2), H(3), . . .

}
with Span(

{
H(1), H(2), H(3), . . .

}
) = Span(

{
Y (1), Y (2), Y (3), . . .

}
). In particu-

lar, if the Lévy process is a Gamma process, then the obtained polynomials are
just the Laguerre polynomials with parameter α = 1. This makes it possible to
find the coefficients for the above linear martingale transformation explicitly.

Here we consider a modified measure dµc = x2ν(dx) + σ2δc(dx), where δc
denotes the Dirac measure at point c < 0, σ2 is the variance of the Gaussian
part and ν the Lévy measure of a Lévy process. In the concrete case of a
Laguerre weight function this is related with the notion of the Uvarov trans-
formation. In the case of the Gamma process this would lead to Laguerre-type
polynomials also called Krall-Laguerre polynomials defined in Section 2.

Thus, we consider a new first space Sc1 as the space of all real polynomials
on the positive real line endowed with the scalar product 〈·,·〉1 given by

〈p(x), q(x)〉1 =

∫ +∞

−∞
p(x)q(x)x2ν(dx) + σ2p(c)q(c)

and a second space

S2 = {a1Y (1) + a2Y
(2) + · · ·+ anY

(n) : n ∈ {1, 2, . . .} , ai ∈ R, i = 1, . . . , n}

endowed with the scalar product

〈X,Y 〉2 = E([X,Y ]1).

The elements of the space S2 are linear combinations of Teugels martingales and
the orthogonalization procedure produces a set of strongly pairwise orthogonal
martingales

{H(j) = a1,jY
(1) + · · ·+ aj,jY

(j), j = 1, 2, . . . }

that can be used in the chaotic representation property defined above.
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4 Coefficients in the orthogonalization procedure

As detailed in [18], the coefficients of the Laguerre-type polynomials when
c = 0 are used in the orthogonalization process of the Teugels martingales. In
this section, as an original contribution we give the coefficients of the modified
Laguerre-type polynomials for c < 0 which, to the best of our knowledge, they
have not been previously computed or published elsewhere. Our guess is that
these coefficients will eventually be needed in new attempts to find the desired
new isometries.

In order to find the coefficients {bk,n}nk=0 of the Laguerre-type polynomials

Lα,c,σ
2

n (x) when c ∈ (−∞, 0), we introduce the notation

λα,cn =
L
(α)
n+1 (c)

L
(α)
n (c)

, and κα,cn = 1 + σ2Kn(c, c).

Notice that L
(α)
n (c) 6= 0 for every n = 0, 1, 2, . . ., because c does not belong

to the support of the classical Laguerre measure. In [5, Th. 1] the authors
obtained a connection formula between the monic Laguerre-type orthogonal
polynomials and the classical monic Laguerre orthogonal polynomials. Fol-
lowing [18], we will consider the alternative normalization of Laguerre-type

polynomials with leading coefficient (−1)n
n! κα,cn−1, and we will denote them by

Lα,c,σ
2

n (x) when c ∈ (−∞, 0), and by Lα,σ
2

n (x) when c = 0. Using this normal-
ization, the connection formula [5, Th. 1] between the Laguerre-type and the
classical Laguerre polynomials reads

(x− c)Lα,c,σ
2

n (x) = AnL
(α)
n+1(x) +BnL

(α)
n (x) + CnL

(α)
n−1(x), (4)

where

An = −(n+ 1)κα,cn−1,

Bn = (n+ 1)κα,cn−1λ
α,c
n + (n+ α)

κα,cn
λα,cn−1

,

Cn = −(n+ α)κα,cn .

Next, we would like to obtain the coefficients {bk,n}nk=0 such that

Lα,c,σ
2

n (x) = bn,nx
n + bn−1,nx

n−1 + · · ·+ b1,nx+ b0,n.

Proposition 1. Let

Lα,c,σ
2

n (x) =

n∑
k=0

bk,nx
k

be the Laguerre-type polynomials, orthogonal with respect to the inner product
(2). Then, the sequence {bk,n}nk=0 is given by{

bn,n =
(−1)n

n!
κα,cn−1,

bk−1,n = tk,n+1 + cbk,n, k = n, n− 1, . . . , 1,
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where

tk,n+1 =


(−1)n

n!
κα,cn−1, for k = n+ 1,

uk,n(α, c)

n!k!
(−n)k(α+ k + 1)n−k, for 0 ≤ k ≤ n,

uk,n(α, c) = (n+ 1)

(
λα,cn +

α+ (n+ 1)

k − (n+ 1)

)
κα,cn−1 +

(
(k − n) +

(α+ n)

λα,cn−1

)
κα,cn

and
n+1∑
k=0

tk,n+1c
k = 0.

Proof. The proof will be divided into 2 steps. First, from (4) we will obtain
the coefficients {tk,n+1}n+1

k=0 of the polynomial

Tn+1(x) = (x− c)Lα,c,σ
2

n (x) =

n+1∑
k=0

tk,n+1x
k, (5)

which is obviously related with the Laguerre-type polynomials Lα,c,σ
2

n (x). Sec-
ond, we obtain the desired coefficients {bk,n}nk=0 from {tk,n+1}n+1

k=0 .
From (4), and the explicit coefficients for the classical Laguerre polynomials

with leading coefficient (−1)n
n! , (see [18])

L(α)
n (x) =

1

n!

n∑
k=0

(−n)k(α+ k + 1)n−k
xk

k!
, α > −1,

we get

(x− c)Lα,c,σ
2

n (x) =
(−1)n

n!
κα,cn−1x

n+1+
1

n!

n∑
k=0

uk,n(α, c)(−n)k(α+k+1)n−k
xk

k!
,

where

uk,n(α, c) = (n+ 1)

(
λα,cn +

α+ (n+ 1)

k − (n+ 1)

)
κα,cn−1 +

(
(k − n) +

(α+ n)

λα,cn−1

)
κα,cn .

Thus,

tk,n+1 =


(−1)n

n!
κα,cn−1, for k = n+ 1,

uk,n(α, c)

n!k!
(−n)k(α+ k + 1)n−k, for 0 ≤ k ≤ n.

(6)

Next, we deduce the sequence {bk,n}nk=0 in terms of {tk,n+1}n+1
k=0 . (5) makes it

obvious that, for every n ≥ 0

Tn+1(x) = (x− c)Lα,c,σ
2

n (x),

tn+1,n+1x
n+1 +

n∑
k=1

tk,n+1x
k + t0,n+1 = bn,nx

n+1 +

n∑
k=1

(bk−1,n − cbk)xk − cb0,n,
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being c a root of Tn+1(x), i.e.

n+1∑
k=0

tk,n+1c
k = 0.

Hence, the following relations matching the coefficients of Tn+1(x) and Lα,c,σ
2

n (x)
hold  tn+1,n+1 = bn,n,

tk,n+1 = bk−1,n − cbk,n, 1 ≤ k ≤ n,
t0,n+1 = −cb0,n.

The above provide a simple recursive rule to obtain the n coefficients of Lα,c,σ
2

n (x),
as follows {

bn,n = tn+1,n+1,
bk−1,n = tk,n+1 + cbk,n, k = n, n− 1, . . . , 1.

From (6) the statement holds.

To give an idea of the work done so far, we mention our first attempt to
get a new isometry for values of c < 0, we tried to construct a new family of
martingales

Ỹ (i) =

i−1∑
`=0

(
i− 1

`

)
1

c`
Y (`+1)

that are suitable linear combinations of Teugels martingales. If we consider the
basis

{(x
c
− 1)n}n≥0

then we though that it could be possible to find that (xc−1)n−1 ←→ Ỹ (n) works
as an isometry between S1 and S2, but when one computes 〈(xc − 1)i−1, (xc −
1)j−1〉1 and 〈Ỹ (i), Ỹ (j)〉2 one clearly sees that the above process fails. Work is
currently underway on a new isometry and we hope to report these findings in
a future paper.

By way of conclusion, we would like to remark that the substantial and
recent advances (see the nice survey [15] ) in these kind of modified inner prod-
ucts, such as the ones studied here, open the door to a vast mine of beautiful,
interesting and accessible open problems.
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Abstract. We have investigated the relations between 4 selected countries’ (USA,
Australia, Japan and UK) daily returns of the REIT (Real Estate Investment Trust)
indexes in different time periods, determined by the recent global financial markets
crises (July 1, 2008 – April 30, 2009). We have applied the fitting by copulas to the
residuals of ARMA–GARCH filters. We considered models from strict Archimedean
copulas (Joe, Frank, Clayton and Gumbel) families and their mixtures with corre-
sponding survival copulas as well as their perturbation. For selecting the optimal
models we have applied the Kolmogorov – Smirnov – Anderson – Darling (KSAD)
test statistic (for which we also constructed a GoF simulation based test). We ob-
served that for all 3 considered time periods, the minimal (considerably reduced)
value of KSAD were received for perturbed copulas.
Keywords: Copula, Perturbed copulas, Real Estate Investment Trust (REIT) index,
returns of REIT indexes.

1 Introduction

We have investigated the relations between 4 selected countries’ (USA, Aus-
tralia, Japan and UK) daily returns of the REIT (Real Estate Investment
Trust) indexes in different time periods, determined by the recent global fi-
nancial markets crises (July 1, 2008 – April 30, 2009). We have applied the
fitting by copulas to the residuals of ARMA–GARCH filters. We fitted these
residuals by suitable marginal distributions in one of the Normal, Logistic and
Laplace classes of distributions. Next, for each considered time period and
all six possible couples of filtered residuals, we investigated models from strict
Archimedean copulas (Joe, Frank, Clayton and Gumbel) families and their
mixtures with corresponding survival copulas (that have been applied e.g. in
Patton’s paper [15]) as well as their perturbations given in our paper Mesiar
et al.[12]. We observed that for all three considered time periods, the minimal
(considerably reduced) value of Kolmogorov–Smirnov–Anderson–Darling test
statistic were received for perturbed model.

3rdSMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal
C. H. Skiadas (Ed)

c© 2014 ISAST
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The paper is organized as follows. In the second section we present selected
models of univariate (marginal) distributions as well as a brief overview of the
theory of copulas including the methodology of their fitting to two–dimensional
time series. The third section is devoted to perturbations of bivariate copulas.
The fourth section, contains application to real data modelling. First we filter
the considered group of REIT indexes (separately in the individual time sub–
periods) by ARMA–GARCH models (in order to avoid a possible violation
of the i.i.d. property). Then we fit the resulting time series of residuals by
suitable marginal distributions and apply non–parametric correlation analyses
(based on the Kendall coefficients) to all possible couples of the residual time
series (for the individual time sub–periods). Next we provide an overview of
the best copula models for different time sub–periods and selected significantly
correlated pairs of returns of REIT indexes. Finally, some conclusions are
presented.

2 Fitting univariate and bivariate distributions

2.1 Selected classes of univariate distributions

Recall that a Logistic distribution (see [5]) is determined by two parameters
(µ, β) and its probability density function is given by

f(x, µ, β) =
e−

x−µ
β

β
(
e−

x−µ
β + 1

)2 .

Moreover, its theoretical parameters satisfy the relations

E[X] = µ, D[X] =
π2β2

3
, Skewness = 0, Kurtosis = 4.2.

Similarly a Laplace distribution (see [10]) is determined by two parameters
(µ, β) and its probability density function is given by

f(x, µ, β) ==


e
− x−µ

β

2β x ≥ µ

e
−µ−x

β

2β otherwise

.

Its theoretical parameters satisfy the relations

E[X] = µ, D[X] = 2β2, Skewness = 0, Kurtosis = 6.

For all GoF tests with Logistic and Laplace distributions we applied the Ander-
son–Darling GoF test (see e.g. Anderson and Darling [3], Anderson [2]) that
effectively uses a test statistic based on

A2
n = n

∫ ∞
−∞

(
F̂ (x)− F (x)

)2

F (x))(1− F (x)
dF (x), (1)
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where n is the sample size, F̂ (x) is the empirical distribution function and F (x)
is the specified distribution function. It was shown in Anderson and Darling
[3] that (1) can be written as

A2
n = −n− 1

n

n∑
k=1

(2k − 1)
(
log
(
1− u(−k+n+1)

)
+ log u(k)

)
,

where u(k) = F (x(k)) and x(1) < ... < x(n) is the ordered sample. The p-values
of Anderson–Darling GoF test were calculated by the software Mathematica,
version 9.

2.2 Copulas

Copula represents a multivariate distribution that capture the dependence
structure among random variables. It is a great tool for building flexible mul-
tivariate stochastic models. Copula offers the choice of an appropriate model
for the dependence between random variables independently from the selection
of marginal distributions. This concept was introduced in the early 50’s and
became popular in several fields beyond statistics and probability theory, such
as finance, actuarial science, fuzzy set theory, hydrology, etc.

Definition 1. A function C : [0, 1]2 → [0, 1] is called a (bivariate) copula
whenever it is

i) 2–increasing, i.e.,

VC ([u1, u2]× [v1, v2]) = C(u1, v1) + C(u2, v2)− C(u1, v2)− C(u2, v1) ≥ 0

for all 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1 (recall that VC ([u1, u2]× [v1, v2])
is the C–volume of the rectangle [u1, u2]× [v1, v2]);

ii) grounded, i.e., C(u, 0) = C(0, v) = 0 for all u, v ∈ [0, 1];
iii) it has a neutral element e = 1, i.e., C(u, 1) = u and C(1, v) = v for all

u, v ∈ [0, 1].

Sklar[16] proved in 1959 that H(x, y) = C(F (x), G(y)), where H is the
joint distribution function of a random vector (X,Y ) with marginal distribution
functions F and G. If the marginals are continuous, the copula is unique. Thus,
the copula function has other important interpretation as the joint distribution
function.

For more details, examples and applications we recommend monographs
Joe[9] and Nelsen[13]. The Table 1 provides a summary of some selected basic
facts that are related to some classes of Archimedean copulas that we utilize
in our analyses.

We follow the approach of Patton[15] and consider a so–called survival cop-
ula derived from a given copula C(u, v) corresponding to the couple (X,Y )
by

SC(u, v) = u+ v − 1 + C(1− u, 1− v) (2)

which is the copula related to the couple (−X,−Y ) with the marginal distri-
bution functions

F−X(x) = 1− FX(−x+) and F−Y (y) = 1− FY (−y+). (3)
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Family of Parameter Bivariate copula
copulas C(u, v)

Gumbel θ ≥ 1 e−[(−ln(u))θ+(−ln(v))θ ]
1
θ

Clayton (strict) θ > 0 (u−θ + v−θ − 1)−
1
θ

Frank θ ∈ < − 1
θ ln(1 +

(e−θu−1) (e−θv−1)

(e−θ−1)
)

Joe θ ∈ [1,∞) 1−
(

(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ
)1/θ

Ali-Mikhail-Haq θ ∈ [−1, 1] uv
1−θ(1−u)(1−v)

Table 1. Some Archimedean copulas

2.3 Fitting of copulas

In practical fitting of the data we have utilized the maximum pseudolikeli-
hood method (MPL) of parameter estimation with initial parameters estimates
received by the minimalization of the mean square distance to the empirical
copula Cn presented e.g. in Genest and Favre[7]

Cn(u, v) =
1

n

n∑
i=1

1

(
Ri
n+ 1

≤ u, Si
n+ 1

≤ v
)

where n is the sample size, Ri stands for the rank of Xi among X1, . . . , Xn,
Si stands for the rank of Yi among Y1, . . . , Yn and 1(Ω) denoting the indicator
function of set Ω. It requires that the copula Cθ(u, v) is absolutely continuous

with density cθ(u, v) = ∂2

∂u ∂vCθ(u, v). This method (described e.g. in Genest
and Favre[7]) involves maximizing a rank-based log-likelihood of the form

L(θ) =

n∑
i=1

ln

(
cθ

(
Ri
n+ 1

;
Si

n+ 1

))
.

where θ is vector of parameters in the model. Note that arguments Ri
n+1 ,

Si
n+1

equal to the corresponding values of the empirical marginal distributional func-
tions of random variables X and Y.

For selecting the optimal models we applied the Kolmogorov – Smirnov
– Anderson – Darling (KSAD, for which we use the abbreviation AD) test
statistic defined e.g. in Berg and Bakken[6]

AD(θ) =
√
n max |

Cn

(
Ri
n+1 ,

Si
n+1

)
− Cθ

(
Ri
n+1 ,

Si
n+1

)
Cθ

(
Ri
n+1 ,

Si
n+1

)
∗ (1− Cθ

(
Ri
n+1 ,

Si
n+1

)
)
| (4)

for which we also constructed a GoF simulation based test, when comparing
models with their submodels and different families of models.

