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Abstract. The choice of a proximity measure between objects has a direct impact
on the results of any operation of classification, comparison, evaluation or structuring
a set of objects. In many application fields, for a given problem, the user is prompted
to choose one among the many existing proximity measures. However, according to
the notion of topological equivalence chosen, some are more or less equivalent.

In this paper, we propose a new comparison approach of proximity measures for
the purpose of discrimination and in a new concept of topological equivalence. This
approach exploits the concept of the local neighborhood. It defines discriminant
equivalence between two proximity measures as having the same neighborhood struc-
ture on the objects of a set of explanatory continuous variables according to a target
qualitative variable that we want to explain.

According to the notion of topological equivalence based on the concept of neigh-
borhood graphs, we use adjacency binary matrices, associated with proximity mea-
sure, Between and Within groups to classify. Some of the proximity measures are
more or less equivalent, which means that they produce, more or less, the same dis-
crimination results. We then propose to define the topological equivalence between
two proximity measures through the topological structure induced by each measure.

It believes that two proximity measures are topologically equivalent if they induce
the same neighborhood structure on the objects in purpose of discrimination. The
comparison adjacency matrix is a useful tool for measuring the degree of resemblance
between two empirical proximity matrices in a discriminating context. To view these
proximity measures, we propose an hierarchy of proximity measures which are grouped
according to their degree of resemblance in a topological context of discrimination.

We illustrate the principle of this approach on a simple real example of continuous
explanatory data for about a dozen proximity measures of the literature.

Keywords: proximity measure, discrimination and classification, dissimilarity
and adjacency matrices, neighborhood graph, topological equivalence.

1 Introduction

Compare objects, situations or ideas are essential tasks to identify something,
assess a situation, structuring a set of tangible and abstract elements etc.
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In a word to understand and act, you must know compare. This comparison,
that the brain accomplishes naturally, however be explained if one wants to
perform a machine. For this, we used the proximity measures.

Proximity measures are characterized by specific mathematical properties.
Are they all the same? Can they be used in the practice of undifferentiated
way? In other words, is that, for example, the proximity measure between
individuals plunged in a multidimensional space as Rp, influence or not the
result of a supervised classification? Is that how the similarity or dissimilarity
between objects is measured affects the result of this method? If yes, how to
decide what measure of similarity or dissimilarity must be used.

This problem is important in practical applications. It is the same in many
areas when we want to group individuals into classes. How to measure the
distance directly impacts the composition groups obtained. In Table 1, we give
some conventional proximity measures, defined on Rp.

Measure Short Formula

Euclidean Euc uE(x, y) =
√∑p

j=1(xj − yj)2

Mahalanobis Mah uMah(x, y) =
√

(x− y)t
∑−1(x− y)

Manhattan Man uMan(x, y) =
∑p

j=1 |xj − yj |
Minkowski Min uMinγ (x, y) = (

∑p
j=1 |xj − yj |γ)

1
γ

Tchebytchev Tch uTch(x, y) = max1≤j≤p |xj − yj |
Cosine Dissimilarity Cos uCos(x, y) = 1− <x,y>

∥x∥∥y∥

Canberra Can uCan(x, y) =
∑p

j=1

|xj−yj |
|xj |+|yj |

Squared Chord SC uSC(x, y) =
∑p

j=1(
√
xj −

√
yj)

2

Weighted Euclidean WE uWE(x, y) =
√∑p

j=1 αi(xj − yj)2

Chi-square χ2 uχ2(x, y) =
∑p

j=1

(xj−mj)
2

mj

Histogramm Intersection HI uHI(x, y) = 1−
∑p

i=1(min (xi,yi))∑p
j=1 yj

Normalized Euclidean NE uNE(x, y) =
√∑p

j=1(
xj−yj

σj
)2

Table 1. Some proximity measures.

Where p is the dimension of space, x = (xj)j=1,...,p and y = (yj)j=1,...,p two points

in Rp, (αj)j=1,...,p ≥ 0,
∑−1 the inverse of the variance and covariance matrix, σ2

j

the variance, γ > 0 and mj =
xj+yj

2
.

2 Topological equivalence

This approach is based on the concept of a topological graph which uses a
neighborhood graph in a discriminant context. The basic idea is quite sim-
ple: we can associate a neighborhood graph to each proximity measure from
which we can say that two proximity measures are equivalent if the topological
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graphs induced are the same. To evaluate the similarity between proximity
measures, we compare neighborhood graphs and quantify to what extent they
are equivalent.

2.1 Topological graphs

For a proximity measure u, we can build a neighborhood graph on a set of
individuals-objects where the vertices are the individuals and the edges are
defined by a neighborhood relationship property. We thus simplify have to
define the neighborhood binary relationship between all couples of individuals.
We have plenty of possibilities for defining this relationship. For instance, we
can use the definition of the Relative Neighborhood Graph (RNG), [16], where
two individuals are related if they satisfy the following property:{

Vu(x, y) = 1 if u(x,y)≤ max(u(x, z), u(y, z)) ; ∀z ∈ Rp, z ̸= x, y
Vu(x, y) = 0 otherwise (1)

Geometrically, this property means that the hyper-lunula (the intersection
of the two hyper-spheres centered on two points) is empty. The set of couples
that satisfy this property result in a related graph such as that shown in Fig-
ure 1. For the example shown, the proximity measure used is the Euclidean
distance. The topological graph is fully defined by the adjacency matrix as in
Figure 1.



Vu . . . x y z t u . . .
... . . .

...
...
...
...
... . . .

x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .
... . . .

...
...
...
...
... . . .


Fig. 1. Topological graph built on RNG property.

In order to use the topological approach, the property of the relationship
must lead to a related graph. Of the various possibilities for defining the binary
relationship, we can use the properties in a Gabriel Graph (GG), [15], or any
other algorithm that leads to a related graph such as the Minimal Spanning
Tree (MST), [7]. For a given neighborhood property (MST, GG, RNG), each
measure u generates a topological structure on the objects which are totally
described by the adjacency matrix Vu.

For this work, we use only the Relative Neighborhood Graph, [23].
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2.2 Comparison of proximity measures

We denote {xj ; j = 1, p} the set of p explanatory quantitative variables and
y the qualitative variable to explain, partition of n =

∑q
k=1 nk individuals-

objects in q groups {Gk; k = 1, q}.
From the previous material, using topological graphs represented by an ad-

jacency matrix, we can evaluate the similarity between two proximity measures
via the similarity between the topological graphs each one produces. To do so,
we just need the adjacency matrix associated with each graph.

For any proximity measure u, we built according to the property (1), the
overall adjacency matrix Vu that presents itself as a juxtaposition of adjacency
matrices (binary and symmetric) Within V Gk

u and Between V Gkl
u groups:{

VGk
u (x, y) = 1 if u(x,y) ≤ max(u(x, z), u(y, z)) ; ∀x, y, z ∈ Gk, z ̸= x, y

VGk
u (x, y) = 0 otherwise{

VGkl
u (x, y) = 1 if u(x,y) ≤ max(u(x, z), u(y, z)) ; ∀x ∈ Gk, y ∈ Gl, z ̸= x, y

VGkl
u (x, y) = 0 otherwise

• The first objective is to group and view the different proximity measures,
according to their topological similarity in the context of discrimination.

Note that Vui and Vuj are two adjacency matrices associated with both
proximity measures ui and uj . To measure the degree of similarity between
the two proximity measures, we just count the number of discordances between
the two adjacency matrices.

So, to measure the topological equivalence of discrimination between the
proximity measures ui and uj , we propose to test whether the associated ad-
jacency matrices Vui and Vuj are statistically different or not, using a non-
parametric test on paired binary data. The degree of topological equivalence
between two proximity measures is measured by the quantity:

S(Vui , Vuj ) =
∑n

k=1

∑n
l=1 δkl

n2 where δkl =
{ 1 if Vui(k, l) = Vuj (k, l)

0 otherwise.

S(Vui , Vuj ) is the measure of similarity which varies in the range [0, 1]. A
value of 1 means that the two adjacency matrices are identical and therefore
the topological structure induced by the two proximity measures is the same,
meaning that the proximity measures considered are equivalent. A value of 0
means that there is a full discordance between the two matrices.

The similarity S(Vui , Vuj ) is thus the extent of agreement between the ad-
jacency matrices.

• The second objective is to establish a criterion for selection aid of the
”best” proximity measure that well discriminates the q groups, among the
considered proximity measures.

We note, Vu∗ = diag(1G1 , . . . , 1Gk
, . . . , 1Gq ) the adjacency block diagonal

reference matrix, ”perfect discrimination of the q groups” according to an un-
known proximity measure denoted u∗. Where 1nk

is the vector of order nk

which all components are equal to 1 and 1Gk
= 1nk

t1nk
, is the symmetric

matrix of order nk which all the elements are equal to 1.
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Vui =


VG1

u

· · ·
VGk1

u · · · VGk
u

· · ·
V

Gq1
u · · · VG1k

u · · · VGq
u

 ; Vu∗ =


1G1

0 · · ·
0 0 1Gk

0 0 0 · · ·
0 0 0 0 1Gq


Thus, we can also establish the degree of topological equivalence of discrim-

ination S(Vui , Vu∗) between each considered proximity measures ui and the
reference measure u∗.

3 Application example

In this section, we describe the results obtained by applying proximity measures
on real continuous data to illustrate this topological discriminant approach.

We consider a sample of small cars [8] with seven observed explanatory vari-
ables (price, urban consumption, engine capacity, maximum speed, maximum
volume of trunk, weight/power ratio, length). The target qualitative variable
to discriminate is the brand of the carmaker with two modalities-groups, French
and Foreign cars.

We want to visualize the similarities between the proximity measures in
order to see which measures are close to one another in a discriminant context.
As we already have a similarity matrix between proximity measures, we can
use any classic visualization techniques to achieve this. For example, we can
build a dendrogram of hierarchical clustering of the proximity measures. We
can also use Multidimensional scaling or any other technique to map the 12
considered proximity measures.

S uE uMah uMan uMinγ
uTch uCos uCan uSC uWE u

χ2 uHI uNE

uE 1
uMah .746 1
uMan .946 .746 1
uMinγ

.977 .741 .923 1

uTch .905 .724 .859 .918 1
uCos .832 .741 .841 .837 .819 1
uCan .796 .805 .814 .782 .746 .800 1
uSC .936 .773 .927 .923 .887 .832 .814 1
uWE 1 .746 .946 .977 .905 .832 .796 .936 1
u
χ2 .941 .769 .946 .977 .891 .828 .809 .995 .941 1

uHI .660 .660 .678 .655 .655 .673 .682 .642 .660 .646 1
uNE .751 .850 .741 .737 .728 .755 .864 .769 .751 .764 .655 1

u∗ .497 .524 .506 .492 .483 .510 .510 .506 .497 .501 .456 .501

Table 2. Topological equivalence - Similarities S(Vui , Vuj ) and S(Vui , Vu∗).

Table 2 summarizes the similarities between the 12 conventional proximity
measures of Table 1. The application of an algorithm to build an hierarchy of
the partition, Ascendant Hierarchical Clustering according to ward [24] crite-
rion, allows to obtain the dendrogram of Figure 2.

The vector of similarities S(Vu∗ , Vui), between the reference measure and
the proximity measures considered, is positioned as illustrative element in the
analysis.
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Fig. 2. Hierarchical Tree - Topological structure with Relative Neighbors Graph.

Classe 1 Classe 2 Classe 3 Classe 4
Frequency 7 1 1 3
Active measures uE ,uMan,uMinγ ,uTch,uSC , uWE , uχ2 uCos uHI uMah, uNE ,uCan

Illustrative measure u∗

Table 3. Assignment of the reference measure.

Given the results presented in Table 3, for the selection of the ”best” proxim-
ity measure among the 12 measures considered, the unknown reference measure
u∗, projected as illustrative element, would be closer to measures of class 3,
that is to say, the histogramm intersection measure uHI .

4 Conclusion and perspectives

The choice of a proximity measure is highly subjective, it is often based on
habits or on criteria such as a posteriori interpretation of the results. This
work proposes a new approach of equivalence between proximity measures in
a discrimination context. This topological approach is based on the concept
of neighborhood graph induced by the proximity measure. From a practical
point of view, in this paper, the compared measures are all built on explanatory
quantitative data, but this work may well extend to qualitative data by choosing
the correct topological structure and the adapted proximity measures. We
are considering to extend this work to other topological structures and use a
comparison criterion, other than classification techniques to validate the degree
of equivalence between two proximity measures. For example, a criterion based
on a nonparametric test (e.g., the concordance coefficient of Kappa) on the
binary data of the adjacency matrix associated to proximity measures. This
will allow to give a statistical significance between the two similarity matrices
and to validate or not the topological equivalence of discrimination, that is to
say, if they really induce or not the same structure of the neighborhood groups
objects to be separated.
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Abstract. Zero-inflated probability models are used to model count data that has
an excessive number of zero counts. These models are mostly useful in modeling high-
yield processes that produce a low fraction of non-conforming units or health-related
processes where it is of interest the monitoring of a rare disease. Shewhart-type con-
trol charts have been proposed for the monitoring of zero-inflated processes. Usually
their performance is evaluated under the assumption of known process parameters.
However, in practice their values are rarely known and have to be estimated from an
in-control historical Phase I data set. In this work, we investigate the performance of
Shewhart-type control charts for zero-inflated Poisson (ZIP) and zero-inflated bino-
mial (ZIB) processes when the process parameters are estimated from a Phase I data
set of size m. Practical guidelines regarding the necessary size m of the Phase I data
set, in order to obtain the desired in-control performance of the examined charts, are
also given.
Keywords: Average run length, Moment estimator, Probability generating func-
tion, Standard deviation run length, Shewhart control charts, Zero-Inflated binomial
distribution, Zero-Inflated Poisson distribution.

1 Introduction

Control charts are considered as the most widely used technique for monitoring
a process and identifying changes in it. When the monitoring of a high-yield
process is of interest, the considered quality characteristic cannot always be
conveniently represented numerically. In such cases, the common practice is to
classify each inspected item (or unit) as either conforming or non-conforming
according to the specifications of the quality characteristic. Usually, for the
monitoring of such processes, attributes control charts like the np− or the
c− charts are used (Montgomery [10]). Due to technological progress and
automation of manufacturing technology, many processes are now characterized
by low defective rates. Consequently, these processes demonstrate an excessive
number in zeros. This excess in zeros results in an over-dispersed distribution
(Woodall [14]) and, therefore, in the under-estimation of the mean and the
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variance of the process. Thus, the standard attribute np− and c− control charts
cannot be efficiently used due to an increased rate of false alarms. Therefore,
the development of control charts under more appropriate probability models
is necessary. Zero-inflated models (see Johnson et al. [9, p.351-356]) have been
recommended as alternative models that take into account the excessive number
of zeros. Control charts based on the zero-inflated Poisson (ZIP) and the
zero-inflated Binomial (ZIB) distributions have already been studied in the
literature. See, for example, Xie and Goh [15], Xie et al. [16], Sim and Lin [13]
(for Shewhart-type control charts) and Noorossana et al. [11], Fatahi et al. [6],
He et al. [8] (for CUSUM- and EWMA-type charts).

The development of all the previously mentioned control schemes is based
on the assumption that the process parameters are known. However, this
rarely happens in practice and they are usually estimated from an in-control
historical (or preliminary) data set (Phase I sample). It is known that when the
parameters are estimated, the performance of the control charts differs from
the known parameters case due to the variability of the estimators during the
Phase I analysis. The np− and c− control charts with estimated parameters
have been studied by Braun [1], Chakraborti and Human [3,4], Castagliola and
Wu [2] and Chen and Song [5]. It seems that only He et al. [7] have studied
the effect of parameter estimation on the Shewhart chart for monitoring ZIP
processes while, to the best of our knowledge, the case of ZIB processes has
not been examined so far.

In this work, we examine the performance of upper-sided Shewhart-type
control charts for ZIP and ZIB processes for the estimated parameters case.
Guidelines about the required number m of Phase I samples, in order to have
similar in-control performance in both the estimated and known parameter
cases, are provided.

The remainder of this paper is organized as follows: In Section 2, we present
the run length properties of the upper-sided ZIP- and ZIB-Shewhart control
charts with known parameters while the estimated parameter case is discussed
in Section 3. In Section 4, numerical comparisons between the known and the
estimated parameter case are provided along with practical guidelines for the
statistical design of the upper-sided ZIP- and ZIB-Shewhart control charts in
the estimated parameters case. Finally, Section 5 contains concluding remarks.

2 The upper-sided ZIP and ZIB charts with known
parameters

2.1 The upper-sided ZIP chart with known λ0

The zero-inflated Poisson (ZIP) distribution is a generalization of the standard
Poisson distribution that can be used to model count processes containing
an excessive number of zeros. By definition, if X is a ZIP random variable,
it is defined on {0, 1, . . .} (as for the standard Poisson distribution) and its
probability mass function (p.m.f.) is given by

fZIP (x |φ, λ) =

{
φ+ (1− φ) fP (0 |λ) , x = 0

(1− φ) fP (x |λ) , x = 1, 2, ...
,
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where

fP (x |λ) = e−λ
λx

x!
,

is the p.m.f. of the standard Poisson distribution with parameter λ > 0 and
φ ∈ [0, 1]. If φ = 0, the ZIP distribution coincides with the standard Poisson
distribution while, if φ = 1, it reduces to the Dirac distribution on x = 0.
Moreover, the cumulative distribution function (c.d.f.) of X is given by

FZIP (x |φ, λ) = φ+ (1− φ)FP (x |λ) ,

where

FP (x |λ) =

x∑
z=0

e−λ
λz

z!
,

is the c.d.f. of the standard Poisson distribution with parameter λ. The mean
and the variance of the ZIP distribution with parameters (φ, λ) are, respectively,
given by the following two expressions

E(X) = λ (1− φ) , V (X) = λ (1 + λφ) (1− φ) .

Let us now assume that we want to establish an upper-sided Shewhart
control chart for monitoring a ZIP process for increases in λ. We assume that
the zero-inflated parameter φ is known and that it remains unchanged in both
cases. Therefore, the upper control limit of the upper-sided ZIP-Shewhart
control chart with known parameters is given by

UCLZIP =
⌊
λ0(1− φ) +K

√
λ0(1 + λ0φ)(1− φ)

⌋
,

where b. . .c denotes the rounded down integer, λ0 is the in-control parameter
value for λ and K > 0 is a constant that plays the role of chart’s design
parameter. Let Y1, Y2, . . . be independent random variables such that Yi ∼
ZIP (φ, λ1), i.e., a ZIP distribution with parameters (φ, λ1), where λ1 is an
out-of-control parameter value for λ with λ1 > λ0. Then, the probability
β = P (Yi > UCLZIP ) that the number Yi of non-conformities exceeds the
upper-control limit UCLZIP is equal to

β = 1− FZIP (UCLZIP |φ, λ1) .

2.2 The upper-sided ZIB chart with known p0

As for the ZIP distribution, the zero-inflated binomial (ZIB) distribution is a
generalization of the standard binomial distribution that takes into account
the excessive number of zeros. By definition, if X is a ZIB random variable,
it is defined on {0, 1, . . . , n} (as for the standard binomial distribution) and its
p.m.f. is given by

fZIB (x |φ, n, p) =

{
φ+ (1− φ) fB (0 |n, p) , x = 0

(1− φ) fB (x |n, p) , x = 1, 2, ..., n
,
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where

fB (x |n, p) =

(
n

x

)
px(1− p)n−x,

is the p.m.f. of the standard binomial distribution, p ∈ [0, 1] is the probability
of a predefined event (e.g., a non-conforming unit) and φ is as for the ZIP dis-
tribution. If φ = 0, the ZIB distribution coincides with the standard binomial
distribution with parameters n and p while, for φ = 1, the ZIB distribution
reduces to the Dirac distribution on x = 0. The c.d.f. of X is given by

FZIB (x |φ, n, p) = φ+ (1− φ)FB (x |n, p) ,

where

FB (x |n, p) =

x∑
z=0

(
n

z

)
pz(1− p)n−z,

is the c.d.f. of the standard binomial distribution with parameters n and p.
The mean and the variance of the ZIB distribution with parameters (φ, n, p)
are, respectively, given by the following two expressions

E(X) = np (1− φ) , V (X) = np (1− p+ npφ) (1− φ) .

In a similar manner, the upper control limit of the upper-sided ZIB-Shewhart
control chart with known parameters is given by

UCLZIB =
⌊
np0(1− φ) +K

√
np0(1− p0 + np0φ)(1− φ)

⌋
,

where p0 is the in-control parameter value for p and K > 0 is a constant that
plays the role of the chart’s design parameter. Clearly, this chart is suitable for
monitoring a ZIB process for increases in p. As for the case of ZIP-Shewhart
chart, parameter φ is known and remains unchanged. Let Y1, Y2, . . . be in-
dependent random variables with Yi ∼ ZIB(φ, n, p1), i.e., the number of non-
conforming units in a sample of size n is a ZIB random variable with parameters
(φ, n, p1) and p1 > p0. Then, the probability β = P (Yi > UCLZIB) that Yi is
above UCLZIB is equal to

β = 1− FZIB (UCLZIB |φ, n, p1) .

2.3 Run length properties

The run length of the ZIP- and ZIB-Shewhart control charts with known param-
eters is a geometric random variable L with parameter β. Thus, the Average
Run Length (ARL) and the Standard Deviation Run Length (SDRL) of the
ZIP- and ZIB-Shewhart control charts with known parameters, are equal to

ARL =
1

β
, SDRL =

√
1− β
β

,

where β is the probability defined for the ZIP- and ZIB-Shewhart control charts
in the previous sub-sections.
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3 The upper-sided ZIP- and ZIB-Shewhart control
charts with estimated parameters

3.1 The upper-sided ZIP-Shewhart control chart with estimated
λ0

Let us now assume that we have a Phase I data set composed by m independent
random variables {X1, X2, . . . , Xm} with Xi ∼ ZIP (φ, λ0). We also assume
that the value of φ is known from previous knowledge or that it has been
accurately estimated (see also He et al. [7]). Thus, the moment estimator λ̃0
of λ0 is given by

λ̃0 =
1

m(1− φ)

m∑
i=1

Xi =
W

m(1− φ)
,

where W =
∑m
i=1Xi is a discrete random variable defined on {0, 1, . . .}. Since

the probability generating function (p.g.f.) GX(s) of the ZIP distribution with
parameters φ and λ0 is GX(s) = φ + (1 − φ)e−λ0(1−s) (see Johnson et al. [9,
p.353]), the p.g.f. of W is given by

GW (s) =
(
φ+ (1− φ)e−λ0(1−s)

)m
,

and, thus, W is not a ZIP random variable. Therefore, the p.m.f. of W can be
numerically evaluated for different values of φ, λ0 and m via the formula

fW (w |m,φ, λ0 ) = P (W = w) =
1

w!

dw

dsw
GW (s)

∣∣∣∣
s=0

.