3 Perturbation of bivariate copulas

Fitting of an appropriate copula to real data is one of major tasks in ap-
plication of copulas. For this purpose, a large buffer of potential copulas is
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necessary, preferably parametric families of copulas. Once we know approxi-
mately a copula C appropriate to model the observed data, we look for a
minor perturbation of C which fit better then C itself. This is, e.g., the case
of Farlie–Gumbel–Morgenstern (FGM) class of copulas, all of them being a
perturbation of the independence copula Π, Π(u, v) = u v. Recall that FGM
family

(
CFGMα

)
α∈[−1,1]

of copulas is given by

CFGMα (u, v) = u v + αu (1− u) v (1− v). (5)

Several generalizations of FGM approach to perturb the product copula Π
can be found in literature, see, for example Amblard and Girard[1], Bairamov
and Kotz [4], Rodŕıguez–Lallena and Úbeda–Flores[14].

For a given copula C : [0, 1]2 → [0, 1], we will look for constraints on the
noise H : [0, 1]2 → < so that the function CH : [0, 1]2 → [0, 1] given by

CH(u, v) = max (0, C(u, v) +H(u, v)) (6)

is also a copula. Obviously FGM copulas given by (5) are linked to C = Π
and Hα(u, v) = α u (1− u) v (1− v) (observe that in this case, no truncation
is necessary).

For a fixed copula C : [0, 1]2 → [0, 1], consider the function CH given by (6).
To satisfy the groundedness condition of copulas by CH , necessarily H(u, 0) ≤ 0
and H(0, v) ≤ 0 for all u, v ∈ [0, 1]. Similarly, e = 1 is a neutral element of CH
only if H(u, 1) = H(1, v) = 0 for all u, v ∈ [0, 1]. The main problem to ensure
that CH is a copula is to guarantee the 2–increasingness of CH , which depends
both on C and H.

In general, if C is a singular copula, the function H 6= 0 cannot be absolutely
continuous. Similarly, if C is an absolutely continuous copula, H cannot be
singular. Therefore, as a special case of the perturbation (7), one can deal with
perturbation related to functions f, g : [0, 1]→ [0, 1] and constant λ ∈ < in the
form already discussed in Mesiar et al.[11], namely

Cλ,f,g(u, v) = max (0, C(u, v) + λC(f(u), f(v))) . (7)

Obviously, FGM family given in (5) can be seen as a special case of construction
(6), considering C = Π, λ ∈ [−1, 1] and f = g given by f(x) = x − x2. Note
that as a necessary condition to ensure that e = 1 is a neutral element of Cλ,f,g,
one should consider f(1) = g(1) = 0. On the other hand, if λ ≤ 0, then Cλ,f,g is
always grounded. However, if λ > 0, then one should consider C(f(0), g(0)) = 0
(which is trivially satisfied for any copula C if f(0) = g(0) = 0).

In the case when no truncation is necessary, we have two general results.

Proposition 1. Let C : [0, 1]2 → [0, 1] be a copula and H : [0, 1]2 → [0, 1] be a
function so that C +H ≥ 0 and CH is a copula, i.e., CH = C +H is a copula.
Then also CλH = C + λH is a copula for each λ ∈ [0, 1].

Proposition 2. Under the constraints of Proposition 1, the function ĈH̄ is a
copula, where Ĉ : [0, 1]2 → [0, 1] is the survival copula related to C,

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v),
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and H̄ : [0, 1]2 → [0, 1] is given by

H̄(u, v) = H(1− u, 1− v).

We have a next perturbation method valid for any copula C.

Theorem 1. Let C : [0, 1]2 → [0, 1] be a copula and define HC
λ : [0, 1]2 →

[0, 1], λ ∈ [0, 1] by

HC
λ (u, v) = λ (u− C(u, v)) (v − C(u, v)).

Then CHCλ : [0, 1]2 → [0, 1] given by

CHCλ (u, v) = C(u, v) +HC
λ (u, v) (8)

is a copula for each λ ∈ [0, 1] and any copula C.

4 Application to real data modelling

4.1 Real Estate Investment Trust

A REIT (Real Estate Investment Trust ) is a company that mainly owns,
and in most cases, operates income–producing real estate such as apartments,
shopping centers, offices, hotels and warehouses. Some REITs also engage in
financing real estate. The shares of many REITs are traded on major stock
exchanges.

REIT Index Series is designed to present investors with a comprehensive
family of REIT performance indexes that spans the commercial real estate
space across the economy of the country. The index series provides investors
with exposure to all investment and property sectors. In addition, the more
narrowly focused property sector and sub–sector indexes provide the facility to
concentrate commercial real estate exposure in more selected markets.

We have investigated the relations between 4 selected countries’ (USA, Aus-
tralia, Japan and UK) daily returns of the REIT (Real Estate Investment Trust)
indexes in different time periods, determined by the recent global financial mar-
kets crises (July 1, 2008 – April 30, 2009) that can be also clearly identified
from next Figure 1, presenting the parallel development of the considered REIT
indexes.

We have performed filtering of the returns of all individual REIT indexes (in
order to avoid a possible violation of the i.i.d. property) by ARMA–GARCH
models (separately for the individual considered time sub-periods). Some basic
descriptive statistical characteristics of 12 resulting time series are presented
in Tables 2, 3 and 4 (mean values equal to 0 are in accordance to the expected
properties of residuals of filtering).

The values of kurtosis for all 12 considered time series suggest that only the
UK data during and after the crisis can be well fitted by Normal distributions
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Fig. 1. Real Estate Investment Trust indexes in different time periods (USA = red,
Australia = blue, Japan = green, UK = cyan)

Country Mean Standard deviation Skewness Kurtosis Min Max

USA 0.00 0.71 0.07 4.31 -3.85 3.31

Australia 0.00 0.39 0.14 4.83 -2.12 1.82

Japan 0.00 0.03 0.18 3.59 -0.09 0.11

U.K. 0.00 0.02 0.14 4.95 -0.07 0.08

Table 2. Descriptive statistics for filtered returns of the REIT indexes before crisis

Country Mean Standard deviation Skewness Kurtosis Min Max

USA 0.00 0.05 0.08 5.29 -0.23 0.24

Australia 0.00 0.08 -0.55 5.01 -0.49 0.26

Japan 0.00 0.05 -0.23 5.08 -0.29 0.16

U.K. 0.00 0.03 0.05 3.27 -0.10 0.11

Table 3. Descriptive statistics for filtered returns of the REIT indexes during crisis

Country Mean Standard deviation Skewness Kurtosis Min Max

USA 0.00 0.02 0.98 7.18 -0.11 0.44

Australia 0.00 0.01 0.90 6.97 -0.04 0.21

Japan 0.00 0.02 0.31 7.23 -0.12 0.29

U.K. 0.00 0.02 0.01 3.25 -0.08 0.08

Table 4. Descriptive statistics for filtered returns of the REIT indexes after crisis

(with the theoretical value of kurtosis equal to 3). This intuitive guess has
been justified by the results of Jarque-Bera GoF test (see e.g. [8]) applied to
all 12 time series. For fitting the remaining 10 time series, we utilized the
Logistic and Laplace classes of distributions that have larger theoretical values
of kurtosis.

Resulting types of distributions and their parameters for all 12 time series
together with p-values are shown in Table 5, 6 and 7.

For all three time sub-periods and all couples of (filtered) returns of the
REIT indexes we have performed the non–parametric correlation analyses ba-
sed on the Kendall coefficients (see Table 8, 9 and 10). We have observed that
the values of the correlation coefficients have dropped substantially between the
first and the second considered time sub-periods and even more dramatically
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Country Type of distribution Parameters p–value

USA Logistic µ = 0, β = 0.3908 0.97

Australia Logistic µ = 0, β = 0.2123 0.49

Japan Logistic µ = 0, β = 0.0155 0.21

U.K. Logistic µ = 0, β = 0.0082 0.18

Table 5. Marginal distributions for filtered returns of the REIT indexes before crisis

Country Type of distribution Parameters p–value

USA Logistic µ = 0, β = 0.0288 0.09

Australia Logistic µ = 0, β = 0.0427 0.11

Japan Logistic µ = 0, β = 0.0297 0.33

U.K. Normal µ = 0, σ = 0.0344 0.45

Table 6. Marginal distributions for filtered returns of the REIT indexes during crisis

Country Type of distribution Parameters p–value

USA Laplace µ = 0, β = 0.0142 0.12

Australia Laplace µ = 0, β = 0.0097 0.16

Japan Laplace µ = 0, β = 0.0120 0.15

U.K. Normal µ = 0, σ = 0.0247 0.44

Table 7. Marginal distributions for filtered returns of the REIT indexes after crisis

for the third sub-period. These changes are illustrated in the scatter plots (see
Figure 2 – Figure 7).

before crisis USA Australia Japan UK

USA 1 0.994 0.731 0.737

Australia 0.994 1 0.727 0.738

Japan 0.731 0.727 1 0.609

UK 0.737 0.738 0.609 1

Table 8. The values of the Kendall’s correlation coefficient τ for the pre–crisis period

during crisis USA Australia Japan UK

USA 1 0.301 0.267 0.306

Australia 0.301 1 0.535 0.397

Japan 0.267 0.535 1 0.378

UK 0.306 0.397 0.378 1

Table 9. The values of the Kendall’s correlation coefficient τ for the crisis period
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after crisis USA Australia Japan UK

USA 1 0.111 0.061 0.221

Australia 0.111 1 0.222 0.087

Japan 0.061 0.222 1 0.073

UK 0.221 0.087 0.073 1

Table 10. The values of the Kendall’s correlation coefficient τ for the post–crisis
period

Fig. 2. USA & Australia

Fig. 3. USA & Japan

Fig. 4. USA & U.K.

We have applied the fitting by copulas to the residuals of ARMA–GARCH
filters. We considered models from strict Archimedean copulas (Joe CJ , Frank
CF , Clayton CCl and Gumbel CG) families and their mixtures with correspon-
ding survival copulas Ĉ as well as their perturbations given by (8). We also
tried the Farlie–Gumbel–Morgenstern (FGM) and Ali–Mikhail–Haq (AMH)
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Fig. 5. Japan & Australia

Fig. 6. Japan & U.K.

Fig. 7. Australia & U.K.

copulas, but these had the greatest values of the AD for all the pairs and time
periods.

For estimation of parameters for each type of models we have used the
maximum pseudo–likelihood method. For selecting the optimal models we have
applied the Kolmogorov – Smirnov – Anderson – Darling (for which we have
used the abbreviation AD) test statistic (4). For all of them, the simulation
based GoF test yielded p–value > 0.1. Overview of optimal types of copulas
for all couples and all time sub–periods of the filtered returns of REIT indexes
is in Table 11 – Table 16.

5 Concluding remarks

We have found suitable marginal distribution models for all considered time
series of filtered returns of REIT indexes and considered time period in one
of Normal, Logistic or Laplace classes of distributions. We can observe that
(although there is no clear relation between the pseudo likelihood functions
and AD criterion) for all considered 6 couples of (filtered) returns of REIT
indexes in 3 time periods and for all 6 couples of considered models the best
perturbed models have lower values of AD criterion than the best models in
the corresponding non–perturbed model classes. Moreover, for a great majority
(16/18) of the considered 18 couples of (filtered) returns of REIT indexes, the
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Type of copula 03.01.2000–31.07.2008 01.08.2008–30.04.2009 01.05.2009–08.05.2012

λ θ AD λ θ AD λ θ AD

CG x 1.99 4.42 x 1.31 2.56 x 1.05 8.81

CG +HC
G

λ 0.98 1.80 4.23 0.63 1.18 2.44 0.16 1.03 8.43

0.5 ∗ (CG + ĈG) x 2.19 1.72 x 1.80 1.27 x 1.65 1.82

0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
λ

0.79 1.98 1.55 0.46 1.24 1.03 0.05 1.08 1.74

CCl x 1.48 4.96 x 0.48 1.85 x 0.17 2.26

CCl +HC
Cl

λ 0.97 1.18 3.72 0.76 0.24 1.45 0.04 0.17 2.19

0.5 ∗ (CCl + ĈCl) x 1.56 1.98 x 0.21 1.42 x 0.43 3.49

0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
λ

0.98 1.71 1.52 0.53 0.42 1.69 0.03 0.16 3.27

CJ x 2.25 12.09 x 1.40 4.09 x 1.04 10.32

CJ +HC
J

λ 0.97 1.94 9.98 0.83 1.15 3.03 0.22 1.02 9.45

0.5 ∗ (CJ + ĈJ ) x 2.72 2.07 x 2.56 1.63 x 4.01 1.48

0.5 ∗ (CJ + ĈJ ) +H
0.5∗(CJ+ĈJ )
λ

0.99 2.56 1.97 0.65 1.30 1.27 0.23 1.13 1.34

Table 11. The overview of optimal types of copulas for the couple USA & Japan of
the (filtered) returns of REIT indexes

Type of copula 03.01.2000–31.07.2008 01.08.2008–30.04.2009 01.05.2009 – 08.05.2012

λ θ AD λ θ AD λ θ AD

CG x 2.21 3.75 x 1.42 3.54 x 1.27 6.05

CG +HC
G

λ 0.45 2.13 3.29 0.25 1.38 3.32 0.36 1.20 5.83

0.5 ∗ (CG + ĈG) x 1.90 1.60 x 1.05 1.68 x 1.13 1.79

0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
λ

0.07 2.31 1.47 0.08 1.47 1.38 0.06 1.29 1.58

CCl x 1.62 5.27 x 0.76 1.37 x 0.43 2.27

CCl +HC
Cl

λ 0.98 1.32 4.22 0.41 0.65 1.22 0.62 0.24 1.93

0.5 ∗ (CCl + ĈCl) x 2.18 2.23 x 1.41 1.97 x 0.54 1.78

0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
λ

0.54 2.17 2.12 0.02 0.87 1.71 0.05 0.59 1.62

CJ x 2.60 10.00 x 1.51 6.46 x 1.34 12.05

CJ +HC
J

λ 0.97 2.29 7.75 0.77 1.31 5.33 0.68 1.18 9.21

0.5 ∗ (CJ + ĈJ ) x 2.91 2.25 x 1.40 1.91 x 1.16 1.77

0.5 ∗ (CJ + ĈJ ) +H
0.5∗(CJ+ĈJ )
λ

0.61 2.96 2.16 0.09 1.72 1.81 0.14 1.45 1.65

Table 12. The overview of optimal types of copulas for the couple USA & UK of the
(filtered) returns of REIT indexes

Type of copula 03.01.2000–31.07.2008 01.08.2008–30.04.2009 01.05.2009–08.05.2012

λ θ AD λ θ AD λ θ AD

CG x 4.74 2.11 x 1.42 2.81 x 1.12 5.92

CG +HC
G

λ 0.95 4.18 1.92 0.08 1.41 2.49 0.06 1.11 5.58

0.5 ∗ (CG + ĈG) x 7.03 1.67 x 1.27 1.57 x 1.04 2.05

0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
λ

0.97 6.64 1.46 0.05 1.44 1.54 0.05 1.14 1.98

CCl x 5.94 4.07 x 0.59 1.95 x 0.22 1.53

CCl +HC
Cl

λ 0.98 5.63 3.94 0.68 0.40 1.56 0.10 0.19 1.27

0.5 ∗ (CCl + ĈCl) x 11.08 1.58 x 0.56 1.88 x 0.80 2.19

0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
λ

0.98 11.96 1.54 0.21 0.71 1.73 0.04 0.28 2.16

CJ x 7.92 4.15 x 1.15 6.18 x 1.55 4.65

CJ +HC
J

λ 0.95 7.07 3.78 0.26 1.09 5.51 0.59 1.39 3.75

0.5 ∗ (CJ + ĈJ ) x 13.81 1.58 x 2.15 1.88 x 1.39 1.80

0.5 ∗ (CJ + ĈJ ) +H
0.5∗(CJ+ĈJ )
λ

0.99 13.65 1.54 0.03 1.24 1.58 0.30 1.59 1.57

Table 13. The overview of optimal types of copulas for the couple USA & Australia
of the (filtered) returns of REIT indexes

non–perturbed models corresponding to the optimal perturbed ones attain the
minimal values of the AD criterion among all considered non–perturbed classes
of models for the (filtered) returns of REIT indexes (for 2 remaining couples
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Type of copula 03.01.2000–31.07.2008 01.08.2008–30.04.2009 01.05.2009–08.05.2012

λ θ AD λ θ AD λ θ AD

CG x 1.97 3.77 x 1.97 3.70 x 1.28 4.54

CG +HC
G

λ 0.97 1.77 3.68 0.93 1.78 3.14 0.08 1.27 4.42

0.5 ∗ (CG + ĈG) x 2.29 1.76 x 2.39 1.45 x 1.13 1.71

0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
λ

0.89 1.91 1.52 0.44 2.01 1.32 0.05 1.31 1.61

CCl x 1.41 4.95 x 1.34 2.31 x 0.46 2.20

CCl +HC
Cl

λ 0.95 1.11 3.65 0.98 1.04 1.93 0.45 0.33 1.76

0.5 ∗ (CCl + ĈCl) x 1.32 1.85 x 1.56 1.55 x 1.27 1.77

0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
λ

0.97 1.65 1.76 0.76 1.75 1.47 0.05 0.60 1.65

CJ x 2.21 11.53 x 2.25 12.41 x 1.36 7.35

CJ +HC
J

λ 0.98 1.90 10.05 0.96 1.94 10.84 0.53 1.22 6.28

0.5 ∗ (CJ + ĈJ ) x 3.06 1.81 x 2.73 1.55 x 1.34 1.35

0.5 ∗ (CJ + ĈJ ) +H
0.5∗(CJ+ĈJ )
λ

0.98 2.51 1.74 0.81 2.60 1.48 0.03 1.51 1.18

Table 14. The overview of optimal types of copulas for the couple Japan & Australia
of the (filtered) returns of REIT indexes