When λ0 is estimated by λ̃0, the UCL of the upper-sided ZIP-Shewhart
control chart becomes

ŨCLZIP =

⌊
λ̃0(1− φ) +K

√
λ̃0(1 + λ̃0φ)(1− φ)

⌋
.

Let β̃ be the probability that the number Yi of non-conformities exceeds ŨCLZIP ,
conditionally to W = w, i.e.,

β̃ = P
(
Yi > ŨCLZIP

∣∣∣W = w
)
.

By replacing ŨCLZIP with its respective value, λ̃0 with W/(m(1 − φ)) and
using the condition W = w, we get

β̃ = 1− FZIP

(⌊
w

m
+K

√
w

m

(
1 +

wφ

m(1− φ)

)⌋∣∣∣∣∣φ, λ1
)
,

since Yi ∼ ZIP (φ, λ1).
Let L be the run length of the upper-sided ZIP-Shewhart control chart

with estimated parameter λ0. Since the distribution of W is defined for w ∈
{0, 1, . . .}, the (unconditional) ARL and SDRL are, respectively, given by

ARL =

∞∑
w=0

fW (w |m,φ, λ0 )

(
1

β̃

)
,
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SDRL =
√
E(L2)−ARL2,

where

E(L2) =

∞∑
w=0

fW (w |m,φ, λ0 )

(
2− β̃
β̃2

)
.

3.2 The upper-sided ZIB-Shewhart control chart with estimated
p0

We assume that we have a Phase I data set composed of m independent random
variables {X1, X2, . . . , Xm} with Xi ∼ ZIB(φ, n, p0). As for the upper-sided
ZIP-Shewhart control chart, we assume that the value of φ is known from
previous knowledge or that it has been accurately estimated. The moment
estimator p̃0 of p0 is given by

p̃0 =
1

mn(1− φ)

m∑
i=1

Xi =
V

mn(1− φ)
,

where V =
∑m
i=1Xi is a discrete random variable defined on {0, 1, . . . ,mn− 1,mn}.

Since the p.g.f. GX(s) of the ZIB distribution with parameters φ, n and p0 is
GX(s) = φ + (1 − φ)(1 − p0 + p0s)

n, (see Johnson et al. [9, p.354]), the p.g.f.
of V is equal to

GV (s) = (φ+ (1− φ)(1− p0 + p0s)
n)
m
,

and, thus, V is not a ZIB random variable. As for W , the p.m.f. of V can be
evaluated numerically for various choices of m,n, φ and p0 by using the formula

fV (v |m,φ, n, p0 ) = P (V = v) =
1

v!

dv

dsv
GV (s)

∣∣∣∣
s=0

.

When p0 is estimated by p̃0, the upper control limit of the upper-sided
ZIB-Shewhart control chart becomes

ŨCLZIB =
⌊
np̃0(1− φ) +K

√
np̃0 (1− p̃0 + np̃0φ) (1− φ)

⌋
.

Let β̃ be the probability that the number Yi of non-conforming units in a sample

of size n is greater than ŨCLZIB , conditionally to V = v, i.e.,

β̃ = P
(
Yi > ŨCLZIB

∣∣∣V = v
)
.

By replacing ŨCLZIB with its respective value, p̃0 by V/(mn(1−φ)) and using
the condition V = v, we get

β̃ = 1− FZIB

(⌊
v

m
+K

√
v

m

(
1− v(1− nφ)

nm(1− φ)

)⌋∣∣∣∣∣φ, n, p1
)
,

since Yi ∼ ZIB(φ, n, p1).
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Let L be the run length of the upper-sided ZIB-Shewhart chart with esti-
mated parameter p̃0. Since the distribution of V is defined on {0, 1, . . . ,mn− 1,mn},
the (unconditional) ARL and SDRL are, respectively, given by

ARL =

mn∑
v=0

fV (v |m,φ, n, p0 )

(
1

β̃

)
,

SDRL =
√
E(L2)−ARL2,

where

E(L2) =

mn∑
v=0

fV (v |m,φ, n, p0 )

(
2− β̃
β̃2

)
.

4 Numerical Study

In the current section, we present the results on an extensive numerical study
concerning the performance and design aspects of the upper-sided ZIP- and
ZIB-Shewhart control charts with estimated parameters. In Tables 1 and 2,
we provide the in-control ARL and SDRL values of the upper-sided ZIP-
and ZIB-Shewhart control charts, respectively, for different sets of parameters
(φ, λ0) (for the ZIP distribution) and (φ, n, p0) (for the ZIB distribution). Also
the size m of the preliminary sample is m ∈ {200, 500} while the case m =∞
denotes the known parameter case. Due to the discrete nature of the ZIP and
the ZIB distribution, it is not always possible to have the desired in-control
ARL value. Thus, we provide the value of K that gives an in-control ARL
value (in the known parameter case) as close as possible to the desired value
ARL0 = 370.4.

m = 200 m = 500 m =∞
φ λ0 K ARL SDRL ARL SDRL ARL SDRL

0.9 1 6.66 551.34 3760.98 360.69 630.97 526.64 526.14
2 6.41 1323.70 194012.80 525.54 1234.63 189.92 189.42
5 5.72 > 106 > 106 1215.88 8527.50 314.19 313.69

0.8 1 6.33 1293.82 5212.46 837.76 1472.54 263.32 262.82
2 5.49 1460.34 8920.58 831.59 1595.72 301.87 301.37
5 4.47 2847.98 142615.80 993.08 2544.38 365.09 364.59

0.7 1 5.18 642.64 1503.30 532.30 775.35 175.55 175.05
2 4.50 661.39 1718.82 489.48 744.56 201.24 200.74
5 3.65 874.05 3851.17 524.24 911.09 243.39 242.89

Table 1. In-control ARL and SDRL values of the upper-sided ZIP-Shewhart chart

Tables 1 and 2 reveal that it is not possible to have a common in-control
ARL value when m =∞ for all the considered pairs of (φ, λ0) or (φ, n, p0). In
some cases, the in-control ARL values are smaller while, in other cases, they are
larger than 370.4. This fact is attributed to the discrete nature of the ZIP and
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m = 200 m = 500 m =∞
φ n p0 K ARL SDRL ARL SDRL ARL SDRL

0.9 100 0.005 7.25 559.42 2532.77 389.17 669.73 111.33 110.83
0.010 6.68 579.06 4409.98 372.34 662.26 544.25 543.75
0.020 6.43 1536.77 448794.70 568.04 1408.54 196.73 196.23

0.8 200 0.005 6.34 1346.46 5597.84 863.42 1532.02 267.65 267.15
0.010 5.50 1577.62 10527.94 878.91 1719.67 312.05 311.55
0.020 4.48 1348.85 20837.46 622.72 1326.20 247.83 247.33

0.7 500 0.005 4.35 816.56 2405.26 567.61 898.78 239.05 238.55
0.010 3.66 951.43 4446.60 557.35 984.23 251.70 251.19
0.020 3.06 1372.93 22576.55 560.21 1253.97 248.92 248.42

Table 2. In-control ARL and SDRL values of the upper-sided ZIB-Shewhart chart

the ZIB distribution. Also, we mention that for (relatively) large preliminary
samples (i.e., for m = 200 or 500), very large values (larger than 106) can be
occurred for the in-control ARL and (especially) SDRL.

Since the in-control ARL values are very different in the known and in
the estimated parameter case, it is of great practical interest to know how
large the size m of the Phase I sample must be in order to have approxi-
mately the same in-control ARL values in both the known and the estimated
parameter case, for the same value of K. In Table 3 we provide the minimal
values of m for φ ∈ {0.9, 0.8, 0.7}, λ0 ∈ {1, 2, . . . , 8} (ZIP case), satisfying

∆ =
|ARL0,m−ARL0,∞|

ARL0,∞
< 0.05, i.e., the relative difference within the in-control

ARL0,m (estimated parameter case) and the in-control ARL0,∞ (known pa-
rameter case) is not larger than 5%.

λ0 φ = 0.9 φ = 0.8 φ = 0.7

1 194 > 105 > 105

2 > 105 > 105 > 105

3 > 105 274 > 105

4 644 > 105 239
5 > 105 > 105 > 105

6 991 > 105 343
7 > 105 605 > 105

8 > 105 > 105 462

Table 3. Minimal values of m for λ0 ∈ {1, 2, 3, 4, 5, 6, 7, 8} and φ ∈ {0.9, 0.8, 0.7}
satisfying ∆ =

|ARL0,m−ARL0,∞|
ARL0,∞

< 0.05.

The respective results for the ZIB case are given in Table 4, for φ ∈
{0.9, 0.8, 0.7}, n ∈ {100, 200, 500}, p0 ∈ {0.001, 0.002, 0.005, 0.010, 0.020, 0.030}.

As it can be noticed in Tables 3 and 4, depending on the values of (φ, λ0)
(ZIP case) or (φ, n, p0) (ZIB case), the minimal value of m satisfying ∆ < 0.05
can be very large and, in some cases, larger than 100000. Also, neither in the
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φ n p0 m φ n p0 m φ n p0 m

0.9 100 0.001 > 105 0.8 100 0.001 > 105 0.7 100 0.001 > 105

0.002 > 105 0.002 > 105 0.002 > 105

0.005 > 105 0.005 > 105 0.005 > 105

0.01 201 0.01 > 105 0.01 > 105

0.02 > 105 0.02 > 105 0.02 > 105

0.03 > 105 0.03 289 0.03 > 105

200 0.001 100 200 0.001 > 105 200 0.001 > 105

0.002 > 105 0.002 100 0.002 > 105

0.005 201 0.005 > 105 0.005 > 105

0.01 > 105 0.01 > 105 0.01 > 105

0.02 664 0.02 > 105 0.02 249
0.03 > 105 0.03 > 105 0.03 361

500 0.001 > 105 500 0.001 > 105 500 0.001 > 105

0.002 201 0.002 > 105 0.002 > 105

0.005 > 105 0.005 > 105 0.005 > 105

0.01 > 105 0.01 424 0.01 > 105

0.02 1596 0.02 854 0.02 > 105

0.03 > 105 0.03 > 105 0.03 > 105

Table 4. Minimal values of m for p0 ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.03}, n ∈
{100, 200, 500, 1000} and φ ∈ {0.9, 0.8, 0.7} satisfying ∆ =

|ARL0,m−ARL0,∞|
ARL0,∞

< 0.05.

case of the upper-sided ZIP-Shewhart nor in the case of the upper-sided ZIB-
Shewhart control chart we can identify a trend on m, concerning the parameters
(φ, λ0) or (φ, n, p0). Our numerical analysis revealed also that as m approaches
the case m = ∞, the in-control ARL values converge to a specific value, but
this value is not necessarily the in-control ARL value in the known parameter
case. We refer to Rakitzis and Castagliola [12] for more details.

Clearly, in practice is not always possible to wait for a long time until the
required Phase I samples are accumulated. In order to assist practitionerts, we
provide Tables 3 and 4 which contain the in-control ARL and SDRL values
along with “corrected” values K ′ of the chart’s design parameter K that takes
the size m of the Phase I sample into account. Thus, given the size m of the
Phase I sample and using K = K ′, the in-control ARL value corresponding to
the estimated parameter case will be as close as possible to the in-control ARL
value in the known parameters case, for the specific combination of (φ, λ0) (for
the ZIP distribution) or (φ, n, p0) (for the ZIB distribution).

For example, in the case of the upper-sided ZIP-Shewhart chart, for φ = 0.8
and λ0 = 2, the in-control ARL (SDRL) is equal to ARL = 301.87 (301.37)
with K = 5.49. When the size of the Phase I sample is m = 200, then, the
“corrected” value for the chart parameter is K ′ = 4.55 which gives in-control
ARL (SDRL) equal to ARL = 300.99 (825.09), very close to the in-control
ARL value in the known parameter case. It is also worth to mention that using
the “corrected” value for K, a reduction in the in-control SDRL value is also
attained (i.e., from SDRL = 8920.58 to SDRL = 825.09). Similar conclusions
can be deduced for the ZIB control schemes.
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φ = 0.9 φ = 0.8 φ = 0.7

λ0 m K′ ARL SDRL K′ ARL SDRL K′ ARL SDRL

1 100 5.73 524.39 > 106 4.68 262.19 1364.69 4.00 174.63 436.38
200 6.65 525.42 3663.80 4.98 264.25 564.90 4.18 173.12 289.19
500 7.20 533.43 1080.53 5.24 263.06 388.41 4.33 175.25 213.80

2 100 4.35 190.41 115107.80 4.18 300.49 3869.89 3.62 201.46 669.05
200 4.97 191.89 764.69 4.55 300.99 825.09 3.82 199.03 375.55
500 5.38 189.08 317.12 4.78 301.13 476.88 3.95 200.38 273.62

5 100 3.64 319.44 > 106 3.39 363.80 143914.40 3.00 245.19 2402.66
200 4.43 319.63 66296.99 3.78 367.75 2279.71 3.21 242.27 649.32
500 4.98 313.01 899.86 4.04 365.36 726.50 3.35 243.22 375.08

Table 5. “Corrected” values K′ of the upper-sided ZIP-Shewhart chart and in-control
(ARL, SDRL) values

m = 100 m = 200 m = 500

φ n p0 K′ ARL SDRL K′ ARL SDRL K′ ARL SDRL

0.9 100 0.005 4.37 108.21 329.16 4.74 109.17 177.42 5.00 111.26 125.66
0.010 5.70 555.13 908087.60 6.58 546.33 3613.64 7.22 555.21 1148.48
0.020 4.36 200.30 209643.70 4.98 197.60 907.93 5.39 196.52 333.04

0.8 200 0.005 4.68 268.24 1458.30 4.99 269.55 583.24 5.25 267.77 398.07
0.010 4.19 315.95 4917.25 4.55 313.71 887.69 4.79 312.42 500.90
0.020 3.45 251.02 23967.60 3.79 247.40 970.52 4.02 248.00 428.56

0.7 500 0.005 3.54 243.07 1043.81 3.75 239.48 499.74 3.88 239.01 340.09
0.010 3.00 255.06 2762.43 3.21 250.15 688.87 3.35 249.81 390.23
0.020 2.46 242.75 30135.24 2.69 243.91 1222.66 2.85 250.85 472.84

Table 6. “Corrected” values K′ of the upper-sided ZIB-Shewhart chart and in-control
(ARL, SDRL) values

5 Conclusions

In this work we studied the performance of upper-sided Shewhart-type control
charts for zero-inflated processes with estimated parameters. Assuming that
the zero-inflated parameter φ is known, we used the distribution of the moment
estimator λ̃0 of λ0 (for a ZIP process) and the distribution of the moment es-
timator p̃0 of p0 (for a ZIB process) in order to evaluate the performance of
the respective schemes for several Phase I sample sizes, in terms of ARL and
SDRL. Our analysis revealed that for processes with an excessive number of
zeros, even for large preliminary samples, the performance of the upper-sided
ZIP- and ZIB-Shewhart control charts in the estimated parameter is substan-
tially different to the performance in the known parameter case. In order to
assist practitioners, practical guidelines for the statistical design of the pro-
posed schemes, when the size m of the preliminary sample is predetermined,
were also provided.
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Abstract. Using available data from the New York stock market (NYSM) we test
four different biparametric models to fit the correspondent volume-price distributions
at each 10-minute lag: the Gamma distribution, the inverse Gamma distribution,
the Weibull distribution and the log-normal distribution. The volume-price data,
which measures market capitalization, appears to follow a specific statistical pattern,
other than the evolution of prices measured in similar studies. We find that the inverse
Gamma model gives a superior fit to the volume-price evolution than the other models.
We then focus on the inverse Gamma distribution as a model for the NYSM data and
analyse the evolution of its distribution parameters as a stochastic process. Assuming
that the evolution of these parameters is governed by coupled Langevin equations, we
derive the corresponding drift and diffusion coefficients, which then provide insight
for understanding the mechanisms underlying the evolution of the stock market.
Keywords: Stochastic Distributions,Volatility,Stock Market.

1 Scope and Motivation

In 1973 a breakthrough in financial modelling was proposed by Black and Sc-
holes, who reinterpreted the Langevin equation for Brownian motion to predict
value European options, assuming the underlying asset follows a stochastic pro-
cess in the form[1,2]

dSt
St

= µdt+ σdWt, (1)

for S0 > 0, where St is the asset price, µ is the mean rate of the asset return and
Wt describes a Wiener process, with distribution Wt ∼ N(0, t). The value of σ,
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so-called volatility, measures the risk associated to the fluctuation of the asset
return. Thus, by making a good estimate of its value one is able to establish a
criterion for selling and buying in order to optimize the profit.

The BS, and similar stochastic approaches based on Gaussian uncorrelated
noise sources, have since then received both strong criticism and improvements,
such as stochastic volatility models[3]. It has been acknowledged that in more
realistic models the statistics of extreme events, leading to heavy tails in the
distributions, as well as correlations between noise sources and other compo-
nents need to be taken into account.

In this paper we put this important extension in a more general context.
From a purely mathematical perspective, for each stochastic variable obey-
ing a given Langevin equation there is a probability density function (PDF)
associated to it that fulfils a Fokker-Planck equation[4]. Probability density
functions are defined by a few parameters that characterize the corresponding
statistical moments. The generalization of the Black-Scholes model to incor-
porate stochastic volatility is a particular case of having one probability den-
sity function whose parameters are themselves stochastic variables governed by
stochastic differential equations. By modelling such “stochastic” probability
density functions one is able to properly describe how they evolve and, thus,
evaluate how uncertain is a given prediction of the corresponding variable. We
focus here on the evolution of the volume-price, i.e. on changes in capitaliza-
tion, which should have more the character of a conserved quantity than the
price per se. While the price and volume distribution are useful for portfolio
purposes, to have access to the overall distribution of volume-prices provides
information about the entire capital traded in the market.

In this paper, we show that heavy tails are present in the statistics of
the capitalization, and we specifically present a stochastic evolution equation
for the tail parameter. In the context of finance models, such approach can
eventually enable one to improve measures of risk and to provide additional
insight in risk management.

We start in Sec. 2 by describing the data collected from the New York stock
market and in Sec. 3 we apply four typical models in finance to fit the empirical
data. We will argue that inverse Gamma is a good model for the cumulative
distributions of volume-prices and therefore, in Sec. 4, we concentrate in its fit
parameters to mathematically describe the stochastic evolution of volume-price
distributions. Conclusions close the paper in Sec. 5.

2 Data

We construct a database of several listed shares extracted from the New York
stock market (NYSM) every ten minutes starting in March 16th, 2011 to Jan-
uary 1st, 2014. From the data, we compute volumes distributions for each ten
minutes, in order to obtain a full description of the temporal evolution of the
transactions. All the data were collected from the website http://finance.-
yahoo.com/ every 10 minutes during almost three years (907 days), yielding a
total of Np ∼ 105 data points.
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Fig. 1. Illustration of the volume and price evolution for one company during four
days: (a) volume V , (b) price p and (c) volume-price pV time-series.

Each register refers to one specific listed company and is composed by the
following fields: last trade price, volume, day’s high price, day’s low price, last
trade date, 200 days-moving average, average daily volume and company name.
In total, we were able to have a total of Ne ∼ 2000 listed companies for each
time-span of 10 minutes. Since we do not have access to the instantaneous
trading price of each transaction for each company, we consider the last trade
price as the estimate of the price change on each set of ten minutes trading
volume.

Figure 1a and 1b show the evolution of the trading volume V and the
last trade price p respectively for one single company during approximately
5 working days. We define the volume-price s = pV as the product of both
these properties (see Fig. 1c) and will concentrate henceforth in analysing its
joint evolution. This image gives us an idea of how our volume-price s and
the separated components, volume V and price p, change along one day in one
particular company and, consequently, it reflects the change in capitalization
of a given company.

In Fig. 1 we also indicate that the period of six and half hours during which
the price change, corresponds exactly to the period at which the NYSM is open,
generally from 9:30 am to 4:00 pm (east time). After the market closes, there is
still a 4-hour window during which trading occurs, so-called after-hours trading,
typically from 4:00 to 8:00 pm. We maintain these largely inactive periods for
future studies on the statistics of the after-hours trade. In the context of this
study, the changes in capitalization during these periods can be neglected.
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Fig. 2. (a) Numerical cumulative density function fitted by the four different dis-
tributions: log-normal distribution Γ−distribution, inverse Γ−distribution, Weibull-
distribution. To characterize the evolution of the density functions one first considers
the time series of the (a) empirical volume-price average 〈s〉 and of the (b) corre-
sponding standard deviation σ.

For each 10-minute interval we compute the cumulative density distribution
(CDF) of all Ne volume-prices and record its respective average 〈s〉 over the
listed companies, and standard deviation σ. For convenience, we take the
volume-price normalized to its average 〈s〉 when computing the CDF. In Fig. 2a
we show the CDF for a particular 10-minute span and in Fig. 2b and 2c one
plots the typical evolution of the average and standard deviation respectively.

The choice of the normalized volume-price is the best for assessing the un-
derlying “geometry” of the market as a complex network[5], and therefore we
consider henceforth the normalized volume-price s/〈s〉. Volume-price repre-
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Fig. 3. Time series of the two parameters characterizing the evolution of the cumu-
lative density function (CDF) of the volume-price s: (a) Γ -distribution (b) inverse
Γ -distribution, (c) log-normal distribution and (d) Weibull distribution. Each point
in these time series correspond to 10-minute intervals. Periods with no activity cor-
respond to the period where market is closed, and therefore will not be considered
in our approach. (e-f) Probability density function of the resulting relative error
correspondent to the fitting parameters φ and θ for each distribution. In all plots,
different colors correspond to different distribution models.

sents the amount of capital of a particular listed company that is exchanged in
the market. The normalized distribution of volume-price represents the distri-
bution of links between investors and companies.

Param. err. ∆φ/φ Param. err. ∆θ/θ

Average Std Dev. Average Std Dev.

Γ−distribution 2.21e-2 8.54e-3 2.82e-2 1.16e-2

Inverse Γ−distribution 1.43e-2 6.46e-3 3.43e-2 5.49e-2

Weibull 3.13e-2 5.29e-2 4.89e-2 9.77e-2

Log-normal 3.78e-2 7.53e-2 5.60e-2 9.28e-2

Table 1. The average and standard deviations of the value distributions for each
parameter error, ∆φ/φ and ∆θ/θ, in Fig. 3e-f. The best fit is indeed obtained for the
inverse Gamma distribution.
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3 Four models for volume-price distributions

In order to find a good fit to the empirical CDF we will consider four well-known
bi-parametric distributions, namely the Gamma distribution, inverse Gamma
distribution, log-normal distribution and the Weibull distribution. We fit the
empirical CDF data (bullets in Fig. 2a) with these four different models, which
are often used for finance data analysis[6].

The Gamma probability density function (PDF) is given by

FΓ (s) =
sφΓ−1

θφΓΓ Γ [φΓ ]
exp

[
− s

θΓ

]
, (2)

the inverse Gamma PDF by

F1/Γ (s) =
θ
φ1/Γ

1/Γ

Γ [φ1/Γ ]
s−φ1/Γ−1exp

[
−
θ1/Γ

s

]
, (3)

the log-normal PDF by

Fln(s) =
1

sθln
√

2π
exp

[
−

(log s− φln)2

2θ2
ln

]
(4)

and the Weibull PDF by

FW (s) =
φW

θφWW
sφW−1exp

[
−
(

s

θW

)φW ]
. (5)

In Fig. 2a we plot the corresponding fit of each of these models for the
empirical CDF. In Fig. 3(a-d) we show a short time-interval of the series of
each pair of parameter.

For each model above, we take into account the relative error of each pa-
rameter value, ∆φ/φ and ∆θ/θ, computed using a least square scheme when
making the fit. Figure 3e and 3f show the distributions of the observed relative
errors of φ and θ respectively. From these two plots it seems that each distri-
bution fits quite well the empirical CDF data, since relative errors are mostly
under five percent. From the inspection of Fig. 3e and 3f as well as Tab. 1,
one sees that the best fit seems to be for the inverse Gamma distribution and
therefore we will consider henceforth only this distribution.

4 The stochastic evolution of inverse Gamma tails

To explore the inverse Gamma distribution model, we first consider the meaning
of its two parameters. A closer look at Eq. (3) leads to the conclusion that while
θ characterizes the shape of the distribution for the lowest range of volume-
prices, the parameter φ characterizes the power law tail ∼ s−φ−1. Since it is
this tail that incorporates the large fluctuations of volume-prices, in this section
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Fig. 4. Illustration of the conditional moments computed directly from the time series
of the φ time-series for the inverse-Γ : (a) first conditional moment M (1) and (b) first
conditional moment M (2), from which one can conclude about the possible existence
of measurement noise sources (see text). Here xi is the bin including the average
value 〈φ〉.

we focus on the evolution of the parameter φ solely. Label 1/Γ is dropped for
simplicity.

Taking the time series of the parameter φ we derive the stochastic evolution
equation as thoroughly described in Ref. [7]. This approach retrieves two func-
tions, called the drift and diffusion coefficients[4], D1(φ) and D2(φ), governing
the stochastic evolution of φ:

dφ = D1(φ)dt+
√
D2(φ)dWt. (6)

Where Wt represents the typical Wiener process, with 〈Wt〉 = 0 and 〈WtW
′
t 〉 =

2δ(t− t′). Typically the drift term governs the deterministic contributions for
the overall evolution of φ, while the diffusion term governs the corresponding
(stochastic) fluctuations.

Functions D1(φ) and D2(φ) can be computed directly from the data[7]
computing the first and second conditional moments respectively (n = 1, 2):

Dn(φi) = lim
τ→0

1

n!τ
Mn(φi, τ), (7)

where φi represents one specific bin-point in the range of observable values and
the conditional moment is given by

Mn(φi, τ) = 〈(φ(t+ τ)− φ(t))n〉|φ(t)=φi . (8)

Figure 4a and 4b show the first and second conditional moments respec-
tively, as a function of τ , for a given bin value φi. For the lowest range of τ
values one sees a linear dependence of the conditional moments, which enables
to directly extract the corresponding value of the drift and diffusion in Eq. (7).
Further, there is a clear offset in both moments, which indicates the presence
of an additional stochastic process superimposed on the intrinsic stochastic
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dynamics, called measurement noise[8], whose amplitude can be estimated as
σ =

√
M2(〈φ〉, 0)/2[9]. See Fig. 4b.

By computing the slopes of M1 and M2 for each bin in variable φ yields
a complete definition of both drift D1 and diffusion D2 coefficients for the
full range of observed φ values. Figures 5a and 5b show the drift and diffu-
sion respectively. While the diffusion term has an almost constant amplitude,√
D2 ∼ 10−3, the drift is linear on φ with a negative sloped and a fixed point

close to one, φf ∼ 0.93.
This last observation is interesting from the point of view of the inverse

Gamma PDF: the volume-price tails fluctuate around an inverse square law
∼ s−2 driven by a restoring force which can be modelled through Hooke’s law.
Furthermore, the fluctuations around the inverse square law are quantified by
the diffusion amplitude

√
D2 of the tail parameter, which can be interpreted

as a sort of “parameter volatility”.

5 Discussion and Conclusions

In this paper we analyse New York stock market volume-price distributions
during the last two years sampled every ten minutes. We tested four models
commonly applied to finance data and presented evidence that the inverse
Gamma distribution is the model yielding the least error.

Further, we considered the parameter controlling the tail of the inverse
Gamma distribution and extracted a Langevin equation governing its stochastic
evolution directly from the parameter’s time series. While the deterministic
contribution (drift) depends linearly on the parameter, with a restoring force
around unity approximately, the stochastic contribution (diffusion) is almost
constant. Considering both contributions together, our findings show that the
tail of the volume-price distributions tend to evolve stochastically around an
inverse square law with a constant parameter volatility.

This parameter volatility can be proposed as a risk measure for the expected
tail of New York assets. The analysis propose here can be extended to other
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markets or even in other contexts where non-stationary processes are observed.
If the inverse Gamma distribution is commonly the best model for volume-
price distributions is up to our knowledge an open question. The confidence of
each model can be further tested using other methods such as the Kolmogorov-
Smirnov test[10].

It must be noticed that the above approach is only valid for Markovian pro-
cesses, which seems to be the case of the parameter here considered, which was
tested comparing two-point and three-point conditional probabilities. More-
over, the Langevin analysis here proposed can also be extended to both pa-
rameters characterizing the inverse Gamma model. Further research will be
necessary to access the reliability of the stochastic reconstruction of the volume-
price evolution, and a comparison to theoretical agent models. These and other
issues will be addressed elsewhere.
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Abstract. Estimation of parameters for processes with independent increments is
many times effected exclusively through fitting an infinitely divisible distribution on
increments obtained from finitely many readings. Ignoring path properties, which
have been involved in data generation in the first place, must have negative effects.
Much work has been done to improve the quality of simulated data from that gen-
erated through cumulative sums of independent random variates. Exact simulation
tries to put in more realism about path properties. In this paper we study this situa-
tion within the simple context of Brownian motion, proposing two estimators which
incorporate properties related to path continuity. Results obtained from simulations
with data generated by various types of algorithms are compared and contrasted with
ones obtained from the less sophisticated variance estimator.
Keywords: estimation from stationary and independent increments, simulated paths
, continuity of paths.

1 Introduction

Parameter estimation, intended so as to help determine the type of stochastic
process one should use for specific data generating mechanisms, is common in
many applications of probability and statistical theory. Once the pioneers of
random processes paved a highway towards deep structural results within the
realm of the mathematically possible, effective use of stochastic models required
a number of tasks. One important statistical task centres around devising reli-
able algorithms to estimate parameters and functionals of particular processes
from a finite number of observations.

One widely used technique involved specifying a probability density func-
tion which captures the true distribution of the observations in a form which
facilitates the estimation problem. The stationary, independent increments
assumption, for example, simplifies many estimation tasks enormously by al-
lowing standard methods like maximum likelihood to take over. However this
type of assumption encapsulates much less than what would identify a partic-
ular process completely. Independent, stationary increments on their own are
not sufficient to force a process to be Lévy. We need right continuity of paths
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besides stochastic continuity. There are many processes which could provide
observations whose differences are effectively identically distributed, as well as
independent, but nowhere close to being the process we want. For example,
the class of all cumulative sums of centred normals with variance δt cannot be
identified with Wiener processes or with the class of all finite evaluations of
a continuous path chosen in compliance with Wiener measure and sampled at
discrete times. Similar considerations apply to Lévy processes.

2 Context

Rather than go for Lévy processes, we plan to take a step or two backwards
and limit ourselves to Brownian motion, which in its simplicity offers a neater
context to come to grips with the basics. We consider Brownian motion Bt,
t ∈ R+, observed as a finite sequence of readings over equally spaced intervals
of time at 0 = t0 < t1 < ... < tn = t. Random variables Bti have increments
Bti+1−Bti which are independent, centred, normally distributed with variance
σ2(ti+1 − ti). The purely distributional properties of the increments might be
what interests a statistician especially if he uses Brownian approximations to
complex estimators via Donsker’s theorem, or the Hungarian construction, to
mention but just two much used approximations.

From the stochastic processes point of view the estimation of a process ex-
clusively through increments loses a lot of information by ignoring the path
properties of the parent process. Processes which jump at fixed times ti in
normal increments are processes in their own right. Brownian motion is much
more than that; including, as it does, the possibility of fleshing itself out on
paths which are continuous with probability 1. We propose to study the dif-
ferences between two scale estimators, which somehow recognize this property,
with the classical one which ignores it.

The sequence of partial sums of centred iid normal random variables Sn =
n∑
i=1

Xi is a discrete-parameter stochastic process, which interests statisticians

for they come across it in many situations involving estimations of all sorts.
Donsker’s theorem tells us that this process can be approximated by Brown-
ian motion. We zoom on the differences between these two processes. Elemen-
tary theory tells us that max

0≤s≤t
Bs is distributed as |Bt|. And this result utilizes

continuity of the paths. The distribution of the maximum of Sn above, suitably
scaled, is different from that of |Bt|. Exact distributions of sum of indepen-
dent, identically distributed random variables are hard to come by and very
messy to establish. A number of published asymptotic results using Brownian
approximations are available. The level of dissatisfaction with random walk
approximations of this type as articulated in [1], has been brought to notice
more than once. We displace this argument slightly by asking ”What are we
missing when we estimate Brownian motion solely through the independent
increments assumption?”
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We develop this idea further by exploiting differences between the exact dis-
tributions for the maximum of finite sums and the Brownian running maximum
translated into statistics which depend on path continuity in the Brownian case.
We quote some results and supply an accompanying graph:

E[ max
1≤i≤n

Si] =
σ√
2π

n−1∑
i=1

1√
i

(1)

E[ max
1≤s≤t

Bs] =

√
2t

π
(2)

Fig. 1. Increase in Expected Maximum of Sums with no of terms n

The first equation is proved in [7]. We note that the expectation for the
Brownian expression is always greater than for finite sums suitably scaled;
σ = 1√

n
. We note how slow is the convergence of the finite sums to 1√

2π
≈

0.797884560802865. At n = 100000 the sum equals 0.796040232112369 . The
emphasis on continuous paths for getting from one time instant to the next,
enforced probabilistically by Wiener measure, lifts the expectation of the max-
imum value slightly higher than if we performed independent jumps at each
time instant.

In a precise sense these problems have to be analysed in reverse within
the context of simulation. Generating sample values, which are supposed to
come from a Brownian process through independent normal increments, is very
approximative. In some applications this just will not do.
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3 Accurate Simulation of Brownian Paths

Simulated Brownian paths have many uses. Not only are they used in replicat-
ing physical and virtual phenomena which resemble Brownian motion, but they
are used extensively in complex computations of various statistical functionals
for which explicit analytical formulas are not known or not easily computable.
High frequency financial data, for instance, needs to be collected and analyzed
in a particular manner with a close watch on running maxima and local min-
ima. This will enable modelling and pricing of barrier options products which
constitute but one example as mentioned in [1]. In such cases the evaluation
of functionals of Brownian paths needs to be carried out with high precision,
not only in financial and actuarial applications but in others within the natural
sciences.

The ability to replicate running maxima and minima credibly is therefore
one feature which would be requested from simulations of Brownian motion.
As we have noted the behaviour of these two extremes depend a lot on the
continuity of paths. Reproducing faithfully maxima and minima has motivated
a lot of work aimed at producing algorithms which are marketed as giving
”exact” simulations. Much ingenuity has been displayed recently resulting
in new developments this area. Actually most research has targeted more
generally diffusion processes, with crucial input of techniques from importance
and rejection sampling [3].

Our interest in simulation stems more from the fact that we would like to
test our estimators using good simulated data. One cannot test accurately
the quality of an estimator if the data on which the testing is effected is not
exactly what it is supposed to be : random selections from a Brownian motion
in our case. One of the arguments being pushed in this paper is that poorly
representative simulated data may favour weaker algorithms, because certain
important features, like properties inherited from continuity of paths, would
be missing in the readings which will be used for calibration and evaluation
purposes. So we settled for four methods, two which ignore continuity of paths,
and two which have continuity inbuilt in their construction.

Furthermore we shall use data generated by four different algorithms:

• using cumulative sums of normal iid rv’s [IID]
• using Brownian bridge interpolations [BB]
• using a Fourier series expansion of the sample paths [FS]
• using first passage times to construct an ”exact algorithm” [EX]

The first algorithm needs no comment. The second consists of a random
N(0, 1) end-point at t = 1 , with mid-points being generated as points of a
Brownian bridge in the manner of Lévy’s construction. The third is imple-
mented through the series expansion:

Bt = tZ0 +

√
2

π

∞∑
n=1

Zn
n

sinnπt, 0 ≤ t ≤ 1

Continuity of paths is inbuilt through the series of functions, though con-
tinuity of the limit path would be assured only in the presence of uniform
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convergence. The fourth algorithm would be classified as an ”exact” simula-
tion. It uses a rejection algorithm as developed in [5] for the generation of a
sequence of hitting times of Brownian motion as it crosses fixed boundaries
starting from zero. The position of the path at intermediate time points ti are
worked out using the distribution of Brownian bridge which is boxed in value
between the values of the boundaries within which the path lives. The relevant
distributional result is given further down in this paper.

4 The Wiener Measure

Sampling paths of a Wiener process randomly means that the probability of a
given measurable set of paths being picked up is precisely the Wiener measure
of that set. Individual paths have Wiener measure 0; let alone paths which pass
through finitely many points at given corresponding instants of time. Being
unable to go directly for Wiener measure, we have to hook on to it through
particular properties of Brownian motion. Gaussianity of the finite-dimensional
distributions of a process is a very important central property, but not sufficient
to declare the process to be Wiener. So, as we have indicated, we shall somehow
insist on continuity of the paths. Continuity of paths, when the readings are
at finitely many points, obviously cannot be imposed directly. So we look
for properties which continuity imposes on the behaviour over time on the
process, and which are recoverable from, and reflected in, the running maxima
and minima processes. Denoting these processes by Mt = max

0≤s≤t
Bs and mt =

min
0≤s≤t

Bs, respectively, the technique for using, as well as enforcing, continuity

properties on the paths is to box individual paths between these two processes
and relate the three processes probabilistically. We shall need some important
results relating to the above, which we now state. First we give two forms of
the joint distributions of (mt, Bt,Mt) for a ≤ x ≤ b, and a ≤ 0, b ≥ 0:

P[mt ≤ a,Bt ∈ dx,Mt ≥ b] =
dx

σ
√

2πt
e

−(x−2(M−m))2

2σ2t (3)

P[mt > a,Bt ∈ dx,Mt < b] =
dx

σ
√

2πt

∞∑
k=−∞

e
−(x+2k(b−a)2)

(2σ2t) − e
−(x−2a+2k(b−a))2

(2σ2t) (4)

By marginalizing through Bt we obtain the conditional distribution function
for the running maximum and minimum:

P[Mt ≥ b,mt ≤ a|Bt = x] = exp

(
2(b− a)(x− 2(b− a))

σ2t

)
(5)

We obtain a formula for Wiener measure on C([0, 1]) suitably augmented
by a set of probability 0, which we denote by PW, by integrating out x from a
to b to obtain:
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PW[{f ∈ C([0, 1] : a < f(s) < b,∀s s.t. 0 ≤ s ≤ t}] =
∞∑

k=−∞

Φ

(
b+ 2k(b− a))

σ
√

2πt

)
− Φ

(
a+ 2k(b− a))

σ
√

2πt

)

+

∞∑
k=−∞

Φ

(
b− 2a+ 2k(b− a))

σ
√

2πt

)
− Φ

(
a− 2a+ 2k(b− a))

σ
√

2πt

)
(6)

These formulas will be found in various forms and variants in [2]. The last
one is of particular interest to us. It has been known since the classical book by
Feller on probability theory, not to mention Lévy’s book on stochastic processes
published in the 1940’s. We shall denote the probability above in this formula
by ΨW(a, b, t, σ). Though it involves a series, the formula it is derived from,
namely (4), converges uniformly in x ∈ [a, b] and does so very fast [6].

5 The Estimators

We propose now to take on an estimation problem for which the classical
method, using exclusively distributional properties of independent increments,
should be unbeatable. Not only does it exhibit unbiasedness but it achieves the
Cramér-Rao minimum. We consider estimation of the variance σ2 for which we
devise two estimators which take continuity of paths into consideration. Such
estimators should be more useful in estimation problems for linear and nonlin-
ear diffusions. Generalizing this work to diffusions should be straightforward.
It will not be attempted here, but left for future work because generalization
will only make the notation and formulas so much more complicated as to
hide the real issues. Since most results are asymptotic, sample size and dis-
cretization errors exert a strong influence. Largely we stay within the scope of
maximum likelihood estimators. Such estimators are not unique in general. In
some cases, more than one likelihood function can be used fruitfully. In our
case we shall involve the running maximum and minimum in one estimator and
the Wiener measure in the other, so as to factor in constraints which continu-
ous paths satisfy.
Denoting increments by Xi = Bti − Bti−1

and letting Mi = max
0≤i≤n

Bti , mi =

min
0≤i≤n

Bti we write the joint density function using the usual iid assumption

and multiply in the conditional distribution function from (5) :

1

(
√

2πσt)n
exp

(
−1

2σ2δt

n∑
i=1

X2
i

)
exp

2(Mn −mn)(Bn − 2(Mn −mn))

tσ2

We generate our first estimator as the maximizer of the log likelihood:

σ̂2
1 = arg min

s2

[
n log(s) +

1

2δts2

(
n∑
i=1

X2
i −

4

n
(Mn −mn)(Bn − 2(Mn −mn))

)]
(7)
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For the second estimator we involve the Wiener measure by maximizing the
probability that the path is included within the latest values of the maximum
and minimum:

σ̂2
2 = arg min

s2

[
n log(s) +

1

2δts2

(
n∑
i=1

X2
i

)
− log(Ψ(mn,Mn, t, s))

]
(8)

These two estimators introduce continuity of paths by stealth, as it were.
They penalize parameter estimates which distributionally make current sample
values of the running maximum and minimum less likely in two different senses.
In this sense they can be considered as being of the maximum likelihood type.
In fact the usual properties can be proved to be asymtotically true but we shall
not indulge in this here.

6 Estimator Performance

We proceed to discuss how we shall test the performance of the estimators.
It is customary to evaluate the qualities of estimators in terms of the usual,
simple statistical properties like unbiasedness and efficiency. We shall indeed
compute means and variances over large samples. Furthermore as benchmark
performer we shall take the likelihood-based, common unsophisticated variance
estimator :

σ̂2
0 =

1

nδt

n∑
i=1

X2
i (9)

Theoretically this is an unbiased, minimum variance estimator- but only rel-
ative to the information which we use in constructing it. This information
excludes any reference to continuity of paths. Unexpected departures from its
proven properties will make us uncomfortable about the quality of the data
on which we are testing. So the usual statistical properties are worth check-
ing. However, from a more pragmatic point of view, in many contexts there are
other criteria in evaluating estimation procedures which would be more crucial.

Especially within financial modelling exercises, the more frequently closer
to the true value, in absolute terms, the individual estimates are, the much
better the estimators are to be considered. This observation leads us to for-
mulate a criterion that estimators which have a higher probability of giving
estimates closer to the true values than others are somehow to be preferred.
Roughly speaking, we judge estimators which have higher rates of convergence
in achieving consistency to be preferable. More precisely, given estimators
θ̂1, θ̂2, if P[|θ̂1 − θ| > |θ̂2 − θ|] > 0.5 then we declare θ̂2 to be preferable;
more than 50 % of all samples should give θ̂2 estimates which are closer to the
true value. We shall investigate how this probability changes as the number of
observations over a time interval of the same length increases.
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In our setting, again for the sake of transparency, we take σ2 = 1 and
the time interval is [0, 1] with n equally spaced instants at which we have the
observations Bi. Four sets of data were generated by the corresponding four
algorithms mentioned earlier. Each set consists of four collections of outputs
from 1000 simulated ”paths”. The difference between the collections is the
frequency at which the paths were measured. These frequencies correspond to
the four values n = 100, 200, 500 and 1000 ( 128, 256, 512 and 1024 for DS2)
giving equally spaced time instants 0, 1

n , ....,
n
n over the unit time interval. DS1

was generated using algorithm IID, DS2 using BB , DB3 using FS and DB4
using EX. Each sequence of n readings, corresponding to one path was used to
give estimates for σ2 by each of the three methods described above.

7 Estimation Results from Simulations

Table 1 gives us the usual statistical measures for estimates from the benchmark
estimator. As far as DS1 and DS2 are concerned, everything is as expected.
Only the distributional properties of Brownian motion are taken into consider-

ation by the simulating algorithms and σ̂2
0 picks them up well enough. From

DS3 and DS4, however, we see actually a deterioration of the estimate means
as the sample size increases! The situation with the variance is also worse than
for the other 2 algorithms. This evidence indicates that the closer the data
generating mechanism follows the behaviour of selections from Brownian mo-
tion, the less faithfully are usual distributional properties observed because of
discretization.

Estimator σ̂2
0

No of obs DS1 DS2(*) DS3 DS4

Mean Variance Mean Variance Mean Variance Mean Variance
1000 0.99989 0.000498 0.99978 0.000504 0.97924 0.000921 0.98390 0.007510
500 0.99803 0.000985 0.99838 0.000993 0.98900 0.001048 0.99140 0.000981
200 1.00099 0.002279 0.99648 0.001991 0.99452 0.002518 0.99530 0.002300
100 0.99662 0.005442 0.99950 0.003980 0.99407 0.005551 0.99602 0.004811

Table 1. Means and Variances of σ̂2
0 on All Datasets.

(*) sample sizes for DS2 were in fact 1024, 512 , 256 , 128

Tables 2 and 3 reveal that the behaviour of σ̂2
1 is statistically very similar

to that of σ̂2
2. The second estimator is consistently more accurate and has

less variability within its results for the datasets which represent Brownian
motion worst. We also see that increasing sample size improved the quality

of the estimates throughout. Compared to results for σ̂2
0 we see that on DS3

and DS4 the two proposed estimators are indeed superior even though not by
much. Considering that we are comparing performances on territory on which

σ̂2
0 should reign supreme, the two estimators have done well.

660



Estimator σ̂2
1

No of obs DS1 DS2(*) DS3 DS4

Mean Variance Mean Variance Mean Variance Mean Variance
1000 1.00477 0.000550 1.00493 0.000558 0.98477 0.000770 0.98930 0.006344
500 1.00822 0.001190 1.00872 0.001201 0.99910 0.001054 1.00150 0.001113
200 1.02424 0.003561 1.01710 0.002761 1.01835 0.003410 1.01940 0.003400
100 1.04560 0.010754 1.03711 0.007026 1.03762 0.009348 1.04358 0.009627

Table 2. Means and Variances of σ̂2
1 on All Datasets.