Type of copula 03.01.2000–31.07.2008 01.08.2008–30.04.2009 01.05.2009–08.05.2012

λ θ AD λ θ AD λ θ AD

CG x 1.66 5.01 x 1.53 2.67 x 1.07 4.27

CG +HC
G

λ 0.98 1.46 4.66 0.85 1.36 2.57 0.23 1.0. 4.14

0.5 ∗ (CG + ĈG) x 1.64 1.54 x 1.49 1.35 x 1.08 1.86

0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
λ

0.55 1.64 1.37 0.48 1.49 1.23 0.05 1.09 1.79

CCl x 1.01 4.74 x 0.88 1.86 x 0.16 1.40

CCl +HC
Cl

λ 0.97 0.71 3.07 0.93 0.61 1.24 0.02 0.15 1.35

0.5 ∗ (CCl + ĈCl) x 1.64 1.74 x 1.49 1.62 x 1.09 2.01

0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
λ

0.71 1.16 1.58 0.79 0.76 1.54 0.03 0.18 1.94

CJ x 1.83 5.99 x 1.66 4.50 x 1.07 5.10

CJ +HC
J

λ 0.97 1.53 2.81 0.99 1.37 4.09 0.30 1.02 4.52

0.5 ∗ (CJ + ĈJ ) x 1.16 1.83 x 0.76 1.53 x 0.18 1.56

0.5 ∗ (CJ + ĈJ ) +H
0.5∗(CJ+ĈJ )
λ

0.83 1.97 1.63 0.88 1.61 1.38 0.02 1.14 1.47

Table 15. The overview of optimal types of copulas for the couple Japan & U.K. of
the (filtered) returns of REIT indexes

Type of copula 03.01.2000–31.07.2008 01.08.2008–30.04.2009 01.05.2009–08.05.2012

λ θ AD λ θ AD λ θ AD

CG x 2.26 3.94 x 1.59 2.78 x 1.08 2.98

CG +HC
G

λ 0.24 2.22 3.57 0.77 1.43 2.07 0.23 1.04 2.72

0.5 ∗ (CG + ĈG) x 2.35 1.71 x 1.62 1.05 x 1.09 1.68

0.5 ∗ (CG + ĈG) +H
0.5∗(CG+ĈG)
λ

0.02 2.33 1.67 0.17 1.64 0.93 0.02 1.09 1.61

CCl x 1.68 5.39 x 0.94 1.97 x 0.15 1.88

CCl +HC
Cl

λ 0.98 1.38 4.44 0.98 0.66 1.65 0.24 0.08 1.29

0.5 ∗ (CCl + ĈCl) x 2.35 2.75 x 1.62 1.31 x 1.09 1.73

0.5 ∗ (CCl + ĈCl) +H
0.5∗(CCl+ĈCl)
λ

0.42 2.26 2.63 0.72 0.89 1.08 0.02 0.21 1.57

CJ x 2.68 5.22 x 1.73 6.08 x 1.10 3.69

CJ +HC
J

λ 0.98 2.37 5.00 0.96 1.44 5.04 0.32 1.04 3.21

0.5 ∗ (CJ + ĈJ ) x 2.26 2.82 x 0.89 1.15 x 0.20 1.70

0.5 ∗ (CJ + ĈJ ) +H
0.5∗(CJ+ĈJ )
λ

0.49 3.04 2.65 0.79 1.75 1.09 0.15 1.11 1.42

Table 16. The overview of optimal types of copulas for the couple U.K. & Australia
of the (filtered) returns of REIT indexes

they narrowly exceed the minimum values). Moreover, for 17 of 18 considered
couples of (filtered) returns of REIT indexes the θ coefficients of the optimal
models do not considerably differ from the values of optimal models in the
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corresponding classes of non–perturbed models. The only exception to this
phenomenon could be attributed to very flat shapes of the respective pseudo
likelihood functions around they minimum values.
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Abstract: The paper addressed the filtering problem with using nonparametric 

algorithms for discrete stochastic systems with unknown input. The two-stage algorithm 

on the base of the Kalman filtering and nonparametric estimator for systems with 

unknown input is designed and explored. Examples are given to illustrate the usefulness 

of the proposed results in comparison with the known algorithms. 
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1  Introduction 
 

An important issue of the Kalman filtering [1] is construction of algorithms for 

the class of systems with unknown additive perturbations. Such systems are 

used as the models of real physical systems, as the models of objects with 

unknown errors, and in control problems for economic systems. The known 

methods to calculate estimates of a state vector are based on the algorithms of 

estimation of an unknown perturbation [2-9].  
 

In this paper, for discrete systems with unknown perturbations the two-stage 

optimal filtering with use of nonparametric estimators for unknown input are 

proposed. Examples are given to illustrate the properties of the proposed 

procedures in comparison with the known algorithms. 

 

2  The problem statement  
 

Consider the mathematical model of the linear discrete-time stochastic system 

with unknown input in the form: 

                                      0( 1) ( ) ( ) ( ), (0)x k Ax k Br k q k x x     ,                 (1) 

                                                 
1
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01015А, Tomsk State University Competitiveness Improvement Program, and the 
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                                               ( ) ( ) ( )y k Hx k v k  ,                                             (2) 

where x(k) is the state of the object, r(k) is an unknown input, y(k) is the 

measurement, A, B, and H are matrices of the appropriate dimensions. It is 

assumed random perturbations q(k) and the noise measurements v(k) are not 

correlated between themselves and are subject to the Gaussian distribution with 

zero mean and the corresponding covariance: E[ ( ) ( ) ] ( , )q k q k Q k t   , 

E[ ( ) ( ) ] ( , ),v k v k V k t    where δ(k,t) is the Kronecker symbol, i.e., δ(k,t) = 1 if 

k = t, and δ(k,t) = 0 when k  t. It is also proposed that the vector of initial 

conditions is uncorrelated with values q(k) and v(k). This vector is defined by 

the following characteristics: 
 

                               0E[ (0)]x x , 0 0 0E[( (0) )( (0) ) ]x x x x P   .                          

 

3  The estimation algorithm of an unknown input and state 

space vector 
 

In this paper, the optimal filter is defined by the following full-order Kalman 

filter. Filter equations have the form: 
 

  ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( )[ ( 1) ( ( ) ( ))]x k Ax k Br k K k y k H Ax k Br k       , 0
ˆ(0)x x ,   (3) 

 

                                      ( 1/ ) ( )P k k AP k A Q   ,                                         (4) 
 

                           1( ) ( 1/ ) [ ( ) ]K k P k k H HP k H V     ,                                (5) 
 

                      ( 1) ( ( ) ) ( 1/ )P k I K k H P k k    , 0(0)P P ,                           (6) 

where ˆ( )x k  and ˆ( )r k are estimators, ˆ ˆ( ) E[( ( ) ( ))( ( ) ( )) ]P k x k x k x k x k    . 
 

However, formulas (3)(6) can not be applied immediately because ˆ( )r k  is 

unknown. Obtain estimator ˆ( )r k  by making use of the following criteria: 
 

                              
2 2

1

( ( 1)) E ( ) ( 1)
k

C D
i

J r k u i r i


 
    

 
 ,                              (7) 

where ˆ( ) ( ) ( )u i y i Hx i   is the innovation process, 
2

C
  is the Euclidian norm, 

C and D are symmetric positive definite weight matrices. 
 

Optimal estimator of the unknown input at moment 1k   is found by 

minimization of the criteria: 
 

                       
2 2

(0)
ˆ( (0)) min E (1) (1) (0)

C Dr
J r y Hx r   

 
.                              (8) 

 

Substituting ˆ ˆ(1) (0) (0)x Ax Br   into (8), we have 
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2 2

(0)
ˆ( (0)) min E (1) (0) (0) (0)

C Dr
J r y HAx HBr r    

 
.                (9) 

 

Transform the norms in (9) and obtain 
 

    
2

0
(0)

ˆ( (1)) min E 2 (0) ( (1) (0)) (0)
B H CHB Dr

J r r B H V y HAx r  

  


     
 

.  (10) 

 

Here, the parameter 0  does not depend on (0)r . First, differentiate (10) w.r.t. 

(0)r , and then find the optimal estimator of the unknown input from the 

equation 
 

         
( (0))

ˆ2( ) (0) 2 E[ (1) (0)]=0
(0)

dJ r
B H CHB D r B H C y HAx

dr

       .      (11) 

 

So, at the moment k = 1, we obtain the optimal estimator of the unknown input: 
 

                                           ˆ ˆ(0) E[ (1) (0)]r S y HAx  ,                                     (12) 

where  

                                        1( )S B H CHB D B H C      .                               (13) 
 

Analogously, at the moment k = 2, the optimal estimator of the unknown input 

is found from the following criteria: 
 

             
2 2

(1)
ˆ ˆ( (1)) min E (2) (2) (1) ( (0))

C Dr
J r y Hx r J r    

 
.                      (14) 

 

Taking into account (14) and the expression ˆ ˆ(2) (1) (1)x Ax Br   at the moment 

k = 2, we have 
 

             
2 2

(1)
ˆ( (1)) min E (2) (1) (1) (1)

C Dr
J r y HAx HBr r    

 
+ ˆ( (0))J r .                

 

As in the case of (10) 
 

   
2

1
(1)

ˆ( (1)) min E 2 (1) ( (2) (1)) (1)
B H CHB Dr

J r r B H C y HAx r  

  


     
 

,    (15) 

 

where the value 1  does not depend on r(1). Differentiating (15) w.r.t. r(1), as 

in the first step, we obtain the optimal estimator: 
 

                                           ˆ ˆ(1) E[ (2) (1)]r S y HAx  .                                     (16) 
 

Using the mathematical induction, for the next steps  
 

                                                 ˆ( ) E[ ( )]r k S w k .                                             (17) 
 

Here, the matrix S is given by the formula (13), and ˆ( ) ( ) ( 1)w k y k HAx k   . 
 

Now, let us calculate value E[ ( )]w k  using nonparametric estimators [10]. 

Applying the well known kernel estimates, we obtain 
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                                                   ˆ ˆ( ) ( )npr k Sw k ,                                             (18) 
 

where the j component of the vector takes the form: 
 

                                    
1 ,

,

1 ,

1
( )

ˆ ( )
1

k

j j

i i j

np j
k

j

i i j

k i
w i K

h
w k

k i
K

h





  
  
 


  
  
 





.                                (19) 

 

In formula (19), ( )jK   is a kernel function, ,i jh  is a bandwidth parameter. We 

use the Gaussian kernels, and the bandwidths calculated by the cross-validation 

method [11]. 

 

4. Simulations 
 

Apply the filtering algorithm using nonparametric estimates, i.e., (3)(6) and (18), 

to the model of the second order (1) and to the observations (2) with the 

parameters: 
 

               
0 1

0.05 0.9
A

 
  
 

, 
1.0 0

0 1.0
B

 
  
 

, 
5

2
r

 
  
 

, 
0.01 0

0 0.02
Q

 
  
 

,                  

                      
0.8 0

0 1.2
V

 
  
 

, 
1.0 0

0 1.0
H

 
  
 

, 0

1.0 0

0 1.0
P

 
  
 

,                             

                                
1.0 0

0 1.0
C

 
  
 

, 
0 0

0 0
D

 
  
 

, 0

5

2
x

 
  
 

.                                      

 

By the simulations, the proposed algorithms are compared with the algorithms 

using the LSM estimates from [3, 4]. These comparisons are given in 

Figures 14: 
 

 
 

Fig. 1. The dependence on the components of state vectors and the 

nonparametric estimates of these components (3)(6), (18) 
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Fig. 2. The estimation of the unknown inputs by  

nonparametric algorithms (3)(6), (18)  

 

     
 

Fig. 3. The dependence on the components of state vectors and the LSM 

estimates of these components from the papers [3, 4] 

 

     
 

Fig. 4. The estimation of the unknown inputs by the LSM estimates 

from the papers [3, 4] 
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In Tables 1 and 2, the standard errors of estimation  

2

1
,

ˆ( ( ) ( ))

1

N

i ik
x i

x k x k

N




 



,  

2

1
,

ˆ( ( ) ( ))

1

N

i ik
r i

r k r k

N




 



, 1, 2i  , 

are given for two filtering algorithms (N = 200) by averaging 50 

realizations.  
 

Table 1. Standart Errors for Filtering Algorithm with Using Nonparametric 

Estimates 

 

,1x  ,2x  ,1r  ,2r  

0.885 0.945 0.751 0.449 

 

Table 2. Standart Errors for Filtering Algorithms with Using the LSM-estimates 

 

,1x  ,2x  ,1r  ,2r  

1.348 1.514 2.014 2.082 

 

5  Conclusion 
 

In this paper, we deal with two-step algorithm of the Kalman filtering for 

systems with unknown input. The proposed method has been verified by the 

simulations study. Figures show that the filtering procedures, using 

nonparametric estimates, have the advantages in the accuracy in comparison 

with the known algorithms using LSM-estimates (cf. Fig. 1 and 3, Fig. 2 and 4, 

Table 1 and 2).  
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Abstract: A number of general-purpose ring and circle detectors are known. In most 

cases, template matching and Hough transform are used to detect rings inside the image. 

However, ring detectors described in the literature were found impractical for the real-

life implementation of the camera-based Instant Feedback System (IFS). Goal of the IFS 

is to collect answers of the students to the multiple-choice questions during the lecture. In 

the frames of the camera-based IFS, students answer to the specific multiple-choice 

question by presenting to the camera a specially designed IFS cards. Image of the class 

contains plurality of IFS cards in the different orientations and of different sizes, which 

makes recognition non-trivial. To simplify recognition, preferred design of IFS card 

contains bounding black ring and some other IFS specific elements positioned inside the 

bounding ring. IFS cards in the periphery of the real-life image are geometrically 

distorted, making standard template match approach too slow and non-reliable. To cope 

with this problem, standard Normalized Correlation template-matching algorithm was 

modified by adding the mask hiding the IFS elements inside the ring. In this case the 

number of templates needed to isolate IFS card is significantly smaller. In order to 

evaluate reliability of the proposed algorithm, special software Monte-Carlo simulator 

was created. Monte-Carlo simulation results show that in case of non-overlapped cards 

recognition error is less than 1%, which can be considered as adequate for the real-life 

camera-based IFS. Developed approach can be used to speed-up recognition in the other 

practically interesting cases, for example, for the traffic signs recognition.  

 

Keywords: Image Processing, Ring Detector, Normalized Correlation, IFS, Monte-Carlo 

simulation 

 

1. Introduction 
 

In many practically important application there is a need to find rings (or 

circles) in the image. A number of general-purpose ring and circle detectors are 

known. In most cases modifications of template maching algorithms and Hough 
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Transform algorithms are used. Those approches are implemented in a number 

of popular libraries and software packages. For example, MATLAB contains 

“imfindcircles“ function to automatically detect circles or circular objects in an 

image. This function requres a radius range in pixels to search for the circles and 

a number of “sensitivity“ parameters. This function implements two different 

methods. Using “two-stage method“ enables to detects parts of the circles, so 

that overlapping circular objects can be detected. Additional option in 

MAPTLAB is to use “CircularHough_Grd“  based on “Circular Hough 

Transform“ [1]. As in the previous case, a range of radii and other “sensitivity“ 

parameters must be specified. In case ellipse must be found,  modifications of 

the “Randomized Hough Transform“ [2] based on original algorithm [3] can be 

used. Popular “OpenCV“ library contains function “HoughCircles“ [4]. This 

library can be used to create PC, Android and iPhone real-time application. 

However, ring detectors described in the above examples were found 

impractical for the real-life implementation of the camera-based Instant 

Feedback System (IFS). Goal of the IFS is to collect answers of the students to 

the multiple-choice questions during the lecture. In the frames of the camera-

based IFS, students answer to the specific multiple-choice question by 

presenting to the camera a specially designed IFS cards [5]. Photo of the class 

contains plurality of IFS cards images in the different orientations and of 

different sizes, which makes recognition and analysis non-trivial.  

 

2. IFS Card Design 
 

To simplify recognition and analysis of the IFS cards, preferred design of IFS 

card contains bounding black ring and some other IFS specific elements.  

 
Fig. 1. IFS Card Design 
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Figure 1 presents IFS card design described in this work. IFS Card is printed on 

the thick white paper by using any available black and white printer. 

Background of the card is white (1). The card has a black ring (2), orientation 

markers (3 and 5) and two-digit number in the human-readable form (4). This 

number designates short ID of the specific student (for example, number of the 

student in the class list).  Orientation of the IFS card specifies number of the 

selected answer. Orientation markers (3 and 5) prevents orientation ambiguity 

for the numbers like 66-99. Described design does not contains color element, 

so that set of cards can be copied using standard copy-machine. 