(*) sample sizes for DS2 were in fact 1024, 512 , 256 , 128

Estimator σ̂2
2

No of obs DS1 DS2(*) DS3 DS4

Mean Variance Mean Variance Mean Variance Mean Variance
1000 1.00277 0.000507 1.00252 0.000507 0.98204 0.000824 0.98690 0.006660
500 1.00333 0.001001 1.00374 0.001056 0.99440 0.000961 0.99700 0.000986
200 1.01595 0.002589 1.00725 0.002130 1.00861 0.002625 1.00910 0.002400
100 1.02938 0.007224 1.02345 0.005010 1.02854 0.007669 1.03122 0.007269

Table 3. Means and Variances of σ̂2
2 on All Datasets.

(*) sample sizes for DS2 were in fact 1024, 512 , 256 , 128

Finally we consider direct confrontation between our estimators and the
benchmark. Table 4 gives very clear indications. For relatively low frequency

data, the increase in information which is incorporated in σ̂1
2 fails to beat the

robust performance of the benchmark especially on the latter’s home territory
with data generated by IID and BB. For high frequency however the tables

are turned with a remarkable increase in precision of σ̂2
1. Over 70% of the

estimates from σ̂2
1 come closer to the true value than the benchmark.

Dataset DS1 using IID
No of obs 1000 500 200 100
Probability 0.452 0.461 0.408 0.406

Dataset DS2 using BB
No of obs 1024 512 256 128
Probability 0.461 0.467 0.451 0.391

Dataset DS3 using FS
No of obs 1000 500 200 100
Probability 0.787 0.574 0.464 0.409

Dataset DS4 using EX
No of obs 1000 500 200 100
Probability 0.719 0.569 0.434 0.401

Table 4. Estimated probs of Estimator σ̂2
1 Giving Closer Estimates than σ̂2

0
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Dataset DS1 using IID
No of obs 1000 500 200 100
Probability 0.486 0.512 0.451 0.481

Dataset DS2 using BB
No of obs 1024 512 256 128
Probability 0.491 0.507 0.497 0.451

Dataset DS3 using FS
No of obs 1000 500 200 100
Probability 0.799 0.631 0.516 0.475

Dataset DS4 using EX
No of obs 1000 500 200 100
Probability 0.743 0.607 0.509 0.466

Table 5. Estimated probs of Estimator σ̂2
2 Giving Closer Estimates than σ̂2

0

Table 5 gives the same message as the previous one. It actually displays

the excellent performance throughout of σ̂2
2 which does better than σ̂2

1. This
in a sense was to be expected. Sampling from Brownian paths should reflect

Wiener measure. And σ̂2
2 tries to favoor parameter estimates which do exactly

that directly.

8 Conclusion

The aim of this paper was to study ways in which incorporating path properties
of a process, whose parameter is being estimated, improves estimator perfor-
mance. This was implemented on a simple setting involving Brownian motion.
Given the discrete structure of data available in many applications, knowledge
of what happens between actual readings is missing. But that does not mean
we do know what should happen probabilistically. The two estimators we pro-
posed incorporates features which respond to path continuity features. And
the results indicate that for high frequency data, the estimators are superior.
When the time gap between readings is longer the effect of what should happen
in between seems to relax. For empirical of analysis financial data this should
have repercussions.
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Abstract. Estimation of Lévy processes with the use of the characteristic function
has lately shifted much of its attention to nonparametric settings. However the para-
metric context still offers scope for study. The nature of neighbourhoods of the min-
ima sought for by the integrated square error estimator (ISEE), and its variants, could
be meaningfully related to a number of useful properties possessed by the estimator.
Furthermore the numerical problems associated with the actual computation of pa-
rameter estimates have not been given exhaustive attention. In this paper through
a slight reformulation of the ISEE formula, local geometric features of the optimal
solution used in ISEE are studied. This formulation is subsequently proposed within
a stochastic programming framework. The latter provides a powerful, productive
methodology and an alternative theoretical framework which are entertained within
this study. Results are presented and discussed.
Keywords: Lévy Processes, Characteristic Function, Stochastic Programming.

1 Introduction

In recent decades, there has been a sharp rise of interest in the study of Lévy
processes. Evidence of this is given by the extensive amount of literature which
has been focused not only on the application of Lévy processes in various fields
− most prominently in finance − but also on parameter estimation problems.
Some of the methods of estimation found in literature minimize some form of
distance function that involves the characteristic function of a Lévy process
and its empirical counterpart. As discussed in Sant and Caruana [9], the use
of the empirical characteristic function in the parameter estimation problem
causes a number of computational issues triggered by oscillatory integrands.
Weight functions are usually used to control these oscillations thus reducing
computational problems. However, there is no link between the choice of the
weight function and the characteristic function. In response to this problem,
the stochastic programming framework will allow the use of some properties
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C. H. Skiadas (Ed)
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of the characteristic function of continuous probability distributions to address
the above mentioned computational issues. Throughout this paper we shall be
using only continuous probability distributions.

2 Context

Given Lévy process (Zs)s∈R+
, with independent and identically distributed

increments which we denote by Xj , j = 1 . . . , n, we define the corresponding
characteristic function ρ(t,θ(s)) = E[exp(itZs)], where for each s, θ(s) ∈ Rd is
the vector of parameters which the process inherits from the infinitely divisible
distribution corresponding to random variable Zs. Usually, little time is spent
to consider the shape that this vector of parameters can take. We note that
ρ(t,θ(ns/m)) = E

[
exp(itZns/m)

]
= ρ(t,θ(s))n/m from the infinite divisibility

property forces ρ(t,θ(s)) = ρ(t,θ(1))s.
This functional equation is of the Pixeder type and does not allow any type of
parametrization. In fact, the Lévy-Khintcine and Lévy-Itô formulas propose
their own parametrizations related to specific measure-theoretic and functional
relationships. We address ourselves more to the parametrizations which are in
common use and which in many cases have to obey certain structures before
the corresponding family of distributions can be declared infinitely divisible (eg.
the gamma distribution has to have its second parameter constant to achieve
infinite divisibility). Using the polar representation we can write:

ρ(t,θ(s)) = R(t,θ(1))s exp[isϑ(t,θ(1))] = ρR(t,θ(s)) + iρI(t,θ(s))

and we see that R(t,θ(s)) = R(t,θ(1))s and sϑ(t,θ(s)) = sϑ(t,θ(1)).
In fact inspecting the usual parametrizations for the common distributions, sta-
ble distributions, extreme value distributions and mixtures the relationships for
the components of θ are of the form: θj(s) = as or θj(s) = a.
In what follows we shall work with ρ(t,θ(∆s)) where ∆s is a fixed time incre-
ment separating increments Xj obtained from readings of a Lévy process with
corresponding characteristic function which we shall denote from now onwards
as ρ(t,θ). Furthermore it makes sense that as a minimal assumption we take
continuity of ρ with respect to θ on some compact subset K ⊆ Rd whereon θ is
allowed to vary. In effect estimations over unbounded subsets are in practice,
not only hypothetical, but also impractical.
Next, we look at the problem of parameter estimation through the use of the
characteristic function but with an unusual choice of objective function for min-
imization. In fact the corresponding problem can be reframed as a stochastic
programming one.

3 Applying the Stochastic Programming Framework

A stochastic program can be written in the form

arg min
θ
{f(θ) = E[F (θ, X)]}, (1)
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and we shall formulate the location of the true parameter θ0 from Xj in this
way.
For t ∈ R, θ ∈ K dropping the suffix for a general Xj we have the random
functions:

F (t,θ, ω) = |eitX(ω) − ρ(t,θ)|2 − 1

= ρ2R(t,θ) + ρ2I(t,θ)− 2 cos(tX(ω))ρR(t,θ)− 2 sin(X(ω))ρI(t,θ)

with corresponding bounded functional f for bounded distribution functions
W over R+ defined as follows:

f(θ) =

∫ ∞

0

E[F (t, θ)]dW (t) = E
[∫ ∞

0

F (t,θ)dW (t)

]
=

∫ ∞

0

{ρ2R(t,θ) + ρ2I(t,θ)− 2ρR(t,θ0)ρR(t,θ)− 2ρI(t,θ0)ρI(t,θ)}dW (t)

The above expectation can be approximated by making use of the set of pre-
viously defined increments Xj , which give rise to the following sequence of
random elements with values in C(K) :

Fn(θ, ω) =
1

n

n∑
j=1

∫ ∞

0

(∣∣∣eitXj(ω) − ρ(t, (θ))
∣∣∣2 − 1

)
dW (t) (2)

=
1

n

n∑
j=1

Gj(ω,θ) (3)

We assume that ρ(t,θ), and hence all functions F , f , Fn, are continuous with
respect to θ as it varies on a compact, metrizable set K ⊆ Rd. Hence, all
functions can be considered as elements of C(K), the space of continuous func-
tions on K, which we recover as a separable Banach space under the supremum
norm, which we denote by ‖ • ‖, where ‖F‖ = supθ∈K |F (θ)|.
Next, we determine the asymptotic behavior of Fn in the following theorem.
Later we shall see that Fn can be used to approximate the stochastic program-
ming problem defined in (1).

Theorem 1. The sequence of random elements Fn(θ, ω) converges P a.s. and
in Lp to f(θ). Furthermore under the condition that there exist constants C1,
C2 such that for all θ1 θ2 ∈ K:

|ρR(t,θ2)− ρR(t,θ1)| ≤ C1‖θ2 − θ1)‖
|ρI(t,θ2)− ρI(t,θ1)| ≤ C2‖θ2 − θ1)‖

the sequence Fn(θ, ω) obeys the CLT:
√
n[Fn(θ, ω)− f(θ)] converges in distri-

bution to a Gaussian random element.

Proof.
The inequality ‖Gj(ω, •)‖ = supθ

∫∞
0
{| exp(itXj(ω) − ρ(t,θ))|2 − 1}dW (t) ≤

supθ

∫∞
0

3dW (t) = 3. This ensures that ∀j, E[‖Gj‖p] < ∞, ∀p ≥ 0. By the
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Strong Law of Large numbers for iid random variables with values in Banach
spaces, the P a.s. limit of Fn(θ, ω) is the expectation of each Gj which is f(θ).
Using the Dominated Convergence theorem we can deduce that convergence
occurs also in Lp for p ≥ 1 where we use results first obtained by Fortet and
Mourier [1] and proved in detail in Ledoux and Talagrand [6], Corollary 7.10.
We need distributional results and something about rates of convergence. These
are usually supplied by the CLT. However, the CLT does not hold for Banach
space-valued random elements with only the iid and finite variance assump-
tions. For C(K)-valued random variables the CLT is assured under special
conditions. Broadly speaking the condition that guarantees convergence of the
CLT type is that the corresponding measures can be supported on a Hilbert
subspace. We adapt them for our circumstances by using a Lipshcitz type con-
dition which needs only concern the characteristic function under study.
The random function θ →

∫∞
0
F (t,θ, ω)dW (t) is bounded in L2(K) and it is

Lipschitz continuous:
|F (t,θ2, ω) − F (t,θ1, ω) ≤ 2|ρR(t,θ2) − ρR(t,θ1)| + 2|ρI(t,θ2) − ρI(t,θ1)| +
|ρ2R(t,θ2)− ρ2R(t,θ1)|+ |ρ2I(t,θ2)− ρ2I(t,θ1)| ≤ 4(C1 + C2)‖θ2 − θ1‖.
The Gj(ω,θ)’s are independent copies of the random element above. Results
for the CLT in Banach spaces as given in Jain and Marcus [3] allow us to
conclude that suitably scaled and centered, the averaged random sequence of
functions

√
n [Fn(θ)− f(θ)] converges in distribution to a random element of

C(K). More precisely we have weak convergence to a Gaussian probability
measure in the space of Borel probability measures on C(K). Furthermore the
corresponding variance is

Var

[∫ ∞

0

{
|exp(itX)− ρ(t,θ)|2 − 1

}
dW (t)

]
.

�
Since Fn(θ, ω) converges P almost surely to f(θ) then it makes sense to solve
the following program:

arg min
θ

Fn(θ, ω) =
1

n

n∑
j=1

∫ ∞

0

{|exp(itxj)− ρ(t,θ)|2 − 1}dW (t)

 (4)

as an approximation to (1) and use corresponding methods to approach the
required solution. The link is provided by the functional ψ(g) = infθ∈K g(θ). ψ
shares some geometrical properties with the norm, but clearly it is not linear. It
is in fact the minimum of linear functionals, all of whom are elements ofM(K),
the dual of C(K), which is the space of all Radon measures on K. Furthermore,
ψ is concave and hence is Hadamard differentiable at any g ∈ C(K).
Although we know that Fn(θ, ω) converges P a.s. to f(θ), we still need to show

that as the number of increments increases then θ̂ = arg minθ(Fn(θ, ω)) will
approach the true value θ0 = arg minθ(f(θ)). This result is proven in theorem
2.

Theorem 2. The sequence of random variables ψ(Fn(θ, ω)) = infθ∈K Fn(θ, ω)
converges in probability to the constant f(θ0) =

∫∞
0
|ρ(t,θ0)|2dW (t).
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Furthermore ψ(Fn(θ, ω)) − f(θ0) = oP(1) and limn→∞ arg minθ Fn((θ), ω) =
θ0.

Proof.
For a fixed ω, the function F (t,θ, ω), being quadratic in ρR and ρI , achieves its
minimum value when ρR = cos(tX(ω)) and ρI = sin(tX(ω)) which in general
may have no solution or more than one. On the other hand, E[F (t, θ)] being
quadratic in ρR and ρI , achieves its minimum value when θ = θ0. Unicity of
characteristic functions assures uniqueness of this minimum F (t,θ0). It follows
that for f(θ) we have:

inf
θ∈K(F )

∫ ∞

0

E[F (t,θ)]dW (t) = f(θ0).

We are interested in the subdifferential ∂ψ at our special function f . In effect
for g ∈ C(K), ∂ψ(g) is a set of elements ofM(K), which following proposition
4.5.18 in Gasinski and Papageorgiou [2] we proceed to describe. It is the set of
all positive Radon measures of total mass 1 concentrated on the points where
g attains its minima:
∂ψ(g) = {µ ∈ M(K) : µ ≥ 0 & 〈µ, 1〉 = 1 & supp(µ) ⊆ {θ ∈ K : ψ(g) =
g(θ)}}
Evaluated at our special function f , this subdifferential becomes: 〈∂ψ(f), h〉 =
infθ∈K(f) h(θ).
Thus ∂ψ(f), operating on h, returns the minimum of h restricted to the points
where f achieves its minimum. In our case this happens at the single point θ0.
Using the Delta Method theorem for normed spaces, discussed in van der Vaart
[10], with the Hadamard differentiable map ψ operating on the convergent series
of random elements Fn(θ, ω) we get the convergence in probability results. The
last limit follows from unicity of all minima involved.

�
This theorem assures us that, as the sample size increases, locating the value
of θ which minimizes the sample value Fn(θ, ω) will get us closer to θ0 =
arg minθ∈K f(θ). This brings us securely to stochastic programming territory.
In fact, the problem minθ Fn(θ, ω) can be considered as a two-stage stochastic
program.
In the following section we discuss a method by which this stochastic program
can be solved.

4 Solving the Stochastic Program

A number of different methods can be used to solve two-stage or multi-stage
stochastic programs. Shapiro [8] solves multi-sage stochastic programs with a
linear objective function and linear constraints by making use of the Stochastic
Dual Dynamic Programming Algorithm (SDDP) which in turn was introduced
by Pinto and Pereira [7]. Shapiro argues that the backward step of the SDDP
is the standard cutting plane algorithm and applied it to the problem he was
studying. However Kelly’s [5] cutting plane algorithm was designed on the
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assumption that the objective function is convex over the feasible region. The
objective function Fn(θ, ω) is not convex in general and hence Kelly’s cutting
plane algorithm cannot be used. The way forward is to replace the cutting
plane algorithm with another method which can handle non-convex objective
functions. The algorithm proposed by Karmitsa et. al. [4] still makes use of
cutting planes and furthermore can be used for non-convex and non-smooth
objective functions. The original minimization problem is first converted into
a program with a linear objective function while the non-linearity and non-
convexity of the original problem are moved to the constraint as shown below:

arg min
θ,z
{z|Fn(θ, ω)− z ≤ 0} (5)

Next, a sequence of auxiliary linear problems is built where the constraint in (5)
is approximated by a number of cutting planes. During each iteration a search
direction for the auxiliary problem is computed using the Feasible Direction
Interior Point Method (FDIPM).
In the following section the performance of the method of estimation discussed
in this paper is compared with that of other methods of estimation found in
literature.

5 Simulation Results

Increments of three distinct Lévy processes were simulated using three differ-
ent probability distributions. Using these increments, the parameters of the
characteristic function of each distribution were estimated using not only the
stochastic programming framework discussed above (which from now on we
denote by SPM) but also other commonly used methods such as the method of
maximum likelihood (MLE) and the Integrated squared error estimator (ISEE).

When the integrand in (4), i.e.
{

1
n

∑n
j=1 |exp(itxj)− ρ(t,θ)|2 − 1

}
is com-

pared with the integrand in the ISEE, i.e.
∣∣∣ 1n ∑n

j=1 [exp(itxj)]− ρ(t,θ)
∣∣∣2, one

can easily show that for continuous distributions, the former goes to zero as
t → ±∞, while the latter does not and keeps on oscillating within a band as
t→ ±∞. This indicates why our estimator behaves more smoothly.
The probability distributions chosen for these simulations are: the Stable dis-
tribution with parameters (α = 0.4, β = 0.5, σ = 1, µ = 3), the gamma distri-
bution with parameters (α = 2, β = 3) and an extreme value distribution: the
Gumbel distribution with parameters (µ = 7, β = 0.05). The results obtained
for the stable distribution using SPM were compared with the ISEE. Table 1
contains the simulation results of the parameter estimates for the stable dis-
tribution. The weight function which is necessary in ISEE was chosen to be
exp(−t2). The limits of integration in the SPM and ISEE are taken from 0 to
some constant T . In particular, two different values of T were chosen, namely,
10 and 20.It is evident from table 1, that for both values of T , the estimates obtained
from SPM have less bias and less variance than the estimates obtained from
ISEE.
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T α̂ β̂ σ̂ µ̂ α̂ β̂ σ̂ µ̂

Estimates using SPM Estimated Variance

10 0.41296 0.50995 0.96899 3.05113 6.589E-05 0.01278 0.00044 0.00100
20 0.40541 0.50131 1.00343 3.03293 2.640E-05 0.01284 0.00013 0.00023

Estimates using ISEE Estimated Variance

10 0.29874 0.49235 0.92826 3.14041 0.01793 0.00900 0.022675 0.02989
20 0.29923 0.49821 0.93229 3.13334 0.01630 0.01525 0.021106 0.02888

Table 1. Estimates for the Lévy Stable process.

Next we compare the results obtained for the Gumbel and Gamma distribu-
tions. In this case the estimates are compared with the simulations results
obtained by using the method of maximum likelihood.

Gamma (2, 3) Gumbel (7, 0.5)

SPM Estimates Variance Estimates Variance

10 2.00259 2.99445 0.00044 0.001443 6.99779 0.04955 2.284E-07 9.05E-08

20 2.00052 2.99996 0.00035 0.001221 6.99924 0.04977 1.670E-07 8.63E-08

Estimates Variance Estimates Variance

MLE 2.00103 2.99498 0.00039 0.00142 6.99993 0.049926 1.455E-06 6.96E-07

Table 2. Estimates for the Gamma and Gumbel distribution.

It appears from table 2 that the results obtained from the method of maximum
likelihood are comparable with the results obtained from the SPM method. In
some cases, in particular when T = 20, the estimates obtained by the SPM for
the Gamma distribution appear to be slightly better than the results obtained
by the MLE. Furthermore the SPM estimates for the Gumbel distribution ap-
pear to have less variance.

6 Conclusion

The aim of this paper was to propose a method of parameter estimation that
makes use of the stochastic programming framework as well as the properties
of the real and imaginary parts of the characteristic function. These features
reduce the computation problems triggered by the oscillatory nature of the
empirical characteristic function. This enabled us to work with integrands
whose behaviour was controlled nicely for numerical procedures to converge
conformably. It was shown that as n → ∞ the optimal solution of the pro-
posed stochastic program approaches P a.s. the true vector of parameters.
Furthermore, when compared with other methods of estimation, such as ISEE
and MLE, the SPM was found to give better results when compared to former
and gave comparable results to the latter. However, contrary to the MLE,
the SPM is particularly useful when dealing with probability distributions, like
most infinitely divisible distributions or most stable distributions, whose den-
sity function is not known in closed form.
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Abstract. We consider slightly heterogeneous swarm of agents controlled by one
leader. We study the global dynamics by using a newly established connection binding
multi-agents dynamics and nonlinear optimal state estimation (nonlinear filtering).
For a whole nonlinear class of mutual interactions, we are able to exactly character-
ize the resulting swarm dynamics. Our leader-follower dynamics are interpretable as
a feedback particle filtering problem which itself is similar to a finite-dimensional,
nonlinear filter problem originally proposed by V. E. Beneš. The state estimation
problem can be explicitly solved as it merely uses a change of probability measure on
an Ornstein-Uhlenbeck process. The agents interactions, driven by common observa-
tions of the randomly corrupted leaders position, correspond to the innovation kernel
that underlies any Bayesian filter. Numerical results fully corroborate our theoretical
findings and intuition.

Keywords: Heterogeneous swarm, Multi-agent dynamics, Leader-based model, Non-
linear filtering, Feedback Particle Filter, Exact Results, Numerical Simulations.

1 Introduction

Among the vast and steadily increasing amount of literature devoted to the
dynamics of a large number of mutually interacting autonomous agents, ana-
lytically solvable models stylizing some aspects of reality are welcome (Hongler
et al.[1], Eftimie[2], Bellomo and Dogbe[3], Bertin et al.[4]). Despite specific
features inherent in analytical approaches, these contributions enhance our
understanding of the emergence of collective phenomena like synchronization,
aggregation, pattern formation, behavioral phase transitions, fashion trend for-
mation, and others. Most analytical studies focus on the dynamics of homo-
geneous swarms (i.e., those involving identical agents). Either the agents local
rules are given and the ultimate goal is to analytically derive the emerging
collective patterns or inversely, given a collective behavior, the goal is to unveil
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the agents local rules and their interactions. Purely homogeneous swarms are
however rather scarcely encountered in reality.

In this paper, we focus our attention on slightly heterogeneous populations in
which one special agent (we call it the leader) is able to drive the whole swarm
towards a desired objective (Wang and Han[5]). Several types of leaders can be
distinguished depending on the ways they affect their fellows. Either the leader
is external and hence is explicitly recognized by ordinary agents of the swarm
(Couzin et al.[6], Aureli and Porfiri[7]), or it acts as a shill who appears ordinary
to its fellows while in fact obeying a hidden master (Dyer et al.[8], Gribovskiy
et al.[9], Wang and Guo[10]). Besides very particular models (Sartoretti and
Hongler[11,12]), there is generally little hope for an analytical investigation of
the collective behavior of a shill- or leader-infiltrated (and hence heterogeneous)
swarm. The objective of this paper is to unveil a class of dynamical models for
which this investigation can be achieved.

Our source of inspiration is taken from the realm of estimation problems. In
noise filtering, one considers the evolution of a stochastically driven system S,
monitored by an observer O, which is itself delivering noisy information. The
filtering goal at time t is to construct the best possible estimation of the state
S by processing information delivered only from O up to time t. The filter-
ing process is achieved via sequential Bayesian steps. Specifically, one starts
with a prediction step to estimate the relevant conditional probability density
function (pdf) based on the S-dynamics, and then one updates this pdf based
on the O-dynamics. For linear S-evolutions driven by White Gaussian Noise
(WGN) and O-measurements also corrupted by WGN, the filtering problem
is completely solvable, and its explicit solution is known as the Kalman-Bucy
filter. Indeed, due to linearity and Gaussian driving noise, both the predic-
tion and the updating steps preserve their Gaussian character. Therefore the
underlying filtering problem remains finite-dimensional as all operations are ex-
pressible via means and covariances only. For nonlinear evolution, the Gaussian
character is lost, generally leading to infinite-dimensional problems. Analyti-
cal treatments are then precluded and only numerical approaches are feasible.
One numerical method is given by particle filters, specifically feedback parti-
cles algorithms (FPA) (Yang et al.[13]). These algorithms are directly based
on dynamics of randomly interacting particles and can therefore be identified
with specific agents dynamics. The FPA prediction step is achieved by at-
tributing the S-dynamics to a homogeneous swarm of agents. The updating
process, realized by mutual agents interactions will globally minimize, in real
time, the Kullback-Leibler distance between the S pdf and the swarm empiri-
cal distribution. In this paper, we view the S-dynamics as playing the role of
a leader evolving among a homogeneous swarm of N ordinary agents. When
N → ∞, this dynamic is reducible to a mean-field game (Pequitoy et al.[14],
Guéant et al.[15]) with here an infinitesimally short time horizon, (as only real
time updating – excluding smoothing – is realized). The FPA offers, there-
fore, a natural framework to construct leader driven swarms of agents. As a
natural consequence, solvable filtering problems, like the Kalman-Bucy case,
provide directly solvable heterogeneous swarms dynamics. Here, our intention
is to construct a class of multi-agents models which simultaneously keep the
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associated FPA finitely dimensional and yet escape from the pure Gaussian
world. The idea on which we base our construction, is to consider a class of
“Girsanov-changes” of probability measures applied to Ornstein-Uhlenbeck dy-
namics (i.e., linear dynamics with Gaussian noise sources). Here one considers
the class of Girsanov changes of measures studied in Taylor[16], Hongler[17],
Dai Pra[18], Benes[19] and Daum[20].
We organize the paper as follows: in section 2, the explicit connection between
the filtering problem and the driving of a swarm of agents infiltrated by a leader
is exposed. In section 3, we introduce our specific example of non-Gaussian
interacting agents, controlled by a leader and for which the associated FPA is
analytically solvable. Finally, in Section 4, we report numerical experiments to
illustrate our analytical findings.

2 Multi-Agent Dynamics and Feedback Particle
Filtering

Consider a swarm of N Brownian agents Ai, i = 1, 2, · · · , N, and one additional
leader agent A with dynamics:

dXi(t) = f (Xi(t)) dt+K (Xi(t),X(t), dZ(t)) + σdWi(t),

leaders dynamics

dY (t) = f (Y (t)) dt+ σdW (t),

dZ(t) = hY (t)dt+ σodWy(t),

(1)

where h > 0 is a constant, f : R→ R, dWi(t), dW (t) and dWy(t) are mutually
independent WGN processes and the vector X(t) = (X1(t), X2(t), · · · , XN (t))
describes the dynamic state of the N homogeneous agents. The leader agent
Y (t) affects the dynamics of the Xi(t) via the interaction kernel K (Xi,X, dZ).
We emphasize that the leader’s dynamics Y (t) itself is independent from the
swarms state X(t). Agents are only able to observe the corrupted leaders
position Z(t), (the leader effectively hides its real position Y (t) from the other
fellows).
In Eq.(1), we focus our attention on the class of interaction kernels:

K [Xi(t),X(t), dZ(t)] = ν (Xi(t), t)⊗

dZ(t)− h

2

[
Xi(t) +

1

N

N∑
k=1

Xk(t)

]
︸ ︷︷ ︸

G[Xi(t),X(t)]

dt

 ,

(2)
where the coupling strength ν = ν(Xi(t), t) is a positive convex function in
Xi(t) and where, due to the presence of multiplicative WGN processes, we
define ⊗ to denote the Stratonovich interpretation of the underlying stochas-
tic integrals (Jazwinski[21]). In Eq.(2), G [Xi(t),X(t)] is a consensual posi-
tion given by the average between agent Ai’s position and the whole swarm
barycenter. The interaction kernel relates the position increment Gdt with the
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leader’s unveiled position increment dZ(t) and weights this stimulus with the
coupling strength ν. The assumptions on ν imply that K [Xi(t),X(t), dZ(t)]
tends, in real time, to steadily reduce the distance between G [Xi(t),X(t)] dt
and dZ(t). Although the multiplicative factor ν(Xi(t), t) in Eq.(2) remains
yet undetermined, its complete specification can be fixed by introducing a
cost structure. In general, one requires that for some running cost functional
J [K, Xi(t),X(t),Z(t), t] and final cost Ψ (Xi(T ),X(T ), dZ(T )) at time hori-
zon T , the interaction K minimizes the associated optimization problem. For-
mally, the interaction kernel (and hence ν) would be the unique minimizer over
a set K of admissible controls, namely:

K [Xi(t),X(t), dZ(t)]

= min
K∈K

{(∫ T
t
J [K,Xi(s),X(s), dZ(s), s] ds

)
+ Ψ (Xi(T ),X(T ), dZ(T ))

}
.

(3)
The coupled set of Eqs.(1), (2) and (3) can be interpreted as a multi-player
differential game (Bensoussan[22]). For large populations, one can use the em-
pirical density P (N)(x, t) to construct the mean field posterior density P (x, t |
Z(t), x0) :

P (N)(x, t)dx =
1

N

N∑
n=1

1 {Xn(t) ∈ [x, x+ dx]} ≈ P (x, t | Z(t), x0)dx, (4)

where the condition Z(t) stands for the information history of the process Z
until time t and x0 for the common initial location of the whole swarm. In the
N →∞ limit, we have:

lim
N→∞

1

N

N∑
k=1

Xk(t) =

∫
R
x′P (x′, t | Z(t), x0)dx′ = E {X(t) | Z(t)} . (5)

The Fokker-Planck equation which governs this mean field posterior density
reads (with a self explaining abuse of notation for K):

∂
∂tP (x, t | Z(t), x0) = − ∂

∂x {[f(x) +K (x,E {X(t) | Z(t)})]P (x, t | Z(t), x0)}

+σ2

2
∂2

∂x2P (x, t | Z(t), x0).
(6)

Note that Eqs.(6) and (3) define in a forward/backward coupling, a so called
differential mean-field game problem.

Feedback particles filters. For vanishing forward time horizon (i.e., T = t) in
Eq.(3), a simpler situation arises (the backward in time coupling becomes triv-
ial) and the minimization is reduced to solving an Euler-Lagrange variational

676



problem (ELP) for Ψ (x,E {X(t) | Z(t)}). Choosing the objective criterion Ψ
as the Kullback-Leibler distance dK :


Ψ (x,E {X(t)} , dZ(t)) := dK {P (x′, t | Z(t), x0);Q(x, t | x0)} ,

dK {P (x′, t | Z(t), x0);Q(x, t | x0)} :=
∫
R P (x′, t | Z(t), x0)

{
ln
[
P (x′,t|Z(t),x0)
Q(x′,t|x0)

]}
dx′,

(7)
with Q(x, t | x0) being the transition probability density of the diffusion process
Y (t) defined in Eq.(1) we find the ELP:

− ∂
∂x

{
1

P (x,t|Z(t),x0)
∂
∂x [P (x, t | Z(t), x0)ν(x, t)]

}
= h

σ2 ,

lim|x|→∞ P (x, t | Z(t), x0)ν(x, t) = 0,

(8)

which leads to:


ν(x, t) = h

σ2P (x,t|Z(t),x0)

{∫ x
−∞ [E {X(t) | Z(t)} − x′]P (x′, t | Z(t), x0)dx′

}
,

E {X(t) | Z(t)} =
∫ +∞
−∞ x′P (x′, t | Z(t), x0)dx′.

(9)
Eqs.(1) and (2), together with ν(x, t) given in Eq.(9) produce a nonlinear con-
tinuous time feedback particle filter. This allows for a direct reinterpretation
of the leader-based dynamics in terms of a stochastic filtering problem. A class
of examples is detailed in the next section.
It is worthwhile noting that the leader influences the swarm through the vari-
ance σ (and the parameter h), and not only through its position. As σ grows,
the agents uncertainties of the actual leader’s position increase. Consequently
the coupling strength ν(x, t) decreases, the agents variances increase and the
swarm tends to form a widespread group of agents around the leader. Alter-
natively, small values for σ allow for very compact swarm formation.

3 Finite Dimensional Filtering with Weber Parabolic
Functions

Let us now introduce a specific filtering problem, which will be related to the
control of the multi-agents dynamics. The nonlinear filtering problem is to
estimate the value of the one-dimensional state Y (t), at time t, given a set of
measurements prior to t: Z(t) = {Z(s) | 0 ≤ s ≤ t}. We will treat hereafter
time-continuous measurements and assume that the leader state Y (t) – starting
at position y0 – evolves according to the stochastic differential equation:

dY (t) =

:=fB [Y (t)]︷ ︸︸ ︷{
d

dy
[logYB(y)]

∣∣∣
y=Y (t)

}
dt+ dW (t),

Y (0) = y0

(10)
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in which W (t) is the standard Brownian motion and where YB(y) is the Weber
parabolic function, which solves the ordinary differential equation:

d2

dy2
YB(y) =

[
y2

4
+

(
B − 1

2

)]
YB(y) (11)

with B a control parameter. From the definition of fB [Y (t)], we easily see that

d

dy
fB(y) + f2B(y) =

d2

dy2YB(y)

YB(y)
=
y2

4
+

(
B − 1

2

)
. (12)

This leads to a Beneš type of finite-dimensional filtering problem (a fully an-
alytical treatment of filtering problems in the Beneš class can be found in
Daum[20]). In the sequel, we impose the parameter range B ∈ R+ which en-
sures the positivity of YB(y) (∀ y ∈ R). For B ∈ [0, 1/2], we further observe
that the generalized potential − log [YB(y)] is locally attractive near the origin
and asymptotically repulsive for |y| → ∞. In the parameter range B > 1/2,
the potential is systematically repulsive ∀y ∈ R (Hongler[17]). Figure 1 shows
the shape of YB(y) and fB(y) for different values of the control parameter B.
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Fig. 1. Shape of YB(y) (left) and fB(y) (right) for B = 0 (plain line), B = 0.01
(stripped line), B = 0.5 (stripped-dotted line) and B = 1 (dotted line). For B = 0,
the filtering problem is linear and the dynamics are stable. For B = 1, the filtering
problem is again linear but with unstable dynamics. In between, we have a nonlinear
filtering problem and the conditional probability density changes – with increasing B
– from unimodal to bimodal and back to unimodal.

For B = 0 and B = 1 respectively, we obtain linear dynamics:Y0(y) = e−
1
4y

2 ⇒ f0(y) = − 1
2y

Y1(y) = e+
1
4y

2 ⇒ f1(y) = +1
2y.

(13)

Using the framework introduced in Daum[20], the continuous time filter is
given by the normalized probability density P (y, t|Zt) of observing Y (t) := y
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conditioned on the set of measurements up to time t, Z(t), and can be written
as:

P (y, t) := P (y, t | Z(t)) =
YB(y) · e−

(y−m)2

2s

J0(m, s,B)
(14)

(computational details are given in the Appendix) with J0(m, s,B) the nor-
malization function:

J0(m, s,B) = 2

√
πs

2 + s

[√
2 + s

2− s

]B
e

m2s
2(4−s2) · YB

(
2m√
4− s2

)
. (15)

(see Appendix). The measurement dependent quantities m := m(Z(t); t) are
given by

m = m(Z(t); t) =
tanh(pt)

p

[
h

∫ t

0

sinh(ps)

sinh(pt)
dZ(s) +

py0
sinh(pt)

]
(16)

and similarly, the measurement independent quantities s := s(t) reads:

s = s(t) =
1

p
tanh(pt) (17)

with the definition p =
√
h2 + 1

4 . With this expression for P (y, t), we have the

conditional mean:

〈Yt〉 := E(Yt|Z(t)) =
4m

4− s2
+

2s√
4− s2

fB

[
2m√
4− s2

]
(18)

and after tedious elementary manipulations, we have the conditional variance:

var(Yt) := E((Yt−〈Yt〉)2|Z(t)) =
2s

2 + s
+

4s2

4− s2
{ m2

4− s2
+B−f2B

( 2m√
4− s2

)}
.

(19)
Remark: For the linear cases B = 0 and B = 1 from Eq.(13), we consistently
find the following classical results:

P (y, t) =
exp

{
− ((2+s)y−2m)2

4s(2+s)

}
√

2π 2s
2+s

, 〈Yt〉 =
2

2 + s
m, var(Yt) =

2

2 + s
s

(20)
for B = 0 and

P (y, t) =
exp

{
− ((2−s)y−2m)2

4s(2−s)

}
√

2π 2s
2−s

, 〈Yt〉 =
2

2− s
m, var(Yt) =

2

2− s
s

(21)
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for B = 1. As predicted by the linear version of the feedback filter, when
B = 0 and B = 1 the coupling strength ν(x, t) reduces to the standard state
independent Kalman gain:

ν(x, t) = ν(t) =
h

σ2
var(Yt). (22)

4 Numerical Results

Numerical results are obtained by simulating (1) for a finite swarm of agents
and one leader. Thanks to the consistency of the estimator (see Yang et al.[13]),
one can still use the results from the mean field analysis for a large enough N .
In this case P (y, t) must be fitted to the empirical histogram of the agents’
position at time t to find the values for m and s. The control ν(x, t) can
then be computed from its integral expression in Eq.(9), while 〈Y 〉t can be
computed from Eq.(18). The derivative d

dxν(x, t) is computed by using the

relation
d
dxP (x,t)

P (x,t) = fB(x) + x−m
s , which can be written as:

d

dx
ν(x, t) =

h

σ2
(〈Y 〉t − x)− ν(x, t) ·

(
fB(x)− x−m

s

)
. (23)

Note that this natural fitting strategy used to estimate P (y, t) is – compu-
tationally – very costly. Extensive numerical computations have shown that
ν(x, t) can safely be computed from Eq.(9) when directly using the empirical
histogram of the agents’ position instead of the fitted function in Eq.(14). The

derivative d
dxν(x, t) ' ν(x+h,t)−ν(x,t)

h is computed by selecting a sufficiently
small value h.

Numerical results in linear cases. Figures 2 and 3 show in red the time
evolution of the noisy leader’s unveiled position. The mean value from the
swarm of agents (likewise, the output of the feedback particle filter) produces
the smooth blue curve. As the agents’ control is updated based on the unveiled
position of the leader, a small delay can be observed between the leader’s
movements and the swarm’s reactions. The filter performs well: as expected,
the swarms barycentric position is nearly always closer to the actual position
of the leader than to the unveiled position. This means that the control on the
agents leads to a better approximation of the actual leaders position.

Numerical results in nonlinear cases. We now consider the parameter
range 0 < B < 0.5 where the dynamics of the leader is nonlinear and exhibits an
attractive potential in the central region (i.e., around the origin) and a repulsive
potential for |x| � 0. Between these two regions, the potential changes from
attractive to repulsive and the agents experience strong nonlinear dynamics.
Note that the dynamics in the attractive region is meta-stable, and a leader
starting within this region ultimately escapes to infinity.
During the sojourn time of the leader in the attractive region, the close-by
agents undergo quasi linear dynamics. They stay in this attractive region and
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Fig. 2. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 0, σ = h = 1 and t ∈ [0; 5]. In blue the mean value 〈Y 〉t measured
from a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 1 ∀i, while
Z(0) = Y (0) = x0.
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Fig. 3. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 1, σ = h = 1 and t ∈ [0; 5]. In blue the value 〈Y 〉t measured from
a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 0.1 ∀i, while
Z(0) = Y (0) = x0.

self-arrange in the vicinity of the leaders position to empirically build the a
posteriori distribution P (y, t). As soon as the leader escapes from the attractive
region, the other agents start feeling their barycentric control and ultimately
follow the leader outside the attractive region. The barycenter of an infinite
swarm follows the leaders position with nearly no delay; but in our case, as
N <∞ agents, a delay can possibly be observed between the exit times of the
leader and the agents. Figures 4 and 5 show the results of a representative
numerical simulation for N = 1000 agents, with a very narrow and shallow
attractive region (B = 0.49). Observe the explicit delay between the exit times
of the leader and the swarm for σ = 5 in Figure 5.

5 Summary and Conclusion

Heterogeneous multi-agent systems are notoriously difficult to describe analyt-
ically, especially if the underlying dynamics is intrinsically nonlinear. In this
note, we present a class of dynamics from which explicit and fully analytical
results can be derived. The core of our construction relies on recent approaches
that have been obtained in the realm of nonlinear estimation problems. The
so-called particle filter method – commonly used to tackle nonlinear estimation
problems - can be reinterpreted as a general leader-follower problem in which
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Fig. 4. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 0.49, σ = h = 1 and t ∈ [0; 8]. In blue the value 〈Y 〉t measured
from a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 0.2 ∀i,
while Z(0) = Y (0) = x0.
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Fig. 5. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position
Z(t) (red), for B = 0.49, σ = 5, h = 1 and t ∈ [0; 8]. In blue the value 〈Y 〉t measured
from a swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 0.2 ∀i,
while Z(0) = Y (0) = x0.

a swarm of interacting agents try to follow a leader whose unveiled position
is corrupted by noise. In stochastic filtering, only finite-dimensional problems
can possibly be solved analytically. When linear dynamics is driven by Gaus-
sian noise, all relevant probability distributions remain Gaussian, and hence
calculations can be limited to the first two moments (Kalman-Bucy filter).
The intimate connection existing between multi-agent systems and estimation
problems show that, for nonlinear dynamics, analytical results are in general
hopeless. However, for one class of non-Gaussian finite-dimensional filtering
problems – pioneered by Beneš – explicit analytical models are available. It is
therefore natural to study how the Beneš’ class enables us to construct non-
linear solvable multi-agents systems, as is done here. The core analytical tools
leading to solvable finite-dimensional filtering problems rely on an underlying
Riccati equation that we explicitly solved (in the scalar situation) via We-
ber parabolic cylinder functions. Using these special functions, we are able
to answer two open questions originally formulated in Daum[20] (our Eq.(18)
answers Daum’s open question 2, and our class of nonlinear dynamics answer
Daum’s open question 6). Our multi-agent class of dynamics enables us to
explicitly observe how a leader can control the spreading factor of the agents
around its position by tuning the strength of the observation noise.
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15. O. Guéant, J.-M.. Lasry, and P.-L. Lions. Mean field games and applications,
volume 2003 of Lecture Notes in Mathematics. 2011.

16. J. C. Taylor. The minimal eigenfunctions characterize the Ornstein-Uhlenbeck
process. The Annals of Probability, 17(3):1055–1062, 1989.

17. M.-O. Hongler. Study of a class of nonlinear stochastic process - boomerang
behavior of the mean. Physica D, 2:353–369, 1981.

18. P. Dai Pra. Stochastic control approach to reciprocal diffusion processes. Applied
Mathematics and Optimization, 23(3):313–329, 1991.

19. V. E. Benes̆. Exact finite dimensional filters for certain diffusion with nonlinear
drifts. Stochastics, 5:65–92, 1981.

20. F. E. Daum. Exact finite-dimensional nonlinear filters. Proceedings of the 24th
IEEE Conference on Decision Control, pages 1938–1945, 1985.

683



21. A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
1970.

22. A. Bensoussan, J. Frehse, and P. Yam. Mean Field Games and Mean Field Type
Control Theory. Springer, 2013.

23. I. S. Gradshteyn and I. M. Ryzhik. Table of integrals series and products. Aca-
demic Press, 1980.

Appendix - Details of Calculations

For the readers ease we introduce notations and collect formulas useful for the
computation of the conditional probability density.

5.1 Collection of useful formulas

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).∫
R
e−ax

2−2bx−cdx =

√
π

a
e
b2−ac
a , a > 0∫

R
cosh[xα]e−

(x−µ)2
γ dx =

√
πγ cosh[µα]e

1
4γα

2

(24)

∫
R
x cosh[xα]e−

(x−µ)2
γ dx =

√
πγ
[αγ

2
sinh(µα) + µ cosh(µα)

]
e

1
4γα

2

(25)

∫
R
x sinh[xα]e−

(x−µ)2
γ dx =

√
πγ
[αγ

2
cosh(µα) + µ sinh(µα)

]
e

1
4γα

2

(26)

From sections 9.24 and 9.25 of Gradshteyrn and Ryzhik[23], we extract:

D−B(x) =
e−

x2

4

Γ (B)

∫
R+

e−x ζ−
ζ2

2 ζB−1dζ, (R(B) > 0) (see Gradshteyrn and Ryzhik[23], 9.241/2)

(27)


YB(x) := 1

2 [D−B(x) +D−B(−x)] =
√

2
π
e−

x2

4

Γ (B)

∫
R+ cosh(x ζ)e−

ζ2

2 ζB−1 dζ,

d2

dx2 {YB(x)} =
[
x2

4 +
(
B − 1

2

)]
YB(x), (B ≥ 0), (see Gradshteyrn and Ryzhik[23], 9.255/1)

(28)

5.2 Quadratures

Let us define the couple of quadratures:

Ji(m, s,B) =

∫
R
xiYB(x)e−

(x−m)2

2s dx, i = 0, 1. (29)
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0th-order moment - J0(m,B) Using the integral representation given in
Eq.(28), we can write:

J0(m, s,B) =
∫
R

{
YB(x)e−

(x−m)2

2s

}
dx

=
√

2
π

1
Γ (B)

∫
R+ ζ

[B−1]e−
ζ2

2

{∫
R cosh(ζx)e−

(x−m)2

2s − x24 dx
}
dζ

J0(m, s,B) =
√

2
π
e
− m2

2(2+s)

Γ (B)

∫
R+ ζ

[B−1]e−
ζ2

2

{∫
R cosh(ζx)e−

(2+s)
4s (x− 2m

2+s )
2

dx
}
dζ

Now we use Eq.(24) with γ = 4s/(2 + s) and µ = 2m/(2 + s) to get

J0(m, s,B) = 2

√
2

π

√
πs

(2 + s)

e−
m2

2(2+s)

Γ (B)

∫
R+

ζ [B−1]e−
ζ2

2 [ 2−s
2+s ] cosh

[
2mζ

2 + s

]
dζ

Let us introduce the renormalization η := ζ
√

2−s
2+s , which implies

J0(m, s,B) =

√
2

π
2

√
πs

2 + s

e−
m2

2(2+s)

Γ (B)

[√
2 + s

2− s

]B
e
+ m2

(4−s2) e
− m2

(4−s2)︸ ︷︷ ︸
=1

∫
R+

η[B−1] cosh

[
2mη√
4− s2

]
e−

η2

2 dη.