 

3. Steps in the IFS Card recognition and analysis 
 

Human observer analyzing the image of the class easily recognizes bounding 

black ring and the number inside the ring for any possible orientation. For the 

computer the problem of recognition of the plurality of the IFS cards is not 

trivial, because orientation and sizes of the bounding rings and digits are 

different. Direct template-matching approach is possible, but time consuming, 

because a very big number of templates (having different digits in the different 

sizes and in the different orientations) must be used.  For this specific IFS 

design, the search can be executed faster. On the first step, only bounding rings 

(of different sizes) are to be found. Then sub images inside the bounding rings 

are to be scaled to the “standard size”. On the second step markers inside sub-

images are to be used to evaluate specific IFS card orientation and rotate its 

digits to the “standard position”. On the third step OCR or direct template match 

algorithm can be used to recognize two digits of the “standard size” and in the 

“standard orientation”.  

 

4. Ring Detector based on Heavily Masked Normalized 

Correlation 
 

Very popular and practical template matching algorithm widely used in the 

Image Processing is "2D Normalized Correlation":  

 

High value of the R (close to 1.0) means that template T is found inside the 

image I starting from [row, col]. Normalization is needed to make recognition 

invariant to the brightness variations. 
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Unfortunately, direct implementation of this algorithm in our case is not 

practical, because of markers and digits inside the bounding ring. To cope with 

this problem, standard Normalized Correlation template-matching algorithm 

was modified by adding the mask hiding the markers and digits inside the ring.  

 

                                 

                          

                              Fig. 2. Mask used to find the ring 
 

Figure 2 presents green region that is to be used to find bounding black ring. 

Pixels outside the green ring are to be excluded from the sums in the 

Normalized Correlation equation. Number of pixels to be used for the 

calculation of the sums is significantly smaller. 

Despite idea of masking looks simple and nearly obvious, exact analog was not 

found in the literature. 

 

5. Monte-Carlo Simulator 
 

In order to evaluate reliability of the proposed algorithm, special software 

Monte-Carlo simulator was created as Windows Forms Desktop C# .NET 

application. 

 

 

 

            Fig. 3. Appearance of the Monte-Carlo software simulator 
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Figure 3 presents appearance of the simulator. Pressing the button “Generate 

Images” call “Pattern Generator Form” (see Figure 4). Operator can specify a 

background image (for example, image of the real class), number of IFS cards to 

place on this background image in the pseudo-random sizes, positions and 

orientations. Additional geometrical parameters of the IFS cards, noise level and 

some others (like level of geometrical distortions, level of cards overlap) can be 

specified. 

 

 

 

        Fig. 4. Pattern Generator Form  

 

Pressing button “Generate Src” creates a number of images: “Label”, 

“Template”, “Mask” (see Figure 5) and resulted synthetic image (see Figure 6) 

 

                      Fig. 5. Label, Template, Mask. 

 

Label, Template and Mask can be stored to files and loaded from files.  

Second part of the Monte-Carlo simulator attempts to recognize IFS cards in the 

image in test. Currently, two implementations of the Heavily Masked 

Normalized Correlations are supported: by using unsafe pointer and by using 

GetPixel function. Obviously, implementation with unsafe pointer is nearly 100 

times faster: VGA size image was processed during 5 seconds. Typical results 

of the processing are presented in the Figure 7. Current utility deals with ring 

recognition only because other recognitions steps are trivial.  Button “Provide 

Monte-Carlo Tests” provides long series of tests {create image – process 

image} while collecting recognition success rate.    
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                          Fig. 6. Resulted synthetic image 

 

 

 

        Fig. 7.  Results of Heavily Masked Normalized Correlation algorithm:  

Region of the Higest Correlation value (~ 0.99) marked by red cross (Label 

#10). 
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Conclusions 

 

Monte-Carlo simulation results provided on synthetic images show that in case 

of non-overlapped cards circles detection success is close to 99%, which can be 

considered as adequate for the real-life camera-based IFS, because, practically, 

processed image of the class, with recognized cards marked as “green”, must be 

presented to the lecturer for the final approval. By visually inspecting image of 

the class, human observer (lecturer) will easily reveal non-recognized (and/or 

cards recognized in the wrong way) cards, and manually correct the final grades 

list. Despite the need of this manual inspection, time to get the final grades list 

still is fast enough (number of seconds) to consider all the process as Instant 

Feedback System. High detection rate can be achieved only in case that cards 

are not overlapped and in case that camera resolution is high enough to properly 

resolve elements of the IFS cards. Practically, for the camera with 16 Mpixel 

resolution, reliable IFS cards recognition is limited to the class of 20-30 

students. In case of bigger class, a number of images must be obtained, which 

may be considered as not convenient or even not practical for the selected 

camera-based concept. 

 

Future R&D and Applications  

 

Current implementation was limited to the rings detection on synthetic images 

only. Next R&D will include evaluation of the IFS card orientation and OCR of 

the number (short ID) inside the ring as for the synthetic as for real class 

images. It can be expected, that Heavily Masked Normalized Correlation may 

be instrumental for the fast markers search inside the external ring.  More, 

considering that practical number of short IDs is limited to 30, OCR algorithm 

can analyze only unique parts of the IDs by using properly selected masks. 

According to our preliminary evaluations, in this case, OCR speed can be 

increased at least by factor 3. Developed ring detection algorithm uses no third 

party libraries and thus can be ported to any platform (PC, Android, and iPhone) 

by using any modern programming language (C, C++, C#, Java, Python, etc.) 

Additionally, this algorithm can easily be implemented as web service or 

web/cloud application. In case of cloud implementation of the camera-cased IFS 

multiple-choice exam lecturer will grab the image of the class by using simple 

cloud application for the standard smartphone. Grabbed image (or images) will 

be immediately send to the cloud server for the proper image processing. Cloud 

image processing time may be very short. Additional advantage of the cloud 

approach is that no software installation is needed. Additionally, developed 

Heavily Masked Normalized Correlation approach can be used to speed-up 

recognition in the other practically interesting cases, for example, for the traffic 

signs recognition.  
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The aim of the present paper is to review a continuous time semi Markov model for 

HIV control and to apply an algorithm for data simulation analysis which we run to 
provide the data for transitions and the sojourn times of the corresponding visited states. 

After the simulation process three different models are developed and validated for the 

discrete observation of the simulated continuous process and an estimation method is 

applied to get the respective distributions. Finally, the above results are illustrated 
numerically with synthesized data.   

Keywords: health care, semi Markov process, HIV 

 

1  Introduction 
 The definition of the non homogeneous semi Markov process is provided in 

Iosifescu-Manu [10] for the continuous time case, in Janssen and De Dominics 

[12] for the discrete case and in De Dominics and Manca [7]. Later on the 

definition of a non homogeneous semi Markov system in discrete time is 

provided in Vassiliou and Papadopoulou [27] and the asymptotic behavior of 

the same model is studied in Papadopoulou and Vassiliou [24]. Important 

theoretical results and applications for semi Markov models can be found in 

work of Cinlar [4], [5], [6], Teugels [26], Keilson [13], [14], McLean and 

Neuts [21], Howard [9], McCLean [17], [18], [19], [20], Limnios et al [15] and 

in Janssen [11]. 

 In the present, we study the discrete observation of a continuous time semi 

Markov model for HIV control. In section 2, first we describe the semi Markov 

model for HIV control, review the continuous time case and then we provide 

the technique for the discrete observation of the reviewed model. In section 3, 

the technique described in Section 2 is illustrated with synthesized data derived 

by a simulation process. Last, conclusions from the previous results are 

provided. 

 

2  Discrete observation of a continuous time semi Markov 

model for HIV control 

 
The process of infection by HIV is characterized by two fundamental markers. 

The first is the viral load (VL) and the second CD4 lymphocyte. Hence, the 

history of the disease can be considered as a series of stages through which a 
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patient progresses. The first stage is called primary infection. And the 

corresponding symptoms vary to duration, that is twenty eight days in average 

and at least one week. At this stage there are no specific symptoms and often 

they are not recognized as signs of HIV infection. Even if a patient goes to a 

doctor or a hospital, he might be misdiagnosed. The second stage is called 

clinically asymptomatic stage lasts for an average of ten years and, as its name 

suggests, that is free from major symptoms. The HIV antibodies are detectable 

in the blood, so antibody tests will show a positive result. On the third stage 

called symptomatic HIV the lymph nodes and tissues are damaged because of 

the years of activity, HIV mutates and becomes more pathogenic, leading to 

more T helper cell destruction and the body fails to keep up with replacing the 

lost T helper cells. Antiretroviral treatment is usually started once an 

individual's CD4 index falls to a low level which is an indication that the 

immune system is deteriorating. Finally, on the fourth stage called progression 

for AIDS as the immune system becomes more and more damaged the 

individual may develop increasingly severe opportunistic infections and 

cancers, leading eventually to an AIDS diagnosis. 

 Using these markers and the above mentioned four stages we can describe 

the progress of HIV by a semi Markov model considering four health states 

(Tan [25]) as follows: 

Primary infection → First stage: VL≤400 and CD4≤200 

 Asymptomatic stage → Second stage: VL≤400 and  CD4>200  

Symptomatic HIV → Third stage: VL>400 and CD4>200 

Progression for AIDS → Fourth stage: VL>400 and CD4≤200  

From the above, we can consider a non homogeneous semi Markov process 

with discrete and finite state space symbolized by S={1, 2, 3, 4}. The 

continuous time case for non homogeneous semi Markov systems is studied in 

Papadopoulou and Vassiliou [23]. The transition probability matrix of the 

embedded Markov chain is defined by P(s,t)={pij(s,t)}i,jЄS, where 

pij(s,t)=prob{a patient selects state j for its next transition during (s,t) / entered 

state i at time s}and the holding time mass function matrix for the semi Markov 

process  is defined by H(m)={hij(m)}i,jЄS where hij(m)=prob{a patient which 

entered state i at its last transition to hold for m time in state i before making its 

next transition given that state j has been selected}.  

Also, we define by : 

  (   )
                                                         

                                                      

 ∑∫    (     )
 

 

   ( )  

 

   

 

Also, we can define: 

 
  
(   )                                                                 
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  ∑∫    (     )

 

 

   ( )   
(       )  

 

   

    ( ) 

and if we define cij(s,x)=pij(s,s+x)hij(x) 

         
  
(   )       (   )

  ∑∫    (   )   
(       )

 

 

   

 

   

                   ( ) 

where: 

 

    {
                 
              

 

 

The above equation can be written in matrices form as follows: 

  

 (   )   (   )  ∫  (   )
 

 

 (       )                     ( ) 

where C(s, x)=P(s, s+x) H(x) is the Hadamard product of the two matrices. 

The initial condition for equation (3) is Φ(s,0)=I. 

The matrix  (   ) defines the interval transition probabilities for the patients 

of the non homogeneous semi Markov chain which is imbedded in our system. 

This semi Markov chain is fully described by the probability pij(s,t) and the 

probability density functions of the holding times hij(x) as it is shown by 

equation (1). So, we have a non homogeneous semi Markov system in which 

the individual transitions take place according to a non homogeneous semi 

Marko chain. Using probabilistic argument it can be proved that the closed 

analytic form of probabilities  
  
(   ) is: 

 (   )   (   )  ∫  (    )
 

 

  (         )
   (         )     

 ∑∫ ∫ ∫  
       

 

∫  (    ) (       )  (
           

 

    

 

 

    

     

 

       )  (               )
   (                )  

                                                               ( ) 
 

We assume that our system is a closed one i.e. the total patients' population is 

constant at any time. The previous hypothesis is not in conflict with real 

systems because the patients' population under treatment, in that kind of 

chronic diseases,  is usually constant. Thus, the states sizes of the system at any 

time is described by the vector Ν(t)=[N1(t), N2(t), N3(t), N4(t)] where Ni(t) is 

the expected number of patients in the i-th state at time t. It is proved that : 

  ( )  ∑  ( )   (   ) 

 

   

                                            ( ) 

Equation (5) in matrix form is as follows: 
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N(t)=N(0)Φ(0,t)                                               (6) 

where N(0) is the initial population structure.    

 Relations (5) and (6) provide the expected population structure as a function of 

the basic sequences of the system. 

  The corresponding discrete non homogeneous semi Markov model was 

defined in Vassiliou and Papadopoulou [27]. The transition probability matrix 

of the embedded Markov chain is defined by P(t)={pij(t)}i,jЄS, where 

pij(t)=prob{a patient which entered in state i at time t to move in the state j at 

its next transition} and the holding time mass function matrix for the semi 

Markov chain is defined by H(m)={hij(m)}i,jЄS where hij(m)=prob{a patient 

which entered state i at its last transition to hold for m time in state i before 

making its next transition given that state j has been selected}.  

Also, we define as: 

  (   )                                                                

                                                   
It's proved that: 

       (   )  ∑   ( )   ( )

 

   

                                 

and wi(0,t)=0 for every i, t. 

Moreover, let us define: 

       (   )                                                         

                                                                   
It is also proved that: 

      
  
(   )     ∑   (   )

 

     

 ∑∑   ( )   ( )   
(       )

 

   

 

   

        ( ) 

for i, j=1, 2, 3, 4 and t, m =0, 1, 2, ... . 

Also, we define by 
>
W(t,m) the 4 4 matrix which has zeros everywhere apart 

from the diagonal which has in position i the element:  

∑   (   )

 

     

   ∑  (   )

 

   

  

Then the equation (7) can be written in matrices as follows: 

 (   )   (   )  ∑[ ( )   ( )] (       )

 

   

                   ( ) 

Obviously Φ(t,0)=I. 

 

The corresponding states' sizes description in the discrete time case is given by 

the vector Ν(t)=[N1(t), N2(t), N3(t), N4(t)] where Ni(t) is the expected number 

of patients in the i-th state at time t, where  

  ( )  ∑  ( )   (   ) 

 

   

                                           ( ) 

The respective matrix form is: 

390



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N(t)=N(0)Φ(0,t)                                               (10) 

where N(0)is the initial population structure.    

  The choice, in practice, between the discrete and continuous time versions 

of a model is partly a matter of realism and partly one of convenience. On 

grounds of realism, for example one would usually want to model the 

movement of people between occupations or regions in continuous time, but in 

practice the computational advantages of treating time as discrete have often 

led to the choice of a discrete time model (D.J. Bartholomew [2], page 85). 

 There are two main reasons that we can observe a continuous process in 

two or more specified intervals . The first reason is the observed computational 

advance when we treat the time as a discrete variable. The second is that 

practical difficulties often occur in considering continuous time models, which 

arise from the fact that is rarely possible to observe continuous data (D.J. 

Bartholomew [2]). 

 In what follows, we will describe the technique applied for the discrete 

observation of the continuous time model presented at first. A  discrete model 

can be developed by discretization per unit time of the transition probability 

and the holding time mass function matrix. The discretization per unit time of 

the transition probability matrix is based on the relationship : 

 ( )  )∫   ( )  
 (   )

  

                                           (  ) 

where b is the defined unit and Pj(u) is the transition probability matrix of the 

corresponding jump process.  

In the following the above relationship is applied to the data of Mathieu et al 

[16] where Pj(u) is of linear form and for the cases i) b=1 and ii) b=0.5. The 

corresponding graphs are presented in Figures 2.1 and 2.2. 

 

 

 
 Figure 2.1: b=1                                            Figure 2.2: b=0.5 

  
 Concerning the holding time distributions, there are several ways to derive 

the corresponding discrete lifetime distribution from a continuous one. Two of 

the most usually applied are: a) consider a characteristic property of a 

continuous distribution and then build the similar property in discrete time and 

b) consider the discrete holding time as the integer part of the continuous 

holding time (Bracquemond and Gaudoin [3]). 
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 By applying the second technique and if we consider the continuous time 

random variable T which describes the holding time in a state we can define 

the corresponding discrete random variable K and for time unit b=1 as: 

K=[T]+1.                                                       (12) 

Also, the equivalent random variable L for time unit b=0.5  is : 

L=[2T]+1 .                                                     (13) 

  Let that FK, RK and FT, RT denote the cumulative distribution and 

reliability functions of the random variables K and T respectively. Then, the 

relationship between the probability function of K and the cummulative 

distribution function of T is: 

   ( )                      
     ( )    (   )                                         (  ) 

Furthermore: 

  ( )             [ ]                 ( )        (  ) 
and 

  ( )    ( )                                                   (  ) 
Finally and according to the previous, we discretize the holding times using the 

variables K and L and then, we can estimate the parameters of the holding time 

distributions to the states. 

  

3  Illustration 
 In the present section, the discrete observation technique of a continuous 

semi Markov model is illustrated numerically with data from an HIV patients' 

population. 

 Firstly, a Monte Carlo simulation method is performed by using the data 

concerning the transition probabilities and the conditional distributions of the 

holding times as assessed by Mathieu et al [18]. The purpose of the simulation 

is to obtain the basic characteristics of the process in continuous time. The 

simulation is performed in ARENA 13.5 environment.  