(30)
Finally, using the definition Eq.(28), we end up with:

J0(m, s,B) = 2

√
πs

2 + s

[√
2 + s

2− s

]B
e

m2s
2(4−s2)YB

(
2m√
4− s2

)
. (31)

First order moment - J1(m, s,B) From the definitions Eqs.(27) and (29),
one can write:

J1(m, s,B) :=

∫
R

{
xYB(x)e−

(x−m)2

2s

}
dx

From the previous equation and the definition of J0(m, s,B) given in Eq.(29),
we can write:

d
dmJ0(m, s,B) =

∫
R

{[
(x−m)
s

]
YB(x)e−

(x−m)2

2s

}
dx = 1

sJ1(m, s,B)− m
s J0(m, s,B).

This is equivalent to the relation:

J1(m, s,B) = mJ0(m, s,B) + s

[
d

dm
J0(m, s,B)

]
. (32)

Using Eqs.(31) and (32), the conditioned expectation reads:

E(x|Zt) = J1(m.b,B)
J0(m,s,B)

∣∣∣
t

= m+ s
[
d
dm (log {J0(m, s,B)})

] ∣∣∣
t

= 4
4−s2m(z) + 2s√

4−s2 fB

(
2m(z)√
4−s2

)
(33)
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Abstract. A method is proposed to reconstruct a cyclic time-inhomogeneous Markov process
from measured data. First, a time-inhomogeneous Markov model is fit to the data, taken here
from measurements on a wind turbine. From the time-dependent transition matrices, the time-
dependent Kramers-Moyal coefficients of the corresponding stochastic process are computed.
Further applications of this method are discussed.
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1 Introduction

Many complex systems can be described, within a certain level of modelization, as
stochastic processes. A general stochastic process can be characterized in the linear
noise approximation through a Fokker-Planck equation, in continuous variables. For
dealing with discrete variables in discrete time steps, often Markov Chains are the
models of choice. Although in many cases both approaches converge in the limit of
small time steps and increments of the stochastic variables, this correspondence is in
general non-trivial[11]. In the Fokker-Planck picture, the so-called Kramers-Moyal
(KM) coefficients provide a complete description of a given stochastic process[2].

In the past decades, numerical procedures have been established to estimate the
KM coefficients from measured stochastic data, which are applicable for any station-
ary, i.e. time-homogeneous, Markov process. These methods require large sequences
of data, but they are robust[1], have well-known errors and limitations[3], require little
intervention and are typically parameter-free[1,5].

However, for non-stationary Markov processes, much fewer methods and results
are available to our knowledge. In this case, estimations of the time-dependent KM co-
efficients can be obtained by two approaches: either the data from the inhomogeneous

3rdSMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal
C. H. Skiadas (Ed)

c© 2014 ISAST
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process is split into shorter, homogeneous sequences, on which then an estimate of the
KM coefficients can be performed through the aforementioned methods[13]. Or, if the
inhomogeneous process is also cyclic, a parametrized time-dependent ansatz for the
KM coefficients can be fit to the data[14]. Compared to the stationary processes, both
approaches for the inhomogeneous case require a much higher level of pre-analysis,
guesswork and iterative improvement.

In this paper, we present a method that allows to estimate the transition matrices of
a time-inhomogeneous Markov model from data. As reported in a previous publica-
tion[6], this method provides results with a considerable level of accuracy. Under well-
known limitations, the discrete Markov model corresponds to a continuous stochastic
process in the form of a Fokker-Planck equation, which is completely characterized,
in this case, through its time-dependent KM coefficients. From the transition matri-
ces, we can immediately calculate these KM coefficients, and therefore characterize
the dynamical features underlying the time-dependent stochastic process.

We apply this methodology to data from a turbine in a wind park, where measure-
ments of the wind velocity and direction, and the electric power output of the turbine
are taken in 10 minute intervals. The results presented from this analysis show the
general applicability of our method and are in agreement with previous findings.

This paper is organized as follows. We start in Sec. 2 by introducing both the cyclic
time-dependent Markov model and the procedure for extracting stochastic evolution
equations directly from data series. In Sec. 3 we describe the data and in Sec. 4 we
present the time-dependent functions that define the stochastic evolution of the state
of the wind turbine. Section 5 concludes the paper.

2 Methodology

This section describes the methodology used for the data analysis. In Sec. 2.1 the
cyclic inhomogeneous Markov model to represent the daily patterns in the data is
described and in Sec. 2.2 we explain how stochastic evolution equations are derived
directly from the Markov process transition matrices.

2.1 Modelling cyclic time-dependent Markov processes

The goal of this time-inhomogeneous Markov process is to get a model that accurately
reproduces the long-term behavior while considering the daily patterns observed in the
data. Thus, the proposed objective function combines two maximum likelihood esti-
mators: the first term maximizes the likelihood of the cycle-average probability; and,
the second term maximizes the likelihood of the time-dependent probability. The final
optimization problem is transformed into a convex one using the negative logarithm
of the objective function. This section gives a brief overview over the final optimiza-
tion problem. A detailed description of the objective function, the parametrization of
the time-variant probability functions, and the constraints that must be added to the
optimization problem to ensure its Markov properties is provided in [6].

A discrete finite Markov process {Xt ∈ S, t ≥ 0} is a stochastic process on a
discrete finite state space S = {s1, ..., sn}, n ∈ N, whose future evolution depends
only on its current state [8].
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It can be fully described by the conditional probability Pr{Xt+1 = sj | Xt = si}
of the Markov process moving to state sj at time step t + 1 given that it is in state si
at time t. It is called the t-th step transition probability, denoted as pi,j(t).

Being time-dependent, the Markov process has associated transition probability
matrices Pt that change with time. Considering n possible states, the matrices Pt
have dimension n × n with entries [Pt]i,j = pi,j(t) for all i, j = 1, . . . , n, satisfying
pi,j(t) ≥ 0 and

∑
j pi,j(t) = 1.

Markov process is called cyclic with period T ∈ R, if T is the smallest number,
such that pi,j(mT + r) = pi,j(r) for all m ∈ N and 0 ≤ r < T . See Ref. [9]. Since
this paper deals with discrete data, T and r can considered to be multiples of the time
step ∆t between successive data points and therefore integers. One can describe the
cyclic Markov process by T transition matrices Pr, r = 0, ..., T − 1. The remainder
of time step t modulo T will be denoted as rt and consequently rt = rt+mT . We fix
T = 1 day and use ∆t = 1.

In this paper, the transition probabilities pi,j(z) are modeled by Bernstein polyno-
mials, namely

pi,j(z) =
k∑
µ=0

βi,jµ bµ,k(z), (1)

where z = r/T indicates the time of the day (T = 1 day), bµ,k(z) is the µ-th Bernstein
basis polynomial of order k, and βi,jµ ∈ R. The choice of these polynomials has
several advantages properly described in [6].

To maximize the likelihood of the time-dependent transition probabilities given
the data, the objective function must consider the time of the day z when the tran-
sition happens. The corresponding term of the objective function is thus given by∑

(i,j)z∈Sz log(pi,j(z)), where Sz is the set of observed transitions together with the
time z when they happen. This estimator allows to compute the intra-cycle transition
probability functions, and thus to represent the daily patterns present in the data.

A second term is added to this function, namely
∑

(i,j)∈S log(p
avg
i,j ), where S

is the set of transitions observed in the data and pavgi,j is the cycle-average (daily)
probability of transition from state si to sj . It is given by pavgi,j = 1

k+1

∑k
µ=0 β

i,j
k . This

second term is the maximum likelihood estimator for the daily average probability
and its addition to the objective function increases the consistency of the long-term
behavior of the Markov process with the data.

Using the resulting overall objective function the optimization problem to be solved
for the transition probability coefficients βi,jµ is translated into the minimization of

L = −
∑

(i,j)∈S

log(
1

k + 1

k∑
µ=0

βi,jµ )−
∑

(i,j)z∈Sz

log(
k∑
µ=0

βi,jµ bµ,k(z)) (2)
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subject to ∑
j

βi,jµ = 1 (3a)

βi,j0 = βi,jk (3b)

βi,j0 = 1
2 (β

i,j
1 + βi,jk−1) (3c)

βi,j(w) ≤ 1 (3d)
0 ≤ βi,j(w) (3e)

with i, j = 1, . . . , n and µ = 0, . . . , k, k being the order of the Bernstein polynomials
and w the number of subdivisions. Constraint (3a) assures the row-stochasticity of the
transition matrices, while constraints (3b) and (3c) impose C0- and C1-continuity at
z = 0. Constraints (3d) and (3e) bound the transition probabilities between 0 and 1.
These constraints are derived using a property of the Bernstein polynomials to always
lie in the convex hull defined by their control points ( kµ , βµ), µ = 0, ..., k. This convex
hull bound can be tightened by subdivision using the de Casteljau algorithm. In the
resulting constraints (3d) and (3e), w is the number of subdivisions.

2.2 Extracting the stochastic evolution equation

In this section we characterize general stochastic processes through a Fokker-Planck
equation. We consider a N -dimensional stochastic process X = (X1(t), . . . , XN (t))
whose probability density function (PDF) f(X, t) evolves according to the Fokker-
Planck equation (FPE) [2]

∂f(X, t)

∂t
= −

N∑
i=1

∂

∂xi

[
D

(1)
i (X)f(X, t)

]
+

N∑
i=1

N∑
j=1

∂2

∂xi∂xj

[
D

(2)
ij (X)f(X, t)

]
. (4)

The functions D(1)
i and D

(2)
ij are the first and second Kramers-Moyal coefficients

respectively, more commonly called the drift and diffusion coefficients.
These coefficients provide a complete description of a given stochastic process and

are defined as

D(k)(X) = lim
∆t→0

1

∆t

M(k)(X, ∆t)

k!
, (5)

where M(k) are the first (k = 1) and second (k = 2) conditional moments. D(1) is
the drift vector and D(2) the diffusion matrix.

If the underlying process is stationary and therefore both drift and diffusion coef-
ficients do not explicitly depend on time t, the conditional moments can be directly
derived from the measured data as [1,5]:

M
(1)
i (X, ∆t) = 〈Yi(t+∆t)− Yi(t)|Y(t) = X〉

M
(2)
ij (X, ∆t) =

〈(Yi(t+∆t)− Yi(t))(Yj(t+∆t)− Yj(t))|Y(t) = X〉 ,
(6)
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where Y(t) = (Y1(t), . . . , YN (t)) exhibits the N -dimensional vector of measured
variables at time t and 〈·|Y(t) = X〉 symbolizes a conditional averaging over the
entire measurement period, where only measurements with Y(t) = X are taken into
account. In practice binning or kernel based approaches with a certain threshold are
applied in order to evaluate the condition Y(t) = X. See e.g. Ref. [1] for details.

If the process is non-stationary and time-inhomogeneous, we must consider an ex-
plicit time-dependence of the KM coefficients, which translates into time-dependent
conditional moments that can be calculated using a short-time propagator[1]. In our
case, this short-time propagator corresponds to the transition probabilities pi,j(t),
yielding for the conditional moments

M (l)(Pk, vk, θk, t+∆t) =


∑
j pk,j(t) (vj − vk)

l∑
j pk,j(t) (Pj − Pk)

l∑
j pk,j(t) (θj − θk)

l

 . (7)

3 Data: wind and power at one wind turbine

The data for this study was obtained from a wind power turbine in a wind park located
in a mountainous region in Portugal. The time series consists of a three-year period
(2009-2011) of historical data gotten from the turbine data logger. The sampling time
of 10 minutes leads to 144 samples each day. The data-set comprises three variables,
wind power, speed and direction (nacelle orientation). The wind speed information
was collected from the anemometer placed in the wind turbine hub. Due to confiden-
tiality, wind power and speed data values are reported as a fraction of the rated power
and the cut-out speed, respectively.

For this Markov model, each state is defined by the values of all three variables,
namely the wind speed, wind direction and power output. Figure 1 shows the data
observations and the state partitions projected into the wind direction and speed plane
(right) and the wind power and speed plane (left). As expected, the observations
projected into the wind power and speed plane define the characteristic power curve
of the wind turbine.
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Fig. 1. Representation of all data points projected into the: a) wind direction and speed plane
(left); and, b) wind power and speed plane (right). Each rectangle is the projection of a state
polyhedron into the two planes. Overall, they define the final state partition for the three-
dimensional variable space.

The data space is discretized unevenly to get a good resolution of the high-slope
region of the power curve. In a previous work [7], this partition was used in a time-
homogeneous Markov chain and proved to lead to an accurate representation of the
original data. The wind direction and power are divided by an equally spaced grid
leading to 12 and 20 classes, respectively. The wind speed is divided as follows:
values below the cut-in speed define one class; between the cut-in and rated wind
speed the discretization is narrowed by selecting 10 classes ; and between the rated
and cut-out wind speed discretization is widened and 4 classes are defined. Data points
with wind speed above the cut-out wind speed are discarded. The complete state set
is constructed by listing all possible combinations of the classes of each variable. Due
to physical constraints between the variables, most of the states are empty and can
are therefore discarded. This reduces the number of states from 3840 to 778, for this
turbine.

To compare the model with the original data, wind power, speed and direction time
series were simulated adapting the method described by Sahin and Sen [10] to the
cyclic time-inhomogeneous Markov model as follows. First, we compute the cumu-
lative probability transition matrices P cum

r with entries [P cum
r ]i,j =

∑j
j′=0 pi,j′(r)

. Then an initial state si, i.e. X0 = si, is randomly selected. A new datapoint Xt+1

is generated by uniformly selecting a random number ε between zero and one and
choosing for Xt+1 the corresponding state si′ such that the probability of reaching it
from the current state si fullfils [P cum

rt ]i,i′ ≥ ε.Based on this discrete state sequence, a
real value for the wind power/speed/direction variables is generated by sampling each
state partition uniformly.

Figures 2 and 3 compare the original data with the synthesized data and demon-
strate, that the model can capture the data’s long-term statistics (fig. 2) as well as the
daily patterns (fig. 3).
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Fig. 2. Comparison of the probability distribution of wind power (left), wind speed (middle) and
wind direction (right) of the original with the synthesized data.

Fig. 3. Two dimensional histograms of the synthetic time-series data, generated with the time-
variant Markov model (left) and the original data (right): speed-time (top) and direction-time
(bottom).

4 The evolution of drift and diffusion in wind power output

With the procedure outlined in Sec. 2 and having the 144 transition matrices gen-
erated as described in Sec. 3 and 2.1, we can now reconstruct the time-dependent
stochastic process by calculating the KM coefficients D(i)(X̂, t) at each time step
t = 1, . . . , 144. Although we obtain the KM coefficients as a function of all three
stochastic variables, [P, v, θ], we here consider only their dependency on the velocity
and power production, X̂ = [P,v], averaging over the contributions from θ.

The results of this process are presented in Fig.4, where the reconstructed KM
coefficients are plotted for three time steps, namely at 6, 12 and 18 hours. The support
of the coefficients is limited to the available data which follows the power curves in
the v-P plane. From the inspection of Figs. 4, changes in time seem not significative.
This means, that even though both the Markov and the stochastic evolution model
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contain additional degrees of freedom due to their time-dependent formulation, they
are capable of capturing the v-P -dependency, which is invariant. This is expected
since the wind turbine operation characteristics should not change through the daily
cycle. However, it can be seen in fig. 5 that the procedure is capable of detecting even
subtle temporal changes in the transition matrix, which lead to strong daily changes in
the KM coefficients.

For all plotted times, the drift coefficients D(1) indicate a restoring force towards
the power curve, in accordance with previous results[12]. The diffusion coefficients—
only the diagonal components are shown here—show an order of magnitude weaker
diffusion in the velocity than in the power, where the latter shows a strong component
for diffusion in the P− direction for the high slope region of the power curve. These
results again are consistent with our previous analysis of a time-homogeneous model
[12]. Remarkably, the out-of the v, P− plane diffusion of the direction component
D

(2)
θθ is strongest for both very high and very low velocities, and for intermediate

velocities off the power curve.

Next, we present a closer inspection of the time-dependence of both drift and dif-
fusion, by considering their temporal evolution at a specific point, namely at (v, P ) =
(0.34, 0.53), which is close to the center of the power curve. Apparently, our method
creates smooth curves for the temporal evolution. This is expected since, as a con-
sequence of the parametrization of the Markov model, it can be shown that the con-
ditional moments used to derive the Drift and Diffusion coefficients also can be ex-
pressed by Bernstein polynomials in time. Most strikingly, it can be seen that the
temporal evolution of both the drift and diffusion coefficient is decoupled between
the components. Furthermore, for the same component the evolution of the diffusion
coefficient seems to be delayed with respect to the drift. The dominant component is
always the power production P , whose drift changes from a positive maximum at 6
h to a negative minimum at 17 h, i.e. the restoring force oscillates from a tendency to
higher P values in the morning to a tendency to lower P values in the evening.

It should be noted that the chosen point (v, P ) is not necessarily characteristic of
the wind field or of the turbine’s power production. Other points along the power
curve, specifically for low velocities and near the rated wind speed are either more
frequent or more characteristic, and their analysis should give increased insight into
the temporal evolution of wind speed and power production.
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Fig. 5. The first (left) and second (right) Kramers-Moyal coefficient, by components, near the
center of the power curve, (v, P ) = (0.34, 0.53),as a function of time.

5 Conclusions

We have shown in this paper how a time-dependent multi-dimensional stochastic pro-
cess can be reconstructed from experimental data. Our method provides results in
terms of the time-dependent transition matrix of a Markov model, from which the
time-dependent Kramers-Moyal coefficients for a corresponding continuous process
can be calculated. Application of this method to data from a turbine in a wind park
gives results consistent with a previous time-independent method, and adds surprising
new insight into the temporal dynamics of the wind field and the machine power pro-
duction. Preliminary results have shown that the dependence with time observed in
Fig. 5 changes depending which region of the power curve we choose. A more sys-
tematic study for the full power-velocity range will be carried out in an extended study.
Future research will also address the question of applicability of our method to more
general cases, dealing also with the reliability and relative errors of this approach.

The aforementioned equivalence of the transition Matrix and the KM coefficients
is valid if two requirements are fulfilled. First, the transition amplitudes need to have
Gaussian shape, which corresponds to the existence of Gaussian noise in the stochas-
tic process. The validity of this assumption has been checked previously for a similar
system and can be reasonably assumed in this case. Secondly, the binning of the
stochastic variables for determining the Markov process transition matrix must be
small enough[11]. We will investigate the validity of this assumption and the corre-
sponding errors in a forthcoming publication.
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Estimating Multi-Factor Discretely Observed
Vasicek Term Structure Models with

non-Gaussian Innovations
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Abstract. In this paper, we propose a multi-factor model in which the discretely ob-
served short-term interest rates follow a non-Gaussian and dependent process. The
state space formulation has the advantages of taking into account both the cross-
sectional and time-series restrictions on the data and measurement errors in the ob-
served yield curve. Clarifying the non-Gaussianity and dependency of the dynamics
of short-term interest rates, we show that these features are important to capture the
dynamics of the observed yield curve.
Keywords: Asymptotic expansion, state space model, term structure model, Vasicek
model.

1 Introduction

Term structure of interest rates describes the relationship between the yield
on a zero-coupon bond and its maturity. Learning about the nature of bond
yield dynamics plays a critical role in monetary policy, derivative pricing and
forecasting, and risk-management analysis. It is necessary to capture accurately
the term structure of interest rates in order to evaluate the price of interest rate
derivatives. A number of theoretical term structure models have been proposed
in the literature. The early models which are still widely used include these by
Vasicek[10] and Cox et al.[4].

Although single-factor Vasicek model has been widely used in the theoret-
ical literature, empirical research reports that it fails to appropriately capture
the behavior of short rates. The aim of this paper is to develop a closed-
form valuation for pricing zero-coupon bonds for the multi-factor Vasicek term
structure models where the innovations of underlying short rate processes
have non-Gaussian and dependent processes. Honda et al.[7] and Shiohama
and Tamaki[9] consider the higher-order asymptotic valuation for zero-coupon
bonds and the European call options on zero-coupon bonds using single-factor
discretely observed Vasicek models with non-Gaussian and dependent error
structure. Miura et al.[8] develop a closed-form valuation for pricing default-
able bonds incorporating a stochastic risk-free interest rate and defaultable
intensity processes have non-Gaussian and dependent processes.

3rdSMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal
C. H. Skiadas (Ed)
c⃝ 2014 ISAST
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This paper is organized as follows: Section 2 explains the multi-factor term
structure model which is based on the discretely sampled Vasicek model with
non-Gaussian innovation. The analytic expression for the approximate zero-
coupon bond prices is obtained. Section 3 discusses the state-space formulation
of the model and the estimation procedures. Section 4 presents the data used
and the empirical results for the proposed models are illustrated. Finally, some
conclusions are offered in Section 5.

2 The Multi-Factor Models

The model for the analysis is the discretely sampled short rates with interval
∆. The spot interest rate is assumed to be the sum of K state variables Xj,t

rt =
K∑
j=1

Xj,t,

and the state variable are driven by the non-Gaussain and dependent innova-
tions. These models are considered in Honda et al.[7], Shiohama and Tamaki
[9], and Miura et al.[8]. Each factor Xj,t is of the form

Xj,t −Xj,t−1 = κj(µj −Xj,t−1)∆+∆1/2Zj,t, j = 1, . . . ,K, (1)

where Zj,t are independent such that E[Zi,tZj,t] = 0 for i ̸= j, µj are the long-
term mean of Xj,t, κj are their mean reversion parameters. The innovations
{Zj,t} are forth order stationary in the following sense.

Assumption 1 For j ∈ {1, 2, . . . ,K}, the process {Z = (Z1,t, . . . , ZK,t)
′} is

fourth-order stationary in the sense that

1. E[Zj,t] = 0,
2. cum(Zj,t, Zj,t+u) = cZj (u),
3. cum(Zj,t, Zj,t+u1 , Zj,t+u2) = cZj (u1, u2),
4. cum(Zj,t, Zj,t+u1 , Zj,t+u2 , Zj,t+u3) = cZj (u1, u2, u3).