 So, we consider a sampling path of a Semi-Markov chain over a period of 

time [0,C] where are observed M patients. Each patient starts the 

immunological and virological  trajectory in any state, which is revealed by the 

first measurement at time t=0 and we assume that the k-th patient changes state 

nk times in the instants sk,1<sk,2,<…<sk,n<… and occupies states 

Jk,1<Jk,2<…<Jk,n<… and Jp,n ≠ Jp,n+1 for every n Ν. In fact, such a path is a 

sequence H(C) of visited states and sojourn times : 

Η(C) = {X0,  J0 , X1 , … , JN(C)-1 , XN(C) , JN(C)} 

 The above process is simulated by an algorithm of five steps as follows:  

 1. Set k=0, So=0 and sample J0 from the initial distribution 

 2. Sample the random variable J~ p(Jk,.) and set Jk+1=J 

 3. Sample the random variable X~        
( ) 

 4. Set Sk+1= Sk + X 

 5. If Sk+1>M then end else set k=k+1 and continue to step 2 
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Thus, we can get the trajectory of a patient and if we do the same repeatedly for 

1000 times we can get the trajectories of 1000 patients. The results of the 

simulation are presented in Table 1. 
Table 1: Results of Simulation 

Transitions Number of transitions Mean sojourn time (years) 

1→2 934 1,59 

1→3 195 1,77 

1→4 473 1,69 

2→1 807 0,15 

2→3 2842 0,87 

3→2 2759 1,08 

3→4 506 0,8 

4→1 358 1,16 

4→2 164 1,58 

4→3 469 1,74 

Total 9507  

.  

 
Figure 3.1 Survival functions for states 1 and 2 

 

 
Figure 3.2 Survival functions for states 3 and 4 

Continuous

Step 1 Discrete Weibull

Step 0.5 Discrete Weibull

Step 0.5 Geometric

Continuous

Step 1 Discrete Weibull

Step 0.5 Discrete Weibull

Step 0.5 Geometric
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 Using the results derived from the simulation we developed three discrete 

time models for HIV and we compared them with the continuous model. The 

transition probabilities and the holding times are derived by applying equations 

(11)-(14). We then estimated the parameters of the holding time distributions 

for the health states. For the holding times we used the type I discrete Weibull 

distribution (Nakagawa and Osaki  [22]) and the geometric distribution. In the 

first and second model, the method of proportions (Ali Khan et al [1]) was used 

in order to estimate the parameters of the type I discrete Weibull distribution. 

In the third model we used the method of maximum likelihood to estimate the 

parameters of the geometric distribution. Finally, we evaluated the 

numerical results for the survival functions of every state and the population 

structures derived from the three models in comparison to the continuous one. 

The results are presented in Figures 3.1, 3.2, 3.3 and 3.4. 

 

 
Figure 3.3 Population of states 1 and 2 

 

 
Figure 3.4 Population of states 3 and 4 
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Conclusions 
 In the present paper we reviewed a continuous time semi Markov model for 

HIV control and we provided a technique for the discrete observation of the  

continuous model. This technique was applied to the reviewed model. For this 

purpose, we used a simulation process to illustrate the discrete observation 

technique with synthesized data. Finally, we developed three discrete time 

models for HIV and we compared them with the continuous model. The 

derived results demonstrate the potential of the applied technique to provide a 

tool for discrete observation of continuous models.   
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Abstract. In this paper, a multiobjective optimization study of maintenance process is 
developed. The considered problem is inspired by a real case. Given the complexity of 
the industrial case, we combined a discrete event simulation model with an optimization 
engine based on non-dominated sorting genetic algorithm II (NSGA-II). The coupling is 
used in order to optimize the performances of the simulation model by choosing the best 
queues’ scheduling policy.  The issue is to reorganize the maintenance process under 
operator’s qualifications and interventions emergency degree. The NSGA-II engine and 
simulation model operate in parallel over time with interactions. After computation, we 
obtain high quality solutions in very short commuting time. 
 
Keywords: Multiobjective Optimization, Maintenance Process, Case Study. 

 
 
 

1  Introduction 
 

In the current business environment, the manufacturing companies should be 
more reactive, flexible and competitive. These objectives can be realized by 
improving production and maintenance systems. Therefore, many 
manufacturing companies are changing their systems. Given the complexity of 
the industrial organizations, diagnosis systems and decision-making tools are 
becoming an important requirement in our days. This is especially true in the 
maintenance management process, characterized by expensive specialized 
equipment and stringent environmental considerations. In fact, maintenance 
represents a significant function within the overall production environment. 
Thus, a good overview of maintenance processes and achievements is needed to 
ensure a good performance of the production plant.  
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In this study, we consider a maintenance planning problem inspired by a real 
case. The maintenance human resources assignment is specially considered in 
order to check the interventions request (IR). As a matter of fact, the bad 
management of the IRs can lead to greater costs.   
To evaluate the industrial systems’ performance, simulation is usually used. 
Huang[1] uses Flexsim simulation tool to establish and solve re-scheduling 
problems under a flow-shop mixed-line production planning. Da-wei and Jian-
guo[2] use Flexsim for simulating the planning and construction of highway bus 
terminal program dynamically. For Sharma et al.[3], the use of the simulation 
technique has been an emerging trend which changed the maintenance view, 
given that it allows experimentation and a better understanding of complex 
systems like the maintenance one. Alrabghi and Tiwari[4] and Sharma et al.[3] 
provide a comprehensive view of maintenance optimization using discrete event 
simulation models and show the potential of this technique to solve complex 
system problems such as maintenance systems. On the other hand, Dekker[5] 
proposes a comprehensive view and analyses of maintenance optimization 
models. In his research, the author was interested in mathematical models only.   
Comparing twenty-eight scientific published papers, Alrabghi and Tiwari[4] 
notice that  research on planning maintenance simulation is steadily rising. They 
also notice that research on the combined use of simulation and optimization is 
limited.  
In this paper, an original approach based on a multiobjective optimization of 
maintenance process problem inspired by a real case is proposed. For this 
purpose, a combination of a simulation model and a non-dominated sorting 
genetic algorithm II (NSGA-II) optimization engine is developed. In this study 
the qualifications of operators and their availability are considered.  
The remainder of this paper is organized as follows: the next section describes 
the case study and the considered constraints. The third section presents the 
optimization study. Finally, in section 4 we analyze the optimization results and 
conclude the paper along with some suggestions for future work. 
 
2  Methods 
 
2.1. Case Study 
 
This study is inspired by a real case. It concerns a company that produces tractor 
transmission parts, essentially gearboxes and rear axles as described in Lahiani 
et al. [6], [7]. For the sake of confidentiality, we named this company as “MNL-
company”. 
The company work time is divided into 3 periods over the 24hours of the day. 
Machines run for a long period. Therefore, machines breakdown is a common 
problem for those running continually without preventive maintenance. It was 
observed that the company does not perform the maintenance planning 
effectively, which impacts work effectiveness, equipment reliability, equipment 
uptime, costs, etc. The MNL-company finds itself facing greater costs due, in 
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the most part, to the maintenance problems. This is the consequence of the bad 
management of intervention requests (IR). In 2011, the repairing time varied 
between 1 minute and more than 30 days. 
The IRs were treated in first-in, first out (FIFO) policy, which meant the 
emergency of the intervention wasn’t considered. Thus, the assignment of the 
human resources was due subject to only its availability.  
Production and maintenance processes have to interact in time which makes the 
system even more complex. The issue lies in the reorganization of the 
maintenance system although it is difficult for the company to manage.  
Given the problem complexity and in order to optimize the maintenance 
process, we adopt a  simulation modeling to analyze and evaluate the industrial 
performance.  
 
2.2. Simulation Model 
 
In this paper, a discrete event simulation model has been built by using the 
software package Flexsim version 6. The simulation model’s aim is to re-
organize the maintenance system, especially to manage the request of 
intervention on machines. Many aliases can be integrated in our model. 
However, in this paper we focus on the operator’s competence indicators and 
the intervention emergency degree. For more visibility of the system, we have 
classified the failures according to their type and human resources’ competences 
(table 1). 
 

Table 1. Intervention Requests’ Type 
IR group Problem type 

TyIR1  Palette default 

TyIR2 Filters problems 

TyIR3 Tank default 

TyIR4 Watering problem 

TyIR5 Axis machine problems 

TyIR6 Manipulation problems 

 
In case of problems, the production service sends an IR. In our model, when an 
IR arrives, the emergency degree is firstly verified. It is classified, in accordance 
with the person in charge of the maintenance, in three classes: very urgent, 
moderately urgent, and not urgent. As a result, considering the human 
resources’ qualifications and the IR emergency degree, the assignment protocol 
of the HR is as described in figure 1. 
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Figure 1. Assignment Protocol of Human Maintenance Resources 
 
The discrete event simulation model objects consist of a shuttle, a source, a 
dispatcher to manage the operators, a sink, a queue and four identical machines. 
The simulation model runs at a horizon of one working year.  
The source object sends IR into machines according to a known distribution 
function.  
 
The model inputs are:  
 
-  The structure (buildings, locations, number of machines and characteristics...); 
-  Human resource number;   
-  Human resources qualifications,  
-  Operating time for every breakdown;  
-  The simulation horizon (one working year); 
- The statistic rules representing time between two arrivals (ExpertFitTM  
software was used to identify statistical rules) 
 
The model outputs are: 
 
- The stopping time of machines; 
- Number of failures repaired; 
- Number of intervention over one year 
- The duration of immobilization of maintenance HR.  
By dint of simulation model, we observe that the checked IR number is not 
important compared to the long machines stopping times. For this purpose, we 
decide to optimize the maintenance process in the last section. 
 
3  Multiobjective Optimization 
 
This study has three contractors’ objectives: maximize the checked IR number, 
minimize stopping time of machines and minimize repairing time of machines.  
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For example to maximize the checked IR, there is a need to maximize stopping 
time. For this reason, Pareto approach is selected to optimize the maintenance 
process.   
NSGA II is proposed among Pareto algorithms because it is an efficient recent 
method that was applied in different areas of research. 
 
3.1.Optimization Algorithm 
 
In this paper, we adopt a known metaheuristic: non dominated sorting genetic 
algorithm NSGA-II developed by Deb et al.[8]. It’s a popular multiobjective 
evolutionary algorithm. Traditionally, it is chosen because of its three special 
characteristics as advocated by Yusoff et al. [9] and Raddaoui et al. [10]: 
-Fast non-dominated sorting approach, 
-Fast crowded distance estimation approach, 
-Simple crowded comparison operator 
The chosen algorithm converges to a global Pareto optimal front. For Deb et 
al.[8], the algorithm can maintain the diversity of population on the Pareto-
optimal front. The major characteristic of NSGA-II lies in the concept of non-
domination between two solutions. 
In this algorithm, the population is firstly initialized as usual. After initializing, 
the population is sorted based on non-domination criteria into each front. The 
first front being completely a non-dominant set in the current population and the 
second front being dominated by the individuals in the first front only and the 
front goes on. Each individual in each front is assigned rank (fitness) values 
according to the front to which they belong. 
In addition to fitness value, a new parameter (crowding distance) is calculated 
for each individual. The crowding distance is a measure of how close an 
individual is to its neighbors.  
In the population, individuals are selected according to rank and crowding 
distance. Then, parents are selected from the population by using binary 
tournament selection based on the rank and crowding distance.  
An individual is selected in the rank if it is less than the other or if crowding 
distance is greater than the other one. 
The selected population generates off springs from crossover and mutation 
operators, which will be explained in detail in the next section. The population 
with the current population and current off springs is calculated again based on 
non-domination and only the right N individuals are chosen where N is the 
population size. The selection is based on rank and crowding distance on the last 
front. 
Several researches use NSGA-II algorithm to optimize systems performances. 
Yusoff et al.[9] presents an overview on NSGA-II optimization method. His 
survey considers the machining process problems. The contribution of Raddaoui 
and Zidi[11] is limited to the use of the algorithm NSGAII for solving a dial  
ride problem. 
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3.2. Application 
 
The NSGA-II algorithm is chosen in order to optimize the systems’ 
performances (characterized by three objectives) by choosing the best queues’ 
scheduling policy.  
IR can be the result of several causes. For better visibility of system problems 
we have classify the IR on groups according to the failures types listed in Table 
1. By means of this classification, the assignment of the HR is more controlled. 
Such, the RH’ assignment is constraint to their availability and qualifications.  
 
The algorithm steps are as following:   
 
Step 0: Initialization: Generate an initial population.  
Step 1: Evaluation: Evaluate the fitness using the DESM.  
Step 2: crowding distance: for each couple of parents selected randomly, apply a 
crossover in two points from the selected parents and generate two children 
(Qt). 
Step 3: use the non-dominated sorting procedure for separate fronts.  
Step 4: Assign the best front solutions to construct the matrix Pt+1 and use the 
crowding distance for the last selection front.  
Step 5: the matrix Pt+1 is considered as an initial population.  
Step 6: return to step 1.  
Step 7: Reiterate until the stop criterion.  
 
In our problem, five sequencing rules are tested: FIFO (first in first out, LIFO 
(Last in first out), SPT (Short processing time), HPT (hight processing time), 
Task priority. The best priority rule must be chosen for each type of TyIRi in 
order to improving our system. For each policy, the three objectives are 
obtained. The machines’ stopping time include waiting operators times, 
repairing times, and other alias.     
The proposed approach is a combination of two processes. First, a set of 
configurations, named chromosomes, is selected to form the original population 
for NSGA-II. The algorithm provides the initial solutions which tested on 
simulation model. Thus, the population performances of each initial solution are 
identified.   This process is repeated until the stopping criterion is satisfied. One 
of the methods that can be used as a stopping criterion is to fix a number of 
iterations arbitrations selected. In this paper, 1000 replications was tested.   

 
4 Experimental Results 
 
According to the parameters settings, we fixed the following algorithm entries:  
- Initial population: 60 
- Probability of mutation (Pm): 0.001% 
- Probability of crowding (Pc): 100%  
- Iterations number: 1000.  
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NSGA-II gets a wide variety of equivalent solutions.  Solutions 111145, 
454231, 151145 are examples of perform solutions (corresponding to the 
NSGA-II individuals, chromosomes). For the first chromosome, this code 
indicates that the queue priority rules is: FIFO, FIFO, FIFO, FIFO, HPT, 
priority.   
The table 2 presents the average value of the optimization study and the best 
results for each objective.  

 
Table 2. Experimental Results 

 
 

Real Value  

Optimization 
(Average) 

Optimization (Best) 

Results  
(Average 10 
itérations) 

GAP % Results 
GAP  

% 

Checked IR 
Number  

1289 
1139,00 

-11.64 
1376,00 6,75 

Total stopping time  6900.00 6175,93 -10.49 5608,13 -18,72 

Total reparing time 5627.10 5869,95 4.32 5100,51 -9,36 

 
In this table, the total stopping time means the sum of stopping time of all 
machines. Repairing and stopping times are presented in hour.  
By means of a NSGA-II all objectives are improved. The average value of total 
repairing time (5869,95h) is not improved comparing of the simulation average 
value (5630.09h). However, with the best value (5100,51h) there is a 
tremendous performance for 18.72% of times.  
For these results, total computer time was 22.37 minutes, on a computer core i5, 
windows 7. It is relatively short.  
  
5 Conclusions  
 
In this paper, a simulation model was developed to analyze the performance of a 
maintenance process in an industrial case. Our contribution resides in the 
resolution of an existing industrial problem and optimizing the systems’ 
maintenance process. A non dominated sorting genetic algorithm was used to 
optimize the system by testing different scheduling policies. In the proposed 
approach, the operators’ competences, their availability and the emergency 
degrees of interventions are considered. This approach can be considered as a 
decision-making tool optimizing the number of the breakdown repaired, the 
stopping time of machines and the repairing time.  
Applying this technique on an industrial case study, we show that it is more 
effective in detecting real faults than existing alternatives. The results showed 
remarkable improvements of the maintenance system performances. This 
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proposition can be extended to cover other domains and other types of 
simulation models.  
Further studies may test other priority rules or other optimization algorithms. 
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Abstract: At present, the majority of developed countries deal with the phenomenon of 

population ageing. This ongoing process is primarily caused by the increasing life 

expectancy at birth. Length of life is usually expressed by the indicator of life expectancy 

at age x. The values of life expectancy and modal age at death are different from the view 

of time evolution. This is particularly because life expectancy is the average age of 

deceased persons in the stationary population, whereas modal age at death is the most 

common age at death. The aim of this article is to analyse the trends in the development 

of the death rates in selected European countries using various methods for the death 

rates compensation. By means of data from the Human mortality database life 

expectancies and modal ages at death in selected countries will be calculated and 

compared. The purpose of this paper is to highlight the changes in the trend and 

dynamics of the life expectancy at birth and to compare its progress with the trend and 

dynamics of the modal age at death. By comparing the evolution of life expectancy at 

birth, life expectancy at age 65 and modal age at death, it is visible that modal age at 

death is not increasing as rapidly as life expectancy at age x. It is necessary to 

compensate the values of modal age at death or to use a more accurate calculation 

applying the Gompertz-Makeham function. Furthermore, there is a noticeable difference 

in the development of Western and Eastern Europe. 