Assumption 2 The k-th order cumulants cZj (u1, . . . , uk−1) of Zj,t, j = 1, . . . ,K,
for k = 2, 3, 4 satisfy

∞∑
u1,··· ,uk−1=−∞

|cZj
(u1, . . . , uk−1)| < ∞.

Assumptions 1 and 2 are satisfied by a wide class of time series models con-
taining the univariate ARMA and GARCH processes.

Hereafter we assume that the current time is set at t = 0, and that the
initial factors Xj,0 are observable and fixed. Then rt is discretely sampled at
times 0,∆, 2∆, . . . , n∆(≡ T ) over [0, T ]. For the notational convenience, we
use following notation. Let

Aj,u = µj(u∆−Bj,u), Bj,u =
1

2κj
(1 + υj)(1− υu

j ),

aj,u =
2

κj∆

{
1− 1

2
υu−1
j (1 + υj)

}
,
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where υj = 1 − κj∆ for j = 1, . . . ,K and u = 1, . . . , n. Then it follows from
Honda et al.[7] that

P (0, T ) = EQ
0

[
exp

(
−
∫ T

0

rtdt

)]
= EQ

0

exp
−

K∑
j=1

∫ T

0

Xj,tdt


=

K∏
j=1

EQ
t

[
exp

(∫ T

0

Xj,tdt

)]
≈

K∏
j=1

EQ̃
0

[
exp

{
−∆

(
1

2
r0 +

n−1∑
u=1

ru +
1

2
rn

)}]

=
K∏
j=1

exp(−Aj,n −Bj,nr0)AFj,n

where EQ̃
0 is the expectation under the asymptotic risk-neutral measure, which

is discussed in Miura et al.[8], and

AFj,n = EQ̃
0

[
exp

(
−∆3/2

2

n∑
u=1

aj,uZj,n−u+1

)]
. (2)

Let

Yj,n = ∆1/2
n∑

u=1

bj,uZj,n−u+1 and bj,u =
∆

2
ai,j =

1

κj

{
1− 1

2
υu−1
j (1 + υj)

}
.

(3)

Using the process {Yj,n}, we express the product of the AFj,n terms as

K∏
j=1

AFj,n = EQ̃
0

exp
−

K∑
j=1

Yj,n

 .

We give an analytic approximation of the zero coupon bond prices for the multi-
factor discretely observed Vasicek term structure models with non-Gaussian
and dependent innovations by the Edgeworth expansion of the joint density
function of Yn = (Y1,n, . . . , YK,n)

′. It is easy to observe that the processes
{Yj,n}, j = 1, . . . ,K are fourth-order stationary with Var(Yj,n) = σ2

j,n, and the
third and fourth order cumulant is denoted by

cum(Yj,n, Yj,n, Yj,n) = n−1/2C
(3)
Yj

and cum(Yj,n, Yj,n, Yj,n, Yj,n) = n−1C
(4)
Yj

.

We need following assumption.

Assumption 3 The J-th order (J ≥ 5) cumulants of {Yj,n}, j = 1, . . . ,K are
of order O(n−J/2+1).

Since we calibrate this model to the market interest rates, we need to include
the risk premium before we pricing the zero-coupon bonds. We assume that the
jth factor’s market price of risk λj is constant and define µ̄j = µj − λiσXj/κj .

By using the asymptotic expansion for the defaultable bond price of Miura
et al.[8], we can derive the following formula for the nominal price of a pure
discount bond with face value 1 maturing at time T .
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Theorem 1 Under Assumptions 1–3, the current bond price of the K-factor
discretely observed Vasicek term structure model is expressed as

P (0, T ) = exp

A(T )−
K∑
j=1

Bj,nXj,0

D(T ) (4)

where

A(T ) =
K∑
j=1

Aj,n =
K∑
j=1

[
−µ̄j(n∆−Bj,n) +

1

2
σ2
j,n

]
,

D(T ) =
K∏
j=1

exp

(
− 1

6
√
n
C

(3)
Yj

+
1

24n
C

(4)
Yj

)
,

Bj,n =
1

2κj
(2− κj∆)(1− (1− κj∆)n).

The proof of Theorem 1 is omitted, since it is analogous to the results
obtained from Honda et al.[7] and Miura et al.[8].

The analytic expressions for the bond price and yield given in Theorem 1
are based on the discrete time models with non-Gaussian and dependent in-
novations. According to this expression, the linkage between continuous and
discrete scheme for short rate models are apparent. If Zj,ts are standard nor-
mal distribution, then as ∆ → 0, bond price tends to the standard multi-factor
Vasicek term structures.

3 State Space Representation and Estimation

The application of Kalman filtering methods in the estimation of term structure
models using cross-sectional and time series data has been investigated by Duan
and Simonate[5], Chen and Schott[3], and Babbs and Nowman[1,2].

To estimate the model, we use the state-space representation of the term
structure models with non-Gaussian innovations. Our proposed models is dis-
crete scheme with non-Gaussian driven innovations, hence the corresponding
state-space model is also non-Gaussian, however the Kalman filter can still be
applied to obtain approximate moments of the model and the resulting filter is
quasi-optimal.

Let Rt(τ) denote the continuously compounded yield on a zero-coupon bond
of maturity τ with corresponding discrete sample size τ/∆ = n. The state-
space formulation of the model consists of the measurement and transition
equations. To construct measurement equation, we need N zero-coupon rates
and use the following relationship between the zero-coupon yield and the price
of zero-coupon bonds,

Rt(τ) = − lnP (0, τ)

τ
= −1

τ

(
(A(τ) + lnD(τ))−

K∑
i=1

Bj,nXj,n

)
.
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Then the measurement equation has the following form with K = 3
Rt(τ1)
Rt(τ2)

...
Rt(τN )

 =


−A(τ1)−lnD(τ1)

τ1

−A(τ2)−lnD(τ2)
τ2
...

−A(τN )−lnD(τN )
τN

+


B1,n1

τ1

B2,n1

τ1

B3,n1

τ1
B1,n2

τ2

B2,n2

τ2

B3,n2

τ2
...

...
...

B1,nN

τN

B2,nN

τN

B3,nN

τN


X1,t

X2,t

X3,t

+


εt,1
εt,2
...

εt,N

 ,

or

Rt = A(Ψ ) +H(Ψ)Xt + εt,

where Ψ denotes the unknown parameter vectors to be estimated and εt ∼
N(0,Vε) with Vε = diag(h2

1, . . . , h
2
N ).

To obtain the transition equation for the state-space model, we need con-
ditional mean and variance of the state variable process. Using recursive sub-
stitution in (1) and remind that vj = 1− κj∆, Xj,n can be represented as

Xj,n = (1− vnj )µ̄j + vnj Xj,0 +∆1/2
n∑

u=1

vu−1
j Zj,n−u+1.

For simplicity, we assume that sequence {Zj,n} is i.i.d. with zero mean and
finite variance σ2

Zj
. Then the variance of Xj,n becomes

σ2
Xj

= σ2
Zj

[
1− v

2(n−1)
j

2κj − κ2
j∆

]
. (5)

The exact discrete-time models is a VAR(1), and the transition system as
followsX1,t

X2,t

X3,t

 =

 µ̄1κ1∆
µ̄2κ2∆
µ̄3κ3∆

+

 1− κ1∆ 0 0
0 1− κ2∆ 0
0 0 1− κ3∆

X1,t−1

X2,t−1

X3,t−1

+

 ηt,1ηt,2
ηt,3

 ,

or

Xt = C(Ψ) + F (Ψ )Xt−1 + ηt(Ψ)

where ηt ∼ N(0,Vη) with Vη = diag(σ2
X1

, σ2
X2

, σ2
X3

).
Now that we have placed our models in state-space form, we can construct

the Kalman filter for the three-factor model in which we want to minimize the
mean squared error between Rt(τi) and R̂t(τi).

Example Let {Zj,t} follows a GARCH(1,1) process

Zj,t = h
1/2
j εj,t, hj,t = ωj + αjZ

2
j,t−1 + βjhj,t−1,

where {εt,j} is a sequence of i.i.d. standard Normal random variables. The
parameter values must satisfy ωj > 0, αj , βj ≥ 0, αj + βj < 1, and 1 − 2α2

j −
(αj + βj)

2 > 0. Accordingly, σX2
j
in (5) should be

σ2
Xj

=
ωj

1− αj − βj

[
1− v

2(n−1)
j

2κj − κ2
j∆

]
.
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C
(3)
Yj

and C
(4)
Yj

in the definition of D(T ) in Theorem 1 should become

C
(3)
Yj

= 0,

C
(4)
Yj

=
3

n

∫ π

−π

|Bj,2(λ)
2|fZ2

j
(λ)dλ− 2

3{(1− (αj + βj)
2)}

1− (αj + βj)2 − 2α2
j

1

n

n∑
u=1

b4j,u,

where B2(λ) =
∑n

u=1 b
2
j,ue

ijλ and

fZj
2,2(λ) =

σ2
νj

2π

1 + β2
j − 2βj cosλ

1 + (αj + βj)2 − 2(αj + βj) cosλ

with

σ2
νj

=
2ω2

j (1 + αj + βj)

{1− (αj + βj)}
{
1− 2α2

j − (αj + βj)2
} .

Using this parametrization in the state space representation, we can estimate
the GARCH(1,1) driven multi-factor term structure models explicitly.

4 Data Analysis

The data used consist of Japanese Government Bond (JGB) yields which are
zero-coupon adjusted obtained from Bloomberg. We use weekly sampled data
and set ∆ = 1/52. Data cover the period October 1, 1999 to December 27,
2013, a total of T = 744 observations. The maturities included are 1/4, 1/2,
1,2,3,4,5,6,7,8,9,10,15,20, and 30 years, a total of N = 15 different maturities.
Application of the Kalman filter to the one-, two- and three-factor models with
discretely observed non-Gaussian models are discussed. For fair comparison,
we also estimate corresponding multi-factor Vasicek term structure models.

Table 1 gives the sum of the squared errors for estimated models with
various maturities. For the bond yield with τi maturity, the entry in the cell is
given by

SSE(τi) =

T∑
t=1

(Rt(τi)
(obs) − R̂t(τi)

(model))2,

and the total mean squared error is calculated as

Total SSE =
N∑
i=1

T∑
t=1

(Rt(τi)
(obs) − R̂t(τi)

(model))2.

We see from Table 1 that the total sum of the squares errors are small for
the non-Gaussian models compared with those corresponding one-, two- three-
factors of Vasicek model. As the number of factors increase, the calibration
errors get smaller. We also observe that the non-Gaussian models perform bet-
ter for the maturities no longer than 10 years, whereas for the long maturities
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Vasicek model (a) non-Gaussian model (b) Difference(%) (b)/(a)-1
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

3 Month 31.84 2.94 1.88 28.83 4.11 1.67 -9.43 39.81 -11.03
6 Month 27.61 0.93 0.63 28.20 1.78 0.57 2.12 90.58 -9.76
1 Year 22.57 1.29 1.23 23.16 1.20 1.23 2.64 -6.45 -0.31
2 Year 15.35 5.25 3.48 13.67 3.37 3.10 -10.97 -35.77 -10.94
3 Year 12.13 7.48 3.59 9.34 4.71 3.40 -23.05 -37.10 -5.38
4 Year 10.49 7.87 3.33 8.35 5.72 3.21 -20.41 -27.34 -3.73
5 Year 11.03 7.64 3.15 9.74 6.25 3.10 -11.66 -18.28 -1.44
6 Year 13.34 7.87 3.77 12.73 6.12 3.65 -4.58 -22.21 -3.26
7 Year 15.17 7.56 4.79 15.22 6.06 4.66 0.29 -19.80 -2.82
8 Year 19.59 9.09 6.71 19.76 7.14 6.57 0.89 -21.39 -2.17
9 Year 19.47 7.56 5.94 19.37 6.39 5.89 -0.52 -15.39 -0.77
10 Year 18.29 6.78 5.36 17.84 6.34 5.39 -2.43 -6.43 0.52
15 Year 13.02 10.73 10.73 14.84 13.44 11.04 14.03 25.22 2.95
20 Year 20.34 12.61 6.03 20.88 14.54 6.12 2.70 15.33 1.57
30 Year 33.38 27.95 6.88 33.51 22.86 7.15 0.41 -18.22 4.05

Total 283.61 123.54 67.50 275.45 110.03 66.75 -2.88 -10.93 -1.11

Table 1. Sum of the squared errors with different maturities and models

Vasicek term structure models perform better. This is because, the distribu-
tion of {Yj,n} tends be normal as the sample size n increases by the Central
Limit Theorem. Hence the non-Gaussian modelling is much better to fit the
short maturities of bond yield, where the underlying short rates exhibit highly
non-Gaussian behavior.

Table 2 shows the parameter estimation results. As for the sum of the long-
run mean levels, the Vasicek models tends to have quite high levels with 6.1% for
two-factor and 6.3% for three-factor models, whereas those with non-Gaussian
models have -2% and 2.6% for two- and three- factor models, respectively. We
see that the three-factor models with non-Gaussian models can appropriately
capture the long-run interest rate level. Most of the estimates for the sum of
the risk premiams are negative. This is because, in general, the risk in a bond
associate with the spot rate is proportional to the sensitivity of the bond price,
that is ∂P (0, T )/∂Xj,0 < 0.

For the skewness effects on the zero-coupon yield can be seen as the param-

eter values of C
(3)
j , and these values vary from -1.5 to 2.0 among one-, two-,

and three-factors. According to these values, we see that the effect of the skew-
ness of underlying innovation process is small. On the other hand, the kurtosis
effect on the zero-coupon yields is apparent for some factors in two- and three-
factor models.

The observed term structure of Japanese Government Bond (JGB) yield
with fitted yield curve with various models estimated are displayed in Figure 1.
We choose JGB yield of December 20, 2013 as an example. This figure shows a
typical shape for the JGB yield under the Quantitative and Qualitative easing
policy with low interest rate level for short maturities. According to these two
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parameter Vasicek model non-Gaussian model
1-factor 2-factor 3-factor 1-factor 2-factor 3-factor

µ1 -0.290 0.140 7.330 0.189 -0.873 -0.802
µ2 6.030 -4.370 -1.210 2.200
µ3 3.350 1.280
λ1 2.380 -2.040 -0.039 2.430 -12.000 8.120
λ2 0.909 3.010 3.720 -10.000
λ3 1.800 -0.507
κ1 0.009 0.560 0.251 0.003 0.325 0.212
κ2 0.094 0.396 0.093 0.415
κ3 0.009 0.023
σ1 0.012 0.114 0.001 0.015 0.003 0.019
σ2 0.085 0.003 0.183 0.019
σ3 4.27E-04 0.002

C
(3)
1 0.709 2.020 -0.622

C
(4)
1 -0.636 7.320 -0.103

C
(3)
2 -1.480 -0.451

C
(4)
2 0.487 3.110

C
(3)
3 0.999

C
(4)
3 2.460

Table 2. Estimates of one-, two- , and three- factor Vasicek models and non-Gaussian
models

figures, the fitting performances for the non-Gaussian modelling is superior to
those with Vasicek term structure modelling.

++++++++
++++

+

+
+

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Maturity

Y
ie

ld
(%

)

observed
1−factor model
2−factor model
3−factor model

Honda model  2013−12−20

++++++++
++++

+

+
+

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Maturity

Y
ie

ld
(%

)

observed
1−factor model
2−factor model
3−factor model

Vasicek model  2013−12−20

Fig. 1. Wiener stochastic paths (left) and stochastic Logistic paths (right)
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5 Summary and Conclusions

In this paper we have introduced the multi-factor discretely observed Vasicek
term structure models, and presented a method to estimate these models by
the Kalman filter. The advantages of incorporating non-Gaussian effect for
the short rate process are clear by investigating Japanese Government Bond
yield calibration. The following is possible research topics. A particle filtering
method should be used to compute estimates of the model parameters as well
as the state variables. Evaluation for the various interest rate derivatives using
proposed model should be investigated.
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Abstract: The comparison of two partitions in Cluster Analysis can be performed using various 
classical coefficients (or indexes) in the context of three approaches (based, respectively, on the 
count of pairs, on the pairing of the classes and on the variation of information). However, 
different indexes usually highlight different peculiarities of the partitions to compare. Moreover, 
these coefficients may have different variation ranges or they do not vary in the predicted 
interval, but rather only in one of their subintervals. Furthermore, there is a great diversity of 
validation techniques capable of assisting in the choice of the best partitioning of the elements to 
be classified, but in general each one tends to favour a certain kind of algorithm. Thus, it is 
useful to find ways to compare the results obtained using different approaches. In order to assist 
this assessment, a probabilistic approach to comparing partitions is presented and exemplified. 
This approach, based on the VL (Validity Linkage) Similarity, has the advantage, among others, 
of standardizing the measurement scales in a unique probabilistic scale. In this work, the 
partitions obtained from the agglomerative hierarchical cluster analysis of a dataset in the field of 
teaching are evaluated using classical and probabilistic (of VL type) indexes, and the obtained 
results are compared. 
 
Keywords: Hierarchical cluster analysis, comparing partitions, affinity coefficient, VL 
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1  Introduction 
 

The Cluster Analysis aims to identify groups (classes or clusters) of entities 
(individuals, objects, etc.), that are relatively homogeneous and well separated, based 
on similarities or dissimilarities between them. 
There are multiple indexes for comparing partitions, which complicates the decision-
making, given that different indexes generally evaluate different peculiarities of the 
partitions to compare. Moreover, there is a great diversity of validation techniques 
capable of assisting in the choice of the best partitioning of the elements to be 
classified, but in general each one of them tends to favour a certain kind of algorithm. 
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Thus, it is imperative to find ways to compare the results obtained using different 
approaches. 
In Section 2 the indexes for the comparison of partitions are introduced using classical 
coefficients. Section 3 is dedicated to the comparison of partitions using probabilistic 
coefficients of the VL type. In Section 4, we compare the results obtained with the 
implementation of the two approaches, classical and probabilistic, to a real data set, 
under a wider validation work in Cluster Analysis, using resampling methods. Finally, 
Section 5 presents the main conclusions. 
 
2  Coefficients for comparison of partitions pairs 
 

The comparison of two partitions in Cluster Analysis can be performed using various 
indexes or classical coefficients in the context of three approaches (based respectively 
on the count of pairs, on the pairing of the classes and on the variation of information). 
However, each of these coefficients assumes a certain value, depending on its analytic 
expression, and some have different variation ranges or they do not vary in the 
predicted interval, but rather only in one of its subintervals. In order for these 
coefficients to be more easily comparable, one should keep in mind their intrinsic 
characteristics, categorizing them into groups with similar characteristics. 
To compare two partitions, P and P’, of one same dataset of n cardinal based on the 
count of pairs, one can begin by constructing an associated 2 × 2 contingency table, as 
Table 1. 
 

Table 1.  Contingency table based on the count of pairs 

 
Table 1 mentions the pairs of elements that exist in the two partitions, where "a" is the 
number of pairs of elements that are in the same classes in both partitions, "b" is the 
number of pairs of elements that belong to the same classes in a partition P but to 
different classes in the other partition (P’), "c" is the number of pairs belonging to 
different classes in the P partition and to the same classes in the P’ partition and "d" is 
the number of pairs of elements belonging to different classes in both partitions. The 
total number of pairs of objects is a + b + c + d = n × (n-1) / 2. 
Silva (2012) contains a list of indexes for the comparison of binary data, which are 
functions of the four values of Table 1 and are also used for comparing partitions. In 
this list, the indexes are subdivided into similarity coefficients that consider the joint 
absence "d", similarity coefficients that do not take into account the joint absence "d" 
and other coefficients of association. For each of the coefficients the respective formula 
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is shown, as well as the symbol with which it is usually designated, its variation range 
and its author(s). 
 These indexes should be evaluated relatively to common properties, and can be 
sensitive to the number of classes in the partitions. Some of the indexes (for example, 
Hubbert and Rand) tend to have high values in the case of partitions with more classes, 
others in the case of partitions with a small number of classes (e.g. Jaccard). The 
adjusted Rand index has none of these undesirable characteristics (Milligan and 
Cooper, 1985; Jain and Dubes, 1988), which is why this is one of the indexes 
pertaining to the methodology used in this work. The standardized Ochiai index (a 
particular case of the affinity coefficient, e. g., Bacelar-Nicolau, 1985), has also been 
used with good results in the context of partitions comparison (Silva, 2004; Silva, 
2012). 
As noted above, the evaluation of the partitions comparison indexes based on the count 
of pairs must take into account the scale of variation and the relation that can be 
established between the various indexes from their mathematical expressions. Several 
studies of classification and comparison of these coefficients have been proposed by 
many authors since Sneath and Sokal (1963). Sibson (1972) made the grouping of 
coefficients into monotonic classes, establishing an equivalence relation in the set of 
comparison coefficients for binary data. Bacelar-Nicolau (1980, 1987) determined 
"distributionally equivalent" classes of coefficients, a concept that we will use in this 
work, as mentioned in the next section. 
 
3 Comparison of pairs of partitions using probabilistic coefficients 
 
Lerman (1970) proposed the use of a similarity coefficient of probabilistic nature 
between binary variables, which he then expanded to proximity coefficients between 
structures of the same type (Lerman, 1973, 1981). Bacelar-Nicolau (e.g., 1980, 1987) 
conducted a distributional study of the comparison coefficients for binary data, having 
verified and proved the distributional equivalence of a broad class of coefficients, 
under the assumption of fixed margins of the 2 × 2 contingency table associated with 
each pair of elements of the set to be classified. For other coefficients as well as in the 
hypothesis of free margins, although distributional exact equivalence does not occur, 
we can find classes of equivalent coefficients with respect to their asymptotic 
distribution, and take always, as information associated with a coefficient, its limit 
function of distribution (Bacelar-Nicolau, 1980, 1987; Lerman, 1981), which is a 
probabilistic similarity coefficient γ  on the scope of VL methodology. Thus, we have 

for a similarity coefficient, :S  

( ) ( )*)**()(
00

ssSProbsSProbsF HHS φγ ≅≤≅≤==  
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where H0 is an adequate reference hypothesis, 
SF

 
is the distribution function of 

S , ( )( ) S
*

SESS σ−= , *
s

 
is a realization of *

S , φ  is the distribution function of the 

standard normal distribution and ( )SE  and Sσ  are respectively the mean value and 

the standard deviation, usually asymptotic. The probabilistic coefficient takes values in 
[0,1] (follows the Uniform distribution (0, 1)), and is generally calculated 
asymptotically because the exact distribution function may not be known. The VL 
coefficient was later extended to other types of data and to mixtures of different types 
of data (e.g. Bacelar-Nicolau, 1988, Nicolau, 1983; Nicolau and Bacelar-Nicolau, 
1998; Bacelar-Nicolau et al, 2009, 2010). 
The approach to comparing partitions, using probabilistic coefficients of the VL type, is 
based on studies of the comparison coefficients for binary data by Bacelar-Nicolau and 
proceeds as follows: 
i) We start with a similarity index, ,S for comparing two partitions, P and P', based on 

the count of pairs of elements that exist in the two partitions. 

ii) We calculate the value of 'PPγ  of the distribution function of the similarity index S 

used in point s, under the assumption of the considered reference: 
 

( ) ( )*)**()(
00' ssSProbsSProbsF HHSPP φγ ≅≤≅≤==  

Two partitions, P and P', will be considered the more consistent the larger is the value 
of ( )sFS

, that is, the more unlikely is overcoming the s realization of S under the 

reference hypothesis. 
As it has been pointed out by several authors (e.g., Lerman, 1973, 1981; Bacelar-
Nicolau, 1980, 1987; Dubes and Jain, 1988), the different indexes do not show all 
values in [0, 1] and a proportion of the similarity between both partitions is assigned 
randomly. However, it is shown that the most used indexes are equivalent from the 
distributional point of view (Bacelar-Nicolau, 1980, 1987). The application of the VL 
methodology to these coefficients allows us to obtain comparison indexes of partitions 
that can be interpreted on a probabilistic scale. Thus, using a probabilistic coefficient 
we can choose only one classical coefficient in each (asymptotically) distributionally 
equivalent class of coefficients, in order to compare partitions. 
 