 

Keywords: Population ageing, Life expectancy at birth, Modal age at death 

 

1 Introduction 
 

21th century is from the demographic point of view mainly associated with the 

issue of population aging. This process is accompanied by an increasing rate of 

elderly persons, especially in economically developed countries. Mortality rates 

are improving and people live longer. The development of mortality in 

developed countries was neither linear nor logistic. Periods of faster or slower 
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decline varied in time and some trends in mortality were unexpected. Currently, 

decrease in mortality in older age groups is mentioned as a major factor in the 

aging population. Trend of continuous aging of the European population will 

continue in the next period. Demographic aging is defined as a shift of the age 

structure to older ages (Gavrilov - Heuveline, 2003).  

The question of longevity - the individual's ability to survive and the average 

length of human life have always been the object of interest of human 

populations. Longevity is often incorrectly defined as the presence of a larger 

group of old aged people at some territory in a certain population. This term 

does not refer to the upper limit of human life, which we can reach. It reports 

that natural life expectancy is increasing for which we consider modal age at 

death (Pavlík, 2009). In studies of longevity the most often used indicators are 

life expectancy and modal age at death. 

Life expectancy is an indicator like average. It represents the average age of 

deaths in a stationary population. Modal age at death is an indicator like mode. 

It is the age at which adults most frequently die and from this perspective it 

better captures the length of human life than the life expectancy (Demopædia). 

Modal age at death is kind of a typical age, which most people in the population 

are expected to live. 

From a long-term view, life expectancy and modal age at death are extending in 

most of the selected countries. This ongoing growth has a different intensity for 

each country. In the Czech Republic, and even in the former socialist countries, 

growth in life expectancy was noticed only in the 1990s of the 20th century. In 

some of the Western European countries, for example in Austria, life 

expectancy has been growing steadily since the 1970s of the 20th century. This 

has created significant differences in life expectancy and modal age at death 

between countries. These differences are slowly decreasing as the differences in 

mortality between women and men are descending. However, male excess 

mortality remains in all selected countries. 

Since the beginning of the 20th century we have been watching a significant 

improvement in the development of life expectancy and modal age at death. The 

increase of life expectancy is generally seen as a positive process. Primary 

impulse of the increase of life expectancy was caused by decline of infant 

mortality and consequently by decrease of mortality in older age groups. Due to 

the improvement of mortality ratios, modal age at death is increasing and life 

expectancy is gradually approaching. While examining trends in mortality, life 

expectancy and modal age at death should be followed synchronously. As long 

as mortality rates of different age groups will tend to improve, life expectancy 

and modal age at death will increase as well. The speed of development will 

depend on the ages that contribute to the improved mortality rates (Wilmoth, 

2000).  

Unlike life expectancy at birth, modal age at death is substantially affected by 

mortality of adults and therefore reacts more sensitive to changes that occur 

among older aged population (Horiuchi 2008; Kannisto 2001). In countries with 

low mortality rates, where most of the deaths are recorded in old age, the 

indicator modal age at death becomes primary for monitoring the changes in the 

406



age-at-death distribution (Ouellette - Bourbeau, 2011). After improved mortality 

in the first years of life, the current answer for extending life expectancy and 

modal age at death is associated with reducing mortality rates in old ages.  

Life expectancy is extending due to low child mortality and modal age at death 

is increasing due to the decline in mortality rates at high ages (Canudas-Romo, 

2010). The differences in the trends over time of these indicators of longevity 

well reflect their orientation to various aspects of mortality (Cheung – Robine, 

2009). Life expectancy is currently the most commonly used mortality indicator 

despite the fact that it includes disadvantages of mean. Modal age at death has 

no disadvantages of average, it is the modal age at death among adults. For the 

purpose of this article life tables were calculated for selected countries. Life 

expectancy was calculated by (Fiala, 2005) using the Gompertz-Makeham 

function. In this article we present only the method for calculating the modal 

age at death. 

 

2 Calculating Modal Age at Death              

Modal age at death can be estimated as a rough estimate (age at last birthday 

with the maximum number of deaths). We are looking for an age when the 

number of deaths in mortality tables is the highest.  

However, as already mentioned, this is only a rough estimate and more accurate 

results are obtained when using parameters of Gompertz-Makeham function. 

Calculation of modal age at death was performed by Fiala (2005). For this 

calculation it is necessary to know some source data as total deaths is specified 

age group (Mt,x) and mid-year population in the same age group (    ̅̅ ̅̅̅) or total 

population at the beginning of one year (    ) or total population at the end of 

one year (      ). Primary characteristics of mortality are age-specific death 

rates. Age-specific death rate for one calendar year is calculated using the 

formula  

xt

xt

xt
S

M
m

,

,

,  . 

 

When we don´t know the number of mid-year population, but we have the 

number of total population at the beginning of the year t and t+1, we use the 

following formula 
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Where Mt,x is the number of total deaths in completed years x and in calendar 

year t, St,x is the total population aged x at the beginning of the year t. 

Compensation of age-specific death rates at age 60 and above can be calculated 

by Gompertz-Makeham equation  
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We select the beginning of the first x0 = 60 and the length of intervals k = 8. We 

calculate the summation of empirical death rates by age in each interval and 

mark them as G1, G2, G3 
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Now we can calculate the value of the parameter c of Gompertz-Makeham 

function whose eighth squared value can be expressed by using the sum of 

empirical death rates by age in each interval  
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Furthermore, it is necessary to calculate the value of the subexpression, by 

which we can express the remaining two parameters of the function 
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We can calculate the parameters b by using next expressions 
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And according to these parameters of the Gompertz-Makeham function we can 

now calculate the modal age at death more precisely  
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3 Modal Age at Death and Life Expectancy in Selected 

European Countries 

For reasons of comparison, countries representing the former socialist countries 

were selected (Bulgaria, Czech Republic, Slovakia, Ukraine) and the advanced 

Western countries (Austria, France, the Netherlands, Sweden). Choice of 

countries was also carried out according to the availability of required data. Not 

all countries are listed here because of the length of the article. Calculations are 

based on the data from "Human Mortality Database" for available years. 
Differences in modal age at death between women and men were smoothed by 

using the three-year moving average method to better reflect the trend over time. 

In this article this method was used only in case of differences in modal age at 

death between woman and men.  

There are visible differences among the former socialist countries in the 

development of modal age at death, because modal age at death is developing 

more slowly compared to Western countries. At the beginning of the studied 

period differences in modal age at death between men and women were lower – 

5 years for men and 3 years for women. Lowest values of modal age at death 

showed men in 1950 in the Czech Republic and Austria, women in the Czech 

Republic and Slovakia, highest values of modal age at death were for men and 

women in the Netherlands and Sweden. The highest values of modal age at 

death at the end of the studied period achieved France for both men and women. 

By contrast, the lowest values for both men and women were achieved by 

Ukraine (see figure 1 and figure 2). During the followed period differences 

between countries increased significantly, from a long-term view there is a 

divergence in the development of modal age at death. The difference between 

the countries at the end of the studied period was markedly higher – 14,5 years 

for men and 8,5 years for women. 

From the perspective of the male excess mortality (see figure 1 and figure 2) it 

is visible how modal age at death for men and women differs in selected 

countries in different years. Again, differences between the former socialist 

countries and Western countries are noticeable. The smallest variance in modal 

age at death between men and women in 2010 was in Sweden and France and 

the highest variance was in Ukraine (see figure 3). According to figures 1 and 2 

we can see that there was no growth in the decades at the beginning of the 

studied period, but rather a slight decrease of modal age at death. Only since 

1970s there is an extending modal age at death in majority of the countries.  

There was a considerable variability in the distribution of deaths by age in the 

previous period. At the present time, difference in the distribution of deaths by 

age has stabilized. What is more, the current model of mortality decrease where 

most of deaths are concentrated in a tight age range and where variability is low, 

could be kept for the future development (Wilmoth – Horiuchi, 1999).  

Although mortality has been concentrated into shorter age intervals, it is 

impossible to tell for sure that it ever would be modified into one point in age. 

In human longevity, heterogeneity is a factor of individual variation (Vaupel 

1979; Wilmoth – Horiuchi, 1998). 
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Fig. 1 Modal age at death for men in selected European countries in 1950-2012 

 
Fig. 2 Modal age at death for women in selected European countries in 1950-

2012 
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Fig. 3 Difference in modal age at death between women and men in selected 

European countries in 1950-2012 
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Fig. 4 Modal age at death, life expectancy at birth, probable age at death of 65-year-

old and 80-year-old men in selected European countries in 1950-2012 
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Fig. 5 Modal age at death, life expectancy at birth, probable age at death of 65-year-

old and 80-year-old women in selected European countries in 1950-2012 
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Figure 4 and figure 5 compare the behaviour of modal age at death, life 

expectancy at birth and probable age at death for both men and women in 

monitored European countries in 1950-2012. The probable age of death we 

understand life expectancy for a x-year-old person plus age x years. Extending 

life expectancy and modal age at death for men and women are significant in 

Austria, Czech Republic, France, the Netherlands and Sweden. In Bulgaria, 

Slovakia and Ukraine the growth tendency of these indicators is not as high as 

in previous countries. From the figures 4 and 5 it is visible that modal age at 

death is copying the behaviour of probable age at death of 80-year-old men and 

women in the last decades and this trend is mainly in Western countries 

(Austria, France, the Netherlands, Sweden).  

 

4 Conclusions 

 
Life expectancy is influenced by infant mortality and by mortality at younger 

ages. Modal age at death is influenced by mortality in older ages. That is why it 

better reflects the typical life expectancy and longevity characteristics. 

Therefore, it is an appropriate complementary indicator for the evaluation of 

population aging. In terms of trends in life expectancy and modal age at death in 

the years 1950-2012 there is an increase of lifespan in most of the selected 

countries. Different trend is evident in the former socialist countries and in 

Western countries. In all countries male excess mortality is considerable. 

Expected future increase in life expectancy and modal age at death will 

considerably speed up the process of demographic aging. Population growth of 

Europe stagnates or is at very low levels. Acceleration of population aging 

means a burden for the productive part of the population and at this level we can 

not expect a significant improvement. According to projections, future working 

part of the population will be significantly formed by older people as well, due 

to improving mortality rates and longer lifespan. Evolution of mortality rates 

affects the process and intensity of population aging of developed countries. 

Mortality in the highest age groups in the next period may be affected by 

changes in the evolution of mortality. On the one hand, increase in the future 

longevity can be expected and modern technology will greatly help to reduce 

mortality at old ages (Illes et al., 2007). On the other hand, decrease of mortality 

can be slowed by epidemic of obesity and diabetes in developed countries 

(Olshansky et al., 2005). In the following period, these contradictory trends may 

influence the development of mortality and subsequently reflect on the process 

of demographic aging of populations of developed countries.  
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Abstract. As the incidence of cancer continues to rise, it is natural for a community to 
want to compare the incidence of cancer in the region with the incidence of cancer in 
another region, such as the rest of the nation. The cumulative incidence rate is a measure 
that was introduced in the cancer literature in 1976. This measure is easy to calculate and 
facilitates comparing the incidence of cancer in two regions. The aim of this paper is to 
promote this measure by means of a worked example based on illustrative data. 
Keywords: Epidemiology, Health economics, Health services research, Health funding 
and financing 
 
1  Introduction 
 
“A cancer, or malignant growth, is now known to be a continuous, purposeless, 
unwanted, uncontrolled and damaging growth of cells.” (Stephens and Fox[8].) 
There are many types of cancer - prostate cancer, lung cancer, bowel cancer, 
breast cancer to name a few. Although the term “cancer” refers to a broad range 
of diseases, we will use the term “cancer” to refer, collectively, to all malignant 
cancers. This is the practice of cancer agencies such as the Australian Institute 
of Health and Welfare[1].  
 
The incidence of cancer is the number of new cases diagnosed in a particular 
region and a particular period of time, usually a year. Thus, incidence is a non-
negative integer. The incidence rate is the incidence per 100,000 head of 
population.  
 
It is natural to want to compare the incidence rates of cancer in two regions. For 
example, one may wish to compare the incidence rate of cancer in a small 
regional area with that in the rest of the nation. One may also wish to compare 
the incidence rate of cancer in a region at a particular time with that in the same 

417



region at an earlier time. This could lead to a time series approach to tracking 
the incidence of cancer in a region over time. 
 
Age is a risk factor associated with cancer (Mills[7]). Hence the incidence rate 
of cancer will tend to be higher in older populations, all other things being 
equal. The traditional approach to dealing with this difference in age profiles is 
to use age standardized incidence rates. This involves choosing some standard 
population on which to base the calculations (Estève et al.[4], p. 56).  
 
The concept of cumulative rate of cancer was proposed as an alternative to the 
age standardized incidence rate by the distinguished epidemiologist N.E. Day[2] 
in 1976. The cumulative rate has the advantage that it avoids the arbitrariness of 
having to choose a pre-defined, standard population. The cumulative rate is also 
directly connected to the cumulative risk, or actuarial risk, of being diagnosed 
with cancer by a given age. For discussions of this connection, see works by 
Day[2], Estève et al.([4] p. 60), and Lenard et al. [5]. 
 
The primary aim of this paper is to demonstrate how one compares the 
cumulative rates of cancer in two regions. This is a fundamental problem for 
practitioners.  
 
We will achieve this by means of a worked example that is based on data that 
are hypothetical, but realistic. The data are purely illustrative. This example can 
be used as a model by those who wish to make such comparisons in practice. 
 
Despite the advantages of the cumulative rate, it is not often used in practice. 
The secondary aim of this paper is to promote further discussion of the 
cumulative rate. 
 
2  Methods 
 
Table 1 contains hypothetical data for two regions. We have chosen to use 
hypothetical, or illustrative, data because our aim is to demonstrate the method 
rather than compare the incidence of cancer in two particular regions. The data 
are presented in 5-year age groups. For each age group, the number of persons 
in the population and the incidence of cancer are presented for each region. For 
example, in Region 1, there are 31,294 persons aged between 40 and 44, and 81 
of these persons were diagnosed with cancer in the year in question. 
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Age group Region 1 Region 2 
 Pop1 (n) Inc1 (x) Pop2 (m) Inc2 (y) 

0-4 29289 12 498381 118 
5-9 29202 6 464389 55 

10-14 31749 7 461565 66 
15-19 32427 9 500763 91 
20-24 27235 6 591423 175 
25-29 24195 19 612961 313 
30-34 23986 16 563386 492 
35-39 27952 48 564801 793 
40-44 31294 81 567399 1186 
45-49 32571 132 540007 1969 
50-54 33412 205 512283 2883 
55-59 31051 274 455982 3675 
60-64 30033 370 421669 5064 
65-69 23739 423 325045 5382 
70-74 18709 412 251007 4845 

Table 1: Hypothetical population data and incidence data for two regions 

Details of the methods, and the mathematical ideas that underpin them, have 
been discussed elsewhere; for example see Estève et al.[4] and Lenard et al.[6]. 
Here we present only the formulae that are necessary for the calculations. 
 
Cumulative rate by age 75 for Region 1 := CumRate1 = 5Σ(x/n). 
 
Approximate cumulative risk of being diagnosed with cancer by age 75 for 
Region 1 is 1-exp(-5Σ(x/n)). 
 
Estimated standard deviation of cumulative rate by age 75 for Region 1 := s1 = 
5√(Σ(x/n2)). 
 
Alternatively, one could use the formulae in Dobson et al.[3] for estimating the 
standard deviation of the cumulative rate. 
 
For Region 2, the formulae are similar: substitute y for x, and m for n. 
 
The z-statistic for comparing the cumulative rates for the two regions is 
 

z := (CumRate1 - CumRate2)/ √[(s1)2 + (s2)2]. 
 
Under the null hypothesis that the two populations have the same expected 
cumulative rates, this z statistic has, approximately, the standard Normal 
distribution. 
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Suppose that we expect, from experience, that the cumulative rate of cancer in 
Region 1 is larger than the cumulative rate in Region 2. Then we would conduct 
a one-sided statistical test and calculate the probability, p, that Z > z where Z has 
the standard Normal distribution. 
 
3  Results 
 
The results of the analysis of the data are presented in Table 2. We have 
included the approximate cumulative risks only as a matter of interest; our main 
focus is on the cumulative rates. 
 

 Region 1 Region 2 
Cumulative rate by age 75 0.3913 0.3553 
Approx. cumulative risk by age 75 0.3238 0.2990 
Est. s.d. of cum. rate by age 75 0.0089 0.0022 
z 3.9193 
p=P(Z > z) 4.4404E-05 

Table 2: Results of analysis of data in Table 1. 
 
In this example, the p-value associated with the z-statistic is very small (p = 
4.4404E-05). Hence, the data provide strong evidence, in which considerable 
confidence can be placed, that the cumulative rate of cancer up to age 75 is 
higher in Region 1 than in Region 2. 
 
4  Conclusions 
 
This paper has been written for practitioners who wish to use the cumulative 
rate to compare the incidence of cancer in two different regions. The cumulative 
rate might be used in making decisions about allocating resources for cancer 
care to different regions.  
 
Although Estève et al. ([4], pp. 74-84) discuss methods for comparing the 
incidence of a disease in two populations, they do not discuss the use of the 
cumulative rate in this context. The present paper fills this gap in the literature. 
 
The cumulative rate proposed by Day[2] avoids the arbitrariness of a pre-
defined standard population on which to base the calculations. The only data 
required are the population data and incidence data stratified by 5-year age 
groups. It is possible to deal with age groups of other widths; see Lenard et al. 
[6] as to how this might be done. 
 
The method can be easily adapted to consider the cumulative rate of particular 
cancers. For example, in considering the cumulative rate of breast cancer among 
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female Australians, one would tabulate the population and incidence of female 
Australians.  
 
Day[2] recommends that, for whole of life comparisons, 74 is an appropriate 
maximum age; there are many competing risks for people over this age. For 
childhood cancers, Day suggests that one might consider the maximum age as 
14.  
 
One could also use this method to compare the cumulative rates of cancer in one 
region in two different years. 
 
It would be interesting to investigate multiple comparison procedures for 
comparing the cumulative rates of several regions. For example, if one were 
allocating resources for cancer care to four regions A, B, C, D it would be useful 
to be able to say that the cumulative rate in A was significantly higher than in B, 
C, and D but there is no significant difference between the rates in B, C, and D. 
Then one would have a sound basis for allocating equal resources to regions B, 
C, D and more to A.  
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Abstract. We introduce a simple approach for testing the reliability of homogeneous
generators and the Markov property of the stochastic processes underlying empirical
time series of credit ratings. We analyze open access data provided by Moody’s and
show that the validity of these assumptions - existence of a homogeneous generator
and Markovianity - is not always guaranteed. Our analysis is based on a comparison
between empirical transition matrices aggregated over fixed time windows and can-
didate transition matrices generated from measurements taken over shorter periods.
Ratings are widely used in credit risk, and are a key element in risk assessment; our
results provide a tool for quantifying confidence in predictions extrapolated from rat-
ing time series.
Keywords: Generator matrices,Continuous Markov processes,Rating matrices,Credit
Risk.

1 Motivation and Scope

After the Basel II accord in 2004 [1], ratings became an increasingly im-
portant instrument in Credit Risk, as they allow banks to base their capital
requirements on internal as well as external rating systems. These ratings be-
came instrumental in evaluating the risk of a bond or loan and in the calculation
of the Value at Risk. As such, it is often desirable to quantify the uncertainty
in these ratings, and predict the likelihood that an institution will be upgraded
or downgraded in the near future. A common technique is to aggregate credit
rating transition data over yearly or quarterly periods, and to model future
transitions using these data. However, to be reliably the ratings’ evolution
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must obey particular features which we show below can be evaluated through
analysis of the data published by rating agencies. Two sufficient properties for
accepting the empirical data as a reliable indicator of future rating evolution
are the existence of one generator and Markovianity.

The representation of the evolution of a time-continuous process by an ag-
gregated transition matrix will not be adequate if the underlying process is
not Markov. Moreover, if there is no generator associated to the transition
matrix, the process underlying the ratings is not continuous. Different tech-
niques to estimate a transition matrix from a finite sample of data should be
employed depending on whether the process is time-homogeneous or not[2,3].
Theoretically, both the Markov and the time-homogeneous assumptions sim-
plify considerably the models in question[4], but typically only the latter is at
times dropped in order to build a more general theoretical framework.

In this paper we test how good both assumptions are in different periods
of time for a homogeneous rating class in Moody’s database. We compare
transition matrices calculated under different assumptions and show that the
quality of the time-homogeneous and Markov assumptions change considerably
in time. Moreover, we argue that the wide fluctuations of the assumptions’
quality may on the one hand provide evidence for detecting discontinuities in
the rating process, e.g. when establishing new evaluation criteria for a bank
rating, and, on the other hand, can be taken as a tool for ascertaining how
complete and trustable such rating criteria are.

We start in Sec. 2 by describing the empirical data collected from Moody’s
and in Sec. 3 we describe how to test the validity of both the homogeneity and
Markovianity assumptions. Section 4 concludes the paper and presents some
discussion of our results in the light of finance rating procedures.

2 Data: Six Years of Rating Transitions in Europe

The data analyzed in this paper is publicly available data that Moody’s needs
to disclose and keep publicly available in compliance with Rule 17g-2(d)(3) of
US. SEC regulations [5].

The rating time series of each bank has a sample frequency of one day,
starting in January 1st 2007 and ending in January 1st of 2013. The data
sample is the set of rating histories from the banks, in European countries,
that had a rating at the final date. Each value indicates the rating class,
according to the so-called Banking Financial Strength[6], at which the bank is
evaluated at that particular day.

One first important feature of this rating database is its non-stationary
character, as can be seen in Fig. 1. The number of banks NR included in the
data set increased almost monotonically during the total time-span analyzed
by us (see Fig. 1a). On January 1st 2007 there are NR = 658 rated companies
in the data set, and this number increases until 2013 when one registers NR =
924 rated banks. Therefore, we will consider our measures normalized to the
number of banks in the database.

We count in Moody’s database a total of NT = 932 rating transitions, that
distribute heterogeneously in time. Indeed, the number of transitions NT per
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Fig. 1. (a) Number of bank entities in Moody’s data sample as a function of time
and (b) the number of transitions per bank, computed as moving averages during
one-year periods.

bank also changes significantly, with three events of peaked activity, namely
during the year of 2007, at the beginning of 2010 and in the last half year of
2012 (see Fig. 1b). This will be of importance when analyzing the evolution of
the generator homogeneity and Markovianity of the corresponding transition
matrices.

The rating category is a measure of the capacity of the institution to meet
its financial obligations and avoids default or government bailout. We have
ns = 15 rating states, denoted by the letters A to E in alphabetic order and
with the two possible extra suffixes, namely + and −. State A+ represents the
state corresponding to the best financial health and less credit risk, followed
by A, A−, B+ and so on, until the bottom of the scale, E−, the state that
represents the highest risk level. Figure 2 shows three plots (left) illustrating
the histogram of rating states at three different time, namely the first day of
2007, 2009 and 2010.

Henceforth, we define R̃i(t) as the rating of the bank number i at the
moment t, and we map the rating states to an increasing ordered number
series: state R̃ = E+ corresponding to label R = 0, and state R̃ = A+ to label
R = 14. With such a labelling it is possible to compute rating increments as

Ti(t, τ) = Ri(t)−Ri(t− τ). (1)

When Ti(t) > 0 (resp. < 0) it means that bank i saw its rating increased
(resp. decreased) during the last τ period of time. Unless stated otherwise we
will use always τ = 365 days. The plots in the right column of Fig. 2 show the
histograms of the corresponding rating increments at the same three days.

We call henceforth R(t) and T (t) the aggregated processes of the ratings
and rating increments respectively, over all NR companies observed at time
t. Figure 3 shows the evolution of the first four moments for both rating
distributions (left) and transition distributions (right), with τ = 365 days.

The average rating 〈R〉 (Fig. 3a) has decreased during most of the six year
period records. We should note however that this is due to the new entries in
the database whose initial rating is typically low, since 〈T 〉 has positive periods
during the first five years of the recorded set.
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Fig. 2. Illustration of rating histograms for the rating state R̃ (left) and the cor-
responding rating variations T = ∆R (right), where R is an integer enconding the
rating state, ranging from 0 (E−) to 14 (A+). Three different days are selected: first
day of 2007 (first row), 2009(second row) and 2010 (third row); cf. Fig. 3.

As for the rating variance σR (Fig. 3e), after a slight increase, it also de-
creased since the middle of 2007, due to the concentration of rating states to
the lower rating classes (〈T 〉 < 0). The transitions however exhibit two peri-
ods of increased variance σT (Fig. 3f), which reflect probably the respective
increase in the number of transitions (compare with Fig. 1b).

As the lowest states get more and more dominant, the rating skewness µR
(Fig. 3c) increases steadily, until it changes sign around 2008, when transitions
become negative on average. These two observations are consistent with each
other: the negative skewness indicates the large majority of banks being below
the average rating which corresponds to an average decrease of the rating 〈T 〉 <
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Fig. 3. Evolution of the first statistical moments of (a-d) the rating state R distribu-
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T , skewnesses µR and µT , and kurtosis κR and κT .

Bullets indicate the days when the histograms in Fig. 2 were taken.

0. It also indicates that there are a few banks highly rated. This observation
together with the observations regarding temporal homogeneity in the next
section will justify some comments about the objectiveness of rating criteria.

The rating distribution is also typically platykurtic (see Fig. 3d), as its kur-
tosis is always below three (Gaussian kurtosis), indicating a more pronounced
flatness around the average of rating distributions. Concerning the third and
fourth moments of transition distributions, Figs. 3g and 3h respectively, we see
large fluctuations during the periods with fewer transitions. One can clearly
sees a very high kurtosis, and changes in the sign of the mean and skewness.

3 What is the Underlying Continuous Process?

In the following we assume that the set of rating transitions has a continuous
processes underlying it, an assumption which has been the subject of previous
investigations without a clear result, see e.g. Ref. [7]. Even in case that there
is a continuous process, the corresponding generator may be constant (homo-
geneous generator) or vary in time (non-homogeneous).

The non-homogeneity is important in the finance context since it limits the
range of models that can be used. In particular, it has been argued [2] that if we
consider time-homogeneity a method for estimating a transition matrix better
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than the one for the more general case. The main advantages of this method
are to capture very small transition probabilities between two states, even when
no transitions occurred between those two states, and to distinguish between
transitions within the studied time-frame. The time-homogeneity condition is
also important to check if the rating philosophies[8,9] allegedely used are being
correctly followed or not, and they do not hold if criteria by which ratings are
ascribed to banks are not constant in time, but vary according to artificial or
externally imposed factors[10].

Furthermore, another important feature of continuous transition processes
is their Markovianity. The Markov property is important if the current rating
of a bank is to be considered a complete indicator of its future risk. In this
section we will address both these conditions separately.

3.1 Testing Time-Homogeneity

Mathematically, if a time-continuous Markov process is time-homogeneous
then there is a constant matrix Q, called a generator, solution of

dM(t)

dt
= QM(t), (2)

where M is the transition matrix, with entries Mij given the probability for
observing a transition from state i to state j (i, j = 1, . . . , ns). In other words,
a time-continuous process is time-homogeneous if, being Markov, its transition
matrix can be expressed as M(t) = eQt, and therefore it has a well-defined log-
arithm. We take the analogue from ordinary differential equations and loosely
call Q the logarithm of M.

The mathematical conditions for the existence of a homogeneous generator
give a bivalent result[7,11] that does not take into consideration neither noise
generated from finite samples nor how distant an empirical process is from
being time-continuous. Therefore, we neglect several mathematical results that
determine if a generator exists or not, and assume that the process is Markov
and time-continuous. Being Markov and time-continuous means that there is
a generator satisfying Eq. (2) and that it either is constant or varies in time.

Next, we estimate the closest constant generator Q directly from the em-
pirical data, compute the associated matrix M = eQt, and compare it with the
empirical transition matrix M(e). For estimating the generator matrix Q we
follow the approach described in Ref. [3], calculating its off-diagonal elements
as

Qij =
N

(ij)
T∫ tf

t0
N

(i)
R (t)dt

, (3)

where N
(ij)
T represents the number of transitions from i to j between the times

t0 and tf , and N
(i)
R (t) stands for the number of banks in state i at time t. The

diagonal elements Qii follow from the condition
∑
j Qij = 0.
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Fig. 4. Testing for temporal homogeneity: difference between the log-likelihood L of
the transition matrix M(e) and the transition matrix M calculated assuming time-
homogeneity. Both matrices are calculated over a time interval (a) one month and
(b) one year. The log-likelihood was calculated using Eq. (4) at the first day of each
month from January 2007 to December 2012.

To compute the distance between a time-homogeneous process and the em-
pirical process we compare M with M(e), and plot the statistic:

L =

∑
i,j N

(ij)
T

(
logMij − logM

(e)
ij

)
∑
i,j N

(ij)
T

. (4)

This is a log-likelihood ratio; loosely speaking it quantifies the error intro-
duced by making the assumption of time homogeneity. The results are shown
in Fig. 4: in panel (a) we aggregate the data in periods of one month while in
panel (b) the aggregation period is one year.

It can be seen that there are three periods when the time-homogeneity
condition becomes an insufficient approximation to the dynamics of the process
marked by significant increases in L. The first period starts in the early 2007,
the second period around the middle of 2009, and the third period in the last
half of 2012. The profile of the time-inhomogeneity is different for each time-
period. It shows a sharp peak in 2007, concentrated in just a few months, and
wider in the other periods.

These three periods can be better analysed taking also observations from
Fig. 3. In 2007 there was an unusually high number of rating transitions, even
considering that only about 700 companies were rated at the time. In Fig. 3
it can be seen that in this period the variance σR of the ratings decreased, the
skewness µR had slight negative burst, and there was an increase in the kurtosis
κR. As for the statistics of transitions, one can see in this period the average 〈T 〉
becoming positive, the skewness (µT ) changing signal and becoming positive
and the kurtosis (κT ) decreasing. The variance of T increases, but again that
can be explained by the high number of rating transitions in that period.
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Fig. 5. Testing Markovianity: difference between the empirical transition matrix M
(e)
0τ

calculated over a time-interval [0, τ ] and the product of the half-period matrices, M
(e)

0
τ
2

and M
(e)
τ
2
τ
, using the L2-norm defined in Eqs. (7) and (8). Both matrices are calculated

over a time interval of (a) one month and (b) one year. The difference was calculated
at the first day of each month between January 2007 and December 2012.

In late 2009 and early 2010 we have a very different profile. In this period
the downgrades are the rule, as one can see by the negative values of 〈T 〉. The
relatively low values of κT and the absolute value of µT tells us that this was
a general trend, and not a very drastic movement by just a few banks.

In 2012 the scenario is similar to 2010. Again there are more downgrades,
and this a general trend. The companies are now much more clustered, i.e. with
short dispersion in their ratings, as one can see by the low values in σR.

3.2 Testing the Markov Hypothesis

Mathematically, a Markov process xt obeys the following condition:

Pr(xt1 |xt2 , xt3 , . . . ) = Pr(xt1 |xt2) (5)

with t1 > t2 > t3 > . . . . The conditional probability in the right hand-side of
Eq. (5), Pr(xt1 |xt2), is exactly specified by the transition matrix M.

The rating process must be assumed to be Markov, otherwise a rating would
not represent a uniform risk class, as its elements could be distinguished ac-
cording to their previous series of rating states.

From the definition of a Markov process in Eq. (5) it is straightforward to
show that a Markov process also obeys

Mt0tf =

N∏
n=1

Mtn−1tn , (6)

where N is the number of subintervals in [t0, tf ] and labels titj denote the time
interval [ti, tj ] considered when determining Mtitj . Here we fix N = 2 and
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consider two equally spaced intervals with τ ≡ tf − t0 = 1 month and τ = 1
year. Equation (6) is known as the Chapman-Kolmogorov equation[12] and it
does not hold in general either when the process is non-Markov or when we
have an insufficiently short sample of data.

We will use the Chapman-Kolmogorov equation as a test indicating whe-
ther the rating database of Moody’s is Markov. To that end, we consider

empirical matrices M
(e)
0τ computed for one month and one year intervals, and

compare it with the associated product of the two corresponding half-periods,

M(e)
0τ = M

(e)

0
τ
2
M

(e)
τ
2 τ

. For the comparison we now use the L2-norm instead

of the the L log-likelihood, since the latter creates singularities when dealing
with zero entries in the matrices, and which occur now more frequently. The
L2-norm of the transition matrix is the maximum singular value of A,

‖A‖ = σmax(A), (7)

and we compute it for as the difference

A = M
(e)
0τ −M(e)

0τ , (8)

where ‖ · ‖ represents the usual Euclidian norm.
Results are shown in Fig. 5. Clearly, there are two periods when the Markov

assumption seems less valid. The first period is in early 2007, and the second
in the middle of 2009, followed by another, less significant increase at the end
of 2012. As said before, this coincides with an abrupt change in the statistics
of T and R.

4 Discussion and conclusions

We have addressed time series of credit ratings publicly available at Moody’s
online site and studied simple ways to compute the validity of the time-homoge-
neous and Markovianity assumptions. We have shown how the accuracy of
these assumptions varies with time. Naturally, when the Markov assumption
fails, so does the time-homogeneous assumption, in particular during 2007 and
in the latest half of 2009 and beginning of 2010. In these periods the statistics
of the process changed considerably. In the end of the year of 2012 the accuracy
of the time-homogeneous assumption is low but the Markov approximation is
within the usual fluctuation range. In this period there is a less abrupt change
in the statistics of the process.

One must stress that when the Markov assumption does not hold, the rat-
ings are not a complete measure of the risk of a given entity, since further
information besides the actual rating needs to be specified. Moreover, our re-
sults present evidence that perhaps in 2007 new rating criteria were introduced,
imposing a discontinuity in the series of ratings, or that new rating transition
were correlated with previous ones, which could support the claim that rating
agencies were an active part in the crisis that followed.

Our approach can be improved by introducing for instance a more sophis-
ticated procedure for extracting the histograms for the ratings and their in-
crements, namely using the kernel based density, which is known to converge
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faster to the real distribution than the usual binning procedure. From this
first approach to investigate Moody’s rating database one can now attack the
embedding problem for the series of transition matrices, where different gen-
erators estimates can be compared. These and other issues will be addressed
elsewhere.
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Abstract. Asian options are options whose value depends on the average asset price
during its lifetime. They are useful because they are less subject to price manipula-
tions. We consider Asian option pricing on a lattice where the underlying asset follows
MertonBates jump-diffusion model. We describe the construction of the lattice using
the moment matching technique which results in an equation system described by a
Vandermonde matrix. Using some properties of Vandermonde matrices we calculate
the jump probabilities of the resulting system. Some conditions on the possible jump
sizes in the lattice are also given.
Keywords: Jump-diffusion process, lattices, Vandermonde matrix, Asian options,
option pricing.

1 Pricing of Asian options and jump-diffusion option
pricing

Asian options are path dependent options whose payoffs depend on the average
price during a specific period of time before maturity. The averages are con-
sidered to be either geometric or arithmetic averages. Assuming the geometric
average results in a closed-form formula for the European option price within
the classical Black–Scholes model. This is because the geometric average of log-
normally distributed random variables also has a lognormal distribution and
this simplifies the mathematics involved in the pricing problem. In contrast,
the arithmetic average of lognormal random variables is not log-normally dis-
tributed, thus there exists no closed-form formula for European Asian options
based on the arithmetic average of the underlying asset prices. There are, how-
ever, approximation methods that have been developed to aid in pricing Asian
options, here we will consider lattice methods. Lattice methods are based on a
discrete approximation of the process such that the time span is divided into
n time steps and specifies asset price at each time step. At each time step the
process can jump to L different asset prices, henceforth referred to as nodes.
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We will model the options underlying asset using a Merton-Bates jump-
diffusion process. Popular methods for pricing options of processes include
binomial methods (L = 2, see Cox et al.[2], Amin[1], Hilliard and Schwartz[4]
among others) and trinomial methods (L = 3, see Dai et al.[3] among others).
For any of these methods it is required that the first L moments match the
asset return and that the probabilities of moving to any given node is between
zero and one.

Here we will consider multinomial methods with higher L. For further
details on the construction and use of this type of method see Lundeng̊ard et
al.[6].

2 Moment-matching multinomial lattice methods

We want to match the moments of a random variable X with a discrete random
variable Z. Let Z denote a discrete random variable as given below (Primbs et
al.[8]):

Z = m1 + (2i− L− 1)α with probability pi, i = 1, 2, ..., L,

where α is the jump size (distance between two outcomes), m1 is the mean of
X and L is the number of lattice nodes. Here α must be real and positive.

The requirement that the k:th moment matches the asset return on an
L-node lattice can be written:

L∑
i=1

pi(2i− L− 1)kαk = µk

where µk is the k:th moment. We will also use the notation µ0 = 1 which
means that matching to µ0 is equivalent to the sum of all probabilities being
equal to one.

Matching the first L moments can be written Ap = µ where p is a column
vector containing the jump probabilities, µ is a column vector containing the
moments and A is the general lattice matrix for the jump diffusion process that
takes the following form:

A =



1 · · · 1 · · · 1
(1− L)α · · · (2n− L− 1)α · · · (L− 1)α

...
. . .

...
. . .

...
((1− L)α)k · · · ((2n− L− 1)α)k · · · ((L− 1)α)k

...
. . .

...
. . .

...
((1− L)α)L · · · ((2n− L− 1)α)L · · · ((L− 1)α)L


.

Note that the general lattice matrix A is a Vandermonde matrix.
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Definition 1. A Vandermonde matrix is a square matrix of the form

VL =


1 1 . . . 1
x1 x2 . . . xL
x21 x22 . . . x2L
...

...
...

...

xL−11 xL−12 . . . xL−1L

 , (1)

where all xi are distinct numbers.

Note that the requirement that all xi are distinct is usually not included in
the definition. Here it has been added since two xi being equal would indicate
two overlapping nodes which can be combined to a single node. If all xi are
distinct the matrix is also guaranteed to be invertible.

Choosing elements

xi = (2i− L− 1)α , 1 ≤ i ≤ L (2)

will give the general lattice matrix with the final row missing.
The inverse of the Vandermonde matrix is known, see Macon and Spitzbart[5],

and can be used to calculate the transition probabilities.

Theorem 1. The elements of the inverse of an L-dimensional Vandermonde
matrix VL can be calculated by

(
V −1L

)
ij

=
(−1)j−1σL−j,i
L∏
k=1
k 6=i

(xk − xi)

,

where σj,i is the jth elementary symmetric polynomial with variable xi set to
zero:

σj,i =
∑

1≤m1<m2<... <mj≤L

j∏
n=1

xmn
(1− δmn,i) , δa,b =

{
1 , a = b,
0 , a 6= b.

For xi of the form (2) the expression for the elements of the inverse matrix
can be simplified.

Theorem 2. For a Vandermonde matrix, VL, with elements defined by (2),
the elements of the inverse are given by

(
V −1L

)
ij

=
(−1)j−i

2L−2αj−1
· σ̃L−j,i

(i− 1)!(L− i)!
(3)

where

σ̃j,i =
∑

1≤m1<... <mj≤L

j∏
n=1

(2n− L− 1)(1− δmn,i) , δa,b =

{
1 , a = b,
0 , a 6= b.

(4)
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For more details, see Lundeng̊ard et al.[6].
Matching the lattice to the first L− 1 moments gives the equation

p = V −1L µ, (5)

where p and µ are vectors containing the probabilities and moments respec-
tively. Using formulas (1) and (5) gives

pi =

L∑
j=1

(
V −1

)
ij
µj−1 =

L∑
j=1

(−1)j−i

2L−1αj−1
· σ̃L−j,i

(i− 1)!(L− i)!
µj−1 . (6)

The lattice models also require that the L:th moment is matched:

L∑
i=1

pix
L
i = µL.

Using equation (6) this requirement can be rewritten as a polynomial equation
PL(α) = 0 where

PL(α) = −µL +

L∑
j=1

αL−j+1µj−1

(
L∑
i=1

(−1)j−i(2i− L− 1)Lσ̃L−j,i
2L−1(i− 1)!(L− i)!

)
(7)

and α is a real, positive number. For further details, see Lundeng̊ard et al.[6].
Next we will show that expression (7) can be simplified further.

Lemma 1. Let A be a set of n distinct real values evenly distributed around
zero. Denote the set of combinations of k elements from A with Ak. Let
π : Ak 7→ R be the product of all elements in a given combination.
If k is odd ∑

s∈Ak

πk(s) = 0 (8)

and if k is even ∑
s∈Ak

πk(s) =
∑
s∈Ã k

2

π̃ k
2
(s) (9)

where Ã = {a ∈ A|a > 0}, Ãk is the set of combinations of k elements from Ã
and π̃ : Ãk 7→ R is the product of the square of the elements in a combination
multiplied by (−1)k.

Proof. When k is odd it is possible for all s ∈ Ak to rewrite the product
πk(s) = alπk−1(r) such that al is not a factor in πk−1(r) for some al ∈ A,
r ∈ Ak−1. If al = 0 it is obvious that πk(s) = 0 and for any other al ∈ A there
is another combination t 6= s such that πk(t) = −alπk−1(r) = −πk(s) and thus∑

s∈Ak

πk(s) = 0 +
∑

r∈Ak−1

(ar − ar)πk(s) = 0.
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When k is even we can use an argument analogous to the odd case and conclude
that for each combination s ∈ Ak that can be rewritten such that πk(s) =
alπk−1(r) where al is not a factor in πk−1(r) for some al ∈ A, r ∈ Ak−1 there
is also a combination that generate an annihilating term in the sum over all
the products. Thus the only remaining terms in the sum over the products will
contain both al and −al as factors and thus any term can be written on the
form

πk(s) =
∏
a∈s

a · (−a) = (−1)
k
2

∏
a∈s

a2.

Lemma 2. The integer values given by (4) can be simplified in the following
way:

j = 2k + 1 : σ̃j,i = xL−i+1

∑
s∈Ãk

xi /∈s

π̃k(s),

j = 2k : σ̃j,i =
∑
s∈Ãk

xi /∈s

π̃k(s).

From this it is also clear that σ̃j,i = (−1)j σ̃j,L−i+1.

Proof. With the notation used in Lemma 1 the expression in (4) can be rewrit-
ten as a sum of products of combinations of the elements in x,

σ̃j,i =
∑

1≤m1<... <mj≤L

j∏
n=1

(2n− L− 1)(1− δmn,i) =
∑
s∈Aj

i/∈s

πj(s)

=
∑

s∈Aj−1

xi /∈s
−xi /∈s

−xiπj−1(s) +
∑
s∈Aj

xi /∈s
−xi /∈s

πj(s),

where A is the set formed by the values of the elements in x. Now Lemma 2
follows by directly applying Lemma 1.

Lemma 3. Let

c(j) =

L∑
i=1

(−1)L−j(2i− L− 1)Lσ̃L−j,i
2L−1(i− 1)!(L− i)!

. (10)

Then c(j) = 0 if L− j is even and if L− j is odd

c(j) =

bL
2 c∑
i=1

(−1)j−i(2i− L− 1)Lσ̃L−j,i
2L−2(i− 1)!(L− i)!

.
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Proof. Split the sum into two parts:

c(j) =

bL
2 c∑
i=1

(−1)j−i(2i− L− 1)Lσ̃L−j,i
2L−1(i− 1)!(L− i)!

+

L∑
i=bL

2 c+1

(−1)j−i(2i− L− 1)Lσ̃L−j,i
2L−1(i− 1)!(L− i)!

.

Changing index in the second sum according to k = L− i+ 1 gives:

c(j) =

bL
2 c∑
i=1

(−1)j−i(2i− L− 1)Lσ̃L−j,i
2L−1(i− 1)!(L− i)!

+

bL
2 c+a∑
k=1

(−1)j−k−L+1(2k − L+ 1)Lσ̃L−j,L−k+1

2L−1(n− k)!(k − 1)!
.

where a = 1 when L is odd and a = 0 when L is even.
Lemma 2 gives σ̃L−j,i = (−1)L−j σ̃L−j,L−i+1 and thus recombining the two

sums gives:

c(j) =
(
1− (−1)L−j

) bL
2 c∑
i=1

(2i− L− 1)Lσ̃L−j,i
2L−1(i− 1)!(L− i)!

.

Since the factor in front of the sum is zero when j is odd and two otherwise
this concludes the proof.

Lemma 4. The polynomial given by (7) can be written on the form

P (α) =


µL −

bL
2 c∑
j=1

c(2j − 1) µL−2j α
L−2j if L even.

µL −
bL

2 c∑
j=1

c(2j) µL−2j+1 α
L−2j+1 if L odd.

(11)

where c(j) is defined by (10).

Proof. This lemma follows from substituting the c(j) in Lemma 3 in the poly-
nomial defined by (7).

3 On the existence of suitable jump sizes

There are conditions that must be satisfied for the moment matching lattice
methods to work. The distance between the lattice nodes, α, must be a positive
real root to the polynomial given by (11). For this α the probabilities to move
to node i, given by (6), must be between zero and one.

To examine whether there are any positive real roots for (11) Sturm’s the-
orem will be used.
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Theorem 3 (Sturm’s theorem).
Let p0(x) be a polynomial and p1(x) = p′0(x). Using polynomial division we
can find p2(x), . . . , pn(x) such that

pk−2(x) = qk−1(x)pk−1(x)− pk(x),

pn−1(x) = qn(x)pn(x).

The sequence SL(x) = {p0(x), p1(x), . . . , pn(x)} is called the canonical Sturm
chain. The number of real roots of p0(x), m, confined between a and b, a < b,
p(a) 6= 0, p(b) 6= 0, is given by m = vL(a) − vL(b) where vL(x) is the number
of sign variations in S(x) ignoring zeros.

There are many sources for proofs of Sturm’s theorem, e.g. Prasolov[7].
For the quadrinomial (L = 4) and pentanomial (L = 5) lattices the following

canonical Sturm chains correspond to the polynomial given by (11):

S4(α) =

{
− 9α4 + 10µ2α

2 − µ4, − 36α3 + 20µ2α,(
36

5

µ4

µ2
− 20µ2

)
α, − µ4

}
,

S5(α) =

{
− 64µ1α

4 + 20µ3α
2 − µ5, − 256µ1α

3 + 40µ3α,

− 10µ3α
2 + µ5,

(
256

10

µ1

µ3
µ5 − 40µ3

)
α, µ5

}
.

Finding all the positive real roots can now be done by noting that there for any
polynomial must be some value, r > 0, that is large enough that the highest
order term in the polynomial dominates and the signs in the Sturm chain will be
determined by the corresponding coefficients. Thus the number of real positive
roots can be found by calculating q = vL(0)− vL(r).

Since all even-numbered moments are positive it is easy the see that v4(0) =
0 and v4(r) = 0 unless 36µ4 > 100µ2

2 which will give v(r) = 2. In this case we
have an underlying asset described by a Merton-Bates jump-diffusion process
and if we denote the Lévy measure for the process with

l(dx) =
λ√

2πδ2
exp

(
− (dx− η)2

2δ2

)
the second and fourth moments will be

µ2 =
λδ2(1 + η2)

σ2 + λδ2 + λη2
,

µ4 =
λδ4(3 + 6η2 + η4)

(σ2 + λδ2 + λη2)2
,

for derivations of these expressions see Lundeng̊ard et al.[6].
Using the explicit formulas for the moments it can be shown that the con-

dition 36µ4 > 100µ2
2 is equivalent to λ < 36

100
3+6η2+η4

(1+η2)2 .
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The pentanomial case is less straight forward, v5(0) = 2 and v5(r) can vary
between zero and two depending on the odd-numbered moments µ1, µ3 and µ5

in a complicated way which we choose not to describe in detail here.
Note that the existence of real positive roots does not guarantee that the

probabilities given by (11) will be between zero and one.

Acknowledgements This work was partially supported by The Royal Physiographic

Society in Lund, The Swedish Foundation for International Cooperation in Research

and Higher Education (STINT), The Swedish Research Council, The Royal Swedish

Academy of Sciences, The Crafoord Foundation, as well as by The International

Science Program, SIDA foundation and by Mälardalen University. Carolyne Ogutu

is grateful to the research environment in Mathematics and Applied Mathematics

at the Division of Applied Mathematics of the School of Education, Culture and

Communication (UKK) at Mälardalen University for their hospitality and creating

excellent conditions for research, research education and cooperation. She is also

grateful for the support of the International Science Program, Uppsala University,

Sweden, through collaboration with The Eastern African Universities Mathematics

Programme.

References

1. Amin, K. L. ”Jump diffusion option valuation in discrete time”, The Journal of
Finance 48(5), 1833–1863 (1993)

2. Cox, J. C., Ross, S. A., and Rubinstein, M., ”Option pricing. A simplified ap-
proach”, Journal of Financial Economics 7(3), 229–263 (1979)

3. Dai, T.-S., Wang, C.-J., Lyuu, Y.-D., and Liu, Y.-C., ”An efficient and accurate
lattice for pricing derivatives under jump-diffusion process”, Applied Mathemat-
ics and Computation 217, 3174–3189 (2010)

4. Hilliard, J. E., and Schwartz, A., ”Pricing European and American derivatives
under a jump-diffusion process: A bivariate tree approach”, Journal of Financial
and Quantitative Analysis 40(3), 671–691 (2005)

5. Macon, N. and Spitzbart, A., ”Inverses of Vandermonde matrices”, The American
Mathematical Monthly 65(2), 95–100 (1958)

6. Lundeng̊ard, K., Ogutu, C., Silvestrov S., and Weke, P., ”Asian Options, Jump-
Diffusion Processes on a Lattice, and Vandermonde Matrices”, in Modern Prob-
lems in Insurance Mathematics, Silvestrov, Dmitrii, Martin-Löf, Anders, Eds.,
Springer-Verlag, Berlin, 337–364 (2014)

7. Prasolov V. V., Polynomials, Algorithms and Computation in Mathematics 11,
Springer-Verlag, Berlin (2004)

8. Primbs, J. A., Rathinam, M., and Yamada, Y., ”Option pricing with a pentanomial
lattice model that incorporates skewness and kurtosis”, Applied Mathematical
Finance 14(1), 1–17, February (2007)

440