4 Comparison of results obtained by classical and probabilistic 
approaches on a set of real data 
 
The data (from a sample of 164 students) was obtained through a questionnaire 
containing twenty-two questions concerning attitudes/beliefs of students in the area of 
Social and Human Sciences regarding the subject of Statistics (Silva et al., 2007). Each 
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student selected one and only one of seven possible answers to each question (1 - 
strongly disagree, ..., 4 - neither agree nor disagree, ..., 7 - strongly agree). 
An Agglomerative Hierarchical Cluster Analysis (AHCA), using the affinity coefficient 
(e.g., Bacelar-Nicolau, 1985) between variables and the probabilistic aggregation 
criteria AVL, AV1 and AVB (e.g., Nicolau, 1983; Bacelar-Nicolau, 1985; Nicolau and 
Bacelar-Nicolau, 1998), was applied in order to obtain a typology of variables under 
study. The tables with the values of validation indexes to select the most significant 
partition, obtained from the initial data matrix, and the interpretation of the classes 
corresponding to this partition, in four classes, can be found in Silva et al. (2007). It has 
been noted that the most significant partition is the same for all three aggregation 
criteria. 
The results were obtained for the case of evaluation and comparison of partitions using 
resampling methods. In the present study, we evaluate the most significant partition 
provided by the AHCA of the data, based on the affinity coefficient and on the 
aggregation criteria mentioned above. The procedure can briefly be described as 
follows: 1) from the original data 50 subsamples were generated, with a sampling rate 
defined a priori (80%), using simple random sampling; 2) the same model of AHCA 
was applied to data matrixes (subsamples) randomly generated by the Monte Carlo 
simulation method, to determine the partitions with the same number of classes 
presented by the most significant partition obtained from the original data; 3) this 
partition was compared to each of the partitions obtained in 2), based on the count of 
pairs, using each of the classical coefficients from the list in Silva (2012) or the 
associated VL probabilistic coefficient; statistics were also calculated regarding 
location and dispersion associated with each index, in order to analyze the respective 
behaviour. 
Table 2 shows the values of summary statistics (measures of central tendency, 
dispersion and quantiles) for classical coefficients (Table 2-a) and probabilistic 
coefficients (Table 2-b) in the situation where joint absence “d” is not considered.  
Silva (2012) also contains similar tables for the coefficients where the joint absence "d" 
is considered, as well as for other association coefficients. 
It can be seen in Table 2-a) and in Silva (2012) that the most part of the classical 
comparison coefficients takes values in the interval [0,1]. However, the interval 
between the minimum and maximum values of the sampling distribution is very 
variable. The maximum value of the distribution reaches the upper limit 1 of the range 
in many of the coefficients, reaching a minimum often above 0.5 for the first two 
considered coefficients classes (similarity coefficients that consider the joint absence 
"d" and similarity coefficients that do not consider the joint absence "d"), but not for 
other association coefficients (Silva, 2012). 
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Table 2-a). Values of summary statistics related to classical coefficients that do not  
consider joint absence "d" 
 

 S J O CZ K1 DW1 DW2 SS2 BB1 BB2 SO JO K2 FMG1 
Min .609 .432 .607 .603 .609 .547 .609 .276 .547 354 .299 1.219 .761 .544 

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 10.333 .938 

Mean .955 .908 .941 .941 .942 .934 .950 .870 .929 479 .891 1.884 2.491 .879 

SD .095 .177 .117 .119 .116 .138 .097 .238 .139 043 .222 .233 3.769 .118 

Center .804 .716 .803 .801 .804 .773 .804 .638 .773 427 .650 1.609 5.505 .741 

.005 .609 .432 .607 .603 .609 .547 .609 .276 .547 354 .299 1.219 .761 .544 

.01 .609 .432 .607 .603 .609 .547 .609 .276 .547 000 .299 1.219 .761 .544 

.025 .673 .438 .609 .609 .610 .609 .673 .281 .609 379 .371 1.220 .761 .547 

.05 .765 .513 .683 .678 .687 .609 .765 .345 .609 379 .371 1.374 .761 .620 

.1 .765 .513 .683 .678 .687 .609 .765 .345 .609 379 .371 1.374 .770 .620 

.25 .969 .912 .954 .954 .954 .969 .939 .838 .939 484 .938 1.908 1.054 .891 

.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 2.491 .938 

.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 5.798 .938 

.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 10.333 .938 

.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 10.333 .938 

.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 10.333 .938 

.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 10.333 .938 

.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 500 1.000 2.000 10.333 .938 

  
Similarly, measurements of location and dispersion of various classical coefficients 
show high variation. However, the sampling distributions of the associated 
probabilistic coefficients described in Table 2-b) feature ranges of similar magnitude 
with approximate minimum and maximum values. 
 
Table 2-b).  Values of summary statistics related to probabilistic coefficients that do 
not consider joint absence "d" 
 

 S J O CZ K1 DW1 DW2 SS2 BB1 BB2 SO JO K2 FMG1 
Min .000 .004 .002 .002 .002 .003 .000 .006 .003 .002 .004 .374 .194 .002 

Max .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 1.000 .962 .691 

Mean .559 .557 .559 .559 .559 .561 .555 .554 .558 .560 .560 .438 .463 .559 

SD .233 .249 .242 .242 .242 .238 .249 .261 .247 .241 .242 .152 .305 .242 

Center .341 .351 .347 .347 .347 .343 .349 .357 .349 .346 .346 .687 .779 .347 

.005 .000 .004 .002 .002 .002 .003 .000 .006 .003 .002 .004 .374 .194 .002 

.01 .000 .004 .002 .002 .002 .003 .000 .006 .003 .000 .004 .374 .194 .002 

.025 .002 .004 .002 .003 .002 .009 .002 .007 .011 .010 .009 .374 .194 .002 

.05 .023 .013 .014 .013 .014 .009 .029 .014 .011 .010 .009 .374 .194 .014 

.1 .023 .013 .014 .013 .014 .009 .029 .014 .011 .010 .009 .374 .195 .014 

.25 .559 .509 .543 .544 .541 .600 .456 .447 .529 .550 .583 .374 .217 .540 

.5 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 .374 .360 .691 

.75 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 .479 .365 .691 

.9 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 .530 .702 .691 

.95 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 1.000 .962 .691 

.975 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 1.000 .962 .691 

.990 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 1.000 .962 .691 

.995 .682 .698 .691 .691 .691 .683 .697 .707 .696 .691 .688 1.000 .962 .691 
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Figure 1 illustrates the variation of mean values of some coefficients, both classic 
(taking values in the range [0,1]) and probabilistic. As it can be seen, the mean values 
of the classical indexes, considering the values obtained in 50 resamplings, vary greatly 
from index to index.  

 
Fig. 1. Variation of means obtained for some classical and probabilistic coefficients 

 
In the context of the VL approach it is found that, contrary to the respective basic 
indexes, the values obtained for means and other location measures of the sampling 
distribution of the probabilistic coefficient have been very close, as can be seen in 
Figures 1 and 2, as well as in Silva (2012). 
 

 
Fig. 2. Variation of the values of some summary statistics for the probabilistic VL 
coefficients associated with classical association coefficients. 
 
These results are consistent with the theory that shows the property of (exact or 
asymptotic) distributional equivalence between comparison coefficients for binary data 
(Bacelar-Nicolau, 1980, 1987), mentioned in Section 3. The comparison of partitions 
using probabilistic coefficients of VL type is therefore a simpler and more robust 
approach than the comparison based on classical coefficients: instead of determining 
several of these indexes, we will choose a single index in each of the (exact or 
asymptotically) distributionally equivalent classes and use the VL probabilistic 
coefficient associated to it, which also has the advantage of standardizing the 
measurement scale on the same probabilistic scale. Finally, the variation ranges and 
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other statistics provided by the VL coefficient tables allow us evaluate the quality of the 
most significant partition provided by the three models of probabilistic classification. 
This conclusion is supported by an appropriate set of validation coefficients, which are 
not presented in this work. 
 
5 Conclusions 
 
In this work, we compare the performances of classical indexes with an associated 
probabilistic approach for the comparison of pairs of partitions. The described 
resampling methodology is part of a work on the evaluation of the stability of the 
obtained classifications in a AHCA.  
Usual classical indexes show not to be a convenient choice since they may have 
distinct display ranges as well as quite different values for other statistics of location 
and dispersion or they do not take values in the entire variation interval but only in part 
of that interval. The probabilistic approach to the comparison of partitions using 
probabilistic coefficients of VL type has, among others, the advantage that all classical 
indexes used lead, exactly or asymptotically, to very close values of the probabilistic 
index (theoretically conduct to the same value, in the case of the reference hypothesis 
considered here) and in a probabilistic scale (0, 1). Thus, instead of determining 
various indexes the VL approach can be applied to any of the indexes belonging to a 
given class of distributionally equivalent indexes to carry out the comparison of 
partitions pairs with the same number of classes. 
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Abstract: We present one example, in which the data are issued from a questionnaire in 

order to find satisfaction typologies (with the services provided by an automobile company) 

of independent groups of individuals. The Agglomerative Hierarchical Cluster Analysis 

(AHCA) was based on two approaches: one based on a particular case of the generalized 

weighted affinity coefficient, which deals with classical data, and the other one on the 

weighted generalized affinity coefficient for the case of symbolic/complex data. Both 

measures of comparison between elements were combined with classical and probabilistic 

aggregation criteria. We used the global statistics of levels (STAT) to evaluate the quality of 

the obtained partitions. 

 

Keywords: Hierarchical cluster analysis, Affinity coefficient, Independent groups of 

individuals, VL Methodology, Classical data, Symbolic data. 

 

1 Introduction 
 

Recent computational advances allow us to summarize very large datasets in terms 

of their underlying concepts, which can only be described by symbolic or complex 

data.  Each entry of a symbolic data table can contain one or several values such as 

subsets of categories, intervals of the real dataset  , or frequency distributions (e. 

g., Bacelar-Nicolau, 2000; Bock and Diday, 2000; Bacelar-Nicolau et al., 2009, 

2010). A symbolic variable Y with domain (or range or observation space)   is a 

mapping     defined on a set   of statistical entities (individuals, classes, 

objects,…). Depending of the specification of   in terms of  , symbolic variables 

can be classified as: classical single-valued, set-valued, interval, multi-valued 

(categorical or quantitative), and modal (probabilistic) variables. A variable   is 

modal with observation space   if, for each             is a non-negative 

measure on  , such as a frequency distribution, a probability distribution or a 

weighting (Bock and Diday, 2000). Here, in the case of symbolic data we will 

focus on Ascendant Hierarchical Cluster Analysis (AHCA) of data units described 

by modal variables. The VL methodology (V for Validity, L for Linkage) is a 

probabilistic approach for clustering methods, based on the cumulative distribution 

function of basic similarity coefficients, and the probabilistic aggregation criteria 
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under this methodology resort essentially to probabilistic notions for the definition 

of the comparative functions (e.g. Lerman 1970, 1981; Nicolau, 1983; Bacelar-

Nicolau, 1985, 1987, 1988; Nicolau and Bacelar-Nicolau, 1998). In this work, two 

classical aggregation criteria, Single Linkage (SL) and Complete Linkage (CL), as 

well as three probabilistic aggregation criteria - in the scope of the VL 

methodology- AVL, AV1, and AVB, are used to look for satisfaction typologies of 

independent groups of individuals in two contexts: classical data and 

symbolic/complex data. The measures of comparison between elements are based 

on the affinity coefficient. 

Two different approaches of AHCA of independent groups of individuals are 

described in Section 2. In the first one the data units (independent groups of 

individuals) are described by classical single-valued variables defined on an 

ordinal scale and a particular case of the generalized weighted affinity coefficient 

was used. The second one is based on the weighted generalized affinity coefficient 

for the case of symbolic data. In Section 3 we refer some experimental results from 

Business area. Section 4 contains some concluding remarks about this work and its 

results. 

 

2 AHCA of independent groups of subjects 

 

From the affinity coefficient between two discrete probability distributions 

proposed by Matusita (1951) as the basic similarity measure for comparing two 

probability laws of the same type, Bacelar-Nicolau (1980, 1988) introduced the 

affinity coefficient, as a basic similarity coefficient between pairs of variables or of 

subjects in cluster analysis context (corresponding to pairs of columns or rows of a 

data matrix). Later on she extended that coefficient to different types of data, 

including complex or symbolic data and variables of mixed types (heterogeneous 

data), possibly with different weights (Bacelar-Nicolau, 2000, 2002; Bacelar-

Nicolau et al., 2009, 2010). The extension of the affinity coefficient for the case of 

symbolic data is called weighted generalized affinity coefficient. In the present 

work, we use two different approaches of AHCA of independent groups of 

individuals based on two different generalized approaches for the affinity 

coefficient. 

  

Approach 1: particular case of the weighted generalized affinity coefficient  

In this approach, the data are initially represented in G tables (one table for each 

one of the independent groups of individuals), containing, respectively, N1, N2,…, 

NG, individuals described by p identical variables defined on an ordinal scale. 

Later, G new tables, each one containing the same number n= min{N1, N2, …, NG} 

of individuals (selected from a stratified random sampling) have to be obtained 

from the initial corresponding  tables. Each new table corresponds to a (np) data 

table, and      (i=1,…, n, h=1,…, G, j=1,…, p) is the value of the individual i, 

belonging to the table Th (abbreviated, h), in the j-th variable (see Table 1). Then, 

the total scores of each independent group of individuals in each variable are 

computed as follows, where            
 
    (i=1,…, n, h=1,…, G, j=1,…, p) is 

the total score of the group h in the variable j (sum in the column j of Th): 
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Table 1. G new tables (same number n= min{N1, N2, …, NG} of subjects)  

 
    (Group 1)      (Group G) 

 Ind. i                       Ind. i                      

1            ... 1            

2            ... 2            

              
...               

n            ... n            

Total             Total            

 

The computation of the affinity coefficient between the groups h and h’, with h, 

h’=1, …, G, and   h≠h’, is based on the following data matrix (Table 2), and in the 

formula (1): 

 

Table 2. Classical data matrix (approach 1) 

 

              

Group 1            

Group 2            

              
Group G            

 

                                          
 

 
  

    

    
 
     

     

 
    ,                             (1) 

 

where            
 
     (respectively,             

 
   ) is the total score of the 

group h,  in the p variables [sum in the row h (respectively, h’) of Table 2]: 
 

 

Approach 2: weighted generalized affinity coefficient (case of modal data) 

Given a set of N data units (typically groups of individuals: symbolic data units) 

described by p modal variables, Y1,...,Yp (each variable may have a different 

number of “modalities”),  the weighted generalized affinity coefficient between the 

data units k and k’ is given by: 

 

                       
 
         

    

    
 
     

     

  

   
 

 
                   (2) 

 

where:             is the generalized local affinity between   and    over the j-th 

variable, mj is the number of modalities of the j-th variable;       is the number of 

individuals (in the unit  ) which share the category ℓ of Yj;            

  

   
 , 
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 , and the weights,   ,  verify the condition :   ≥0 and       

(see Table 3). 

Either the local affinities or the whole weighted generalized affinity coefficient, 

take values in the interval [0,1] and satisfy a set of proprieties which characterize 

affinity measurement as a robust similarity coefficient (e.g., Bacelar-Nicolau, 

2002; Bacelar-Nicolau et al., 2009). The coefficient associated to the first approach 

is a particular case of the coefficient associated to this second approach.  

 

Table 3.  Symbolic data matrix X with integer frequency distributions 

 

   Yj   Yj’   

           

k    
jkjmkj xx ,,1   

   
''1' ,,

jmkjkj xx   
  

            

k´    
jjmkjk xx ´1´ ,,  

   
''´1'´ ,,

jmjkjk xx   
  

            

 

This approach is appropriated when we deal with large datasets. 

 

 

3 Experimental results based on business data 
 

Data were collected using a questionnaire applied to 450 customers in order to 

evaluate the satisfaction (latent variable) with the services provided by an 

automobile company, based on 18 component variables, which are described in 

Sousa et al. (2014). The variables (items) are measured in a scale with ordered 

modalities (1- very dissatisfied (VD), 2- generally dissatisfied (GD), 3- neither 

satisfied nor dissatisfied (NSND), 4- generally satisfied (GS) and 5- very satisfied 

(VS)). The respondents are distributed by 11 professional occupations (O1- 

Doctors, architects and engineers; O2- Teachers; O3-Businessmen; O4-Salesmen; 

O5-Employees of banks and insurance companies; O6-Military and police; O7-

Administrative and similar; O8- Employees of the civil construction; O9- 

Employees of the commerce and industry; O10- Employees of hotels and 

restaurants; O11- Employees of other services. The numbers of individuals in each 

modality of the variable “Professional occupation”, with 11 modalities, are 

respectively 45, 40, 79, 42, 38, 40, 35, 34, 51, 24, 22. 

The clustering of the 11 professional occupations was based on two approaches 

(see Section 2). The measures of comparison between elements were combined 

with two classical aggregation criteria, Single Linkage (SL) and Complete Linkage 

(CL), and three probabilistic aggregation criteria, AVL, AV1, and AVB. In the 

present work, the validation of the results is based on the global statistics of levels 

(STAT), as proposed by Lerman (1970, 1981) and Bacelar-Nicolau (1980, 1985), in 

both paradigms (classical and symbolic data).  
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In the first approach the data were initially represented in 11 tables (one table for 

each professional occupation), containing, respectively, 45, 40, 79, 42, 38, 40, 35, 

34, 51, 24 and 22 subjects, described by 18 identical variables. Then, 11 new 

tables, composed by n=22                                         ) 
rows (selected from a stratified random sampling) were obtained from the initial 

corresponding tables (see Table 1). The AHCA of the professional occupations was 

based on a classical data matrix, as Table 2, composed by 11 rows and 18 variables 

(V1 to V18). The entry corresponding to the intersection between the h-th row and 

the j-th column of this data matrix contains the total scores of the group h 

(h=1,…,11) in the variable j (j=1,…,18). In this approach, the value of the affinity 

coefficient between the professional occupations h (Oh) and h’ (Oh’) is given by 

formula (1). 

 

 

  O1  --*                                                             

        |--------------*                                              

  O3  --*              |--------*                                     

                       |        |                                     

  O11 --*--------------*        |                                     

                                |--*                                  

  O4  --*-----------*           |  |                                  

                    |-----*     |  |                                  

  O10 --*-----------*     |     |  |                                  

                          |-----*  |                                  

  O5  --*-----*           |        |                                  

              |-----------*        |                                  

  O9  --*-----*                    |                                  

                                   |                                  

  O2  --*--------*                 |                                  

                 |-----------*     |                                  

  O6  --*--------*           |     |                                  

                             |-----*                                  

  O7  --*--*                 |                                        

           |-----------------*                                        

  O8  --*--*                                                           

Fig. 1. Dendrogram obtained with 

CL, AVL, AV1 and AVB 

(Approach 1) 

Fig. 2. Dendrogram obtained with AVL 

and AV1 methods (Approach 2) 

 

The selected partition is the partition into two clusters (STAT=5.5222), which was 

obtained at level 9 by all aggregation criteria (see Figure 1). 

In the second approach (case of a symbolic data table for modal variables), from 

the initial data table (450 × 18), the subjects were distributed into 11 groups 

according to their professional occupation. The data units, O1 to O11, contain, 

respectively, 45, 40, 79, 42, 38, 40, 35, 34, 51, 24 and 22 individuals and each 

entry of the new data table contains a frequency distribution. In fact, the 11 

professional occupations correspond to symbolic data units (rows of a symbolic 

data table as Table 3) described by 18 modal variables (V1 to V18) .  

Figure 2 shows the dendrogram associated with the AVL and AV1 methods. The 

best partition is the partition into three clusters (STAT=5.5372), which was 

obtained at level 8 by all aggregation criteria.  

   O1  --*                                                             
        |                                                             

  O3  --|--------*                                                    

        |        |                                                    

  O11 --*        |                                                    

                 |--*                                                 

  O4  --*--*     |  |                                                 

           |     |  |                                                 

  O5  --*--|     |  |                                                 

           |-----*  |                                                 

  O9  --*--|        |                                                 

           |        |                                                 

  O10 --*--*        |                                                 

                    |                                                 

  O2  --*           |                                                 

        |           |                                                 

  O7  --|-----*     |                                                 

        |     |     |                                                 

  O8  --*     |-----*                                                 

              |                                                       

  O6  --*-----*                                                       
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The clustering results provided by both approaches were compared. Note that at 

levels 7 and 8 both approaches provide the same partitions (respectively, into two 

and into three clusters). 

 

Table 4. Responses given by the subjects belonging to each cluster (%)  

 

  

V1 

    

V2 

    

V3 

  
 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 63% 25% 12% 0% 8% 14% 79% 0% 0% 0% 0% 4% 96% 

C2 0% 0% 30% 65% 5% 0% 6% 55% 35% 3% 0% 0% 3% 45% 52% 

C3 0% 0% 3% 96% 1% 0% 5% 81% 7% 8% 0% 0% 3% 82% 15% 

   V4     V5     V6   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 76% 20% 4% 8% 13% 55% 23% 2% 0% 8% 9% 79% 5% 

C2 0% 0% 41% 57% 2% 4% 16% 69% 11% 0% 0% 6% 48% 41% 5% 

C3 0% 0% 9% 91% 0% 1% 13% 80% 7% 0% 0% 5% 80% 7% 9% 

    V7    V8     V9   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 5% 8% 86% 0% 0% 0% 4% 92% 4% 0% 0% 0% 4% 96% 

C2 0% 4% 45% 48% 4% 0% 0% 37% 56% 7% 0% 0% 8% 40% 52% 

C3 0% 3% 79% 11% 8% 0% 0% 66% 21% 13% 0% 0% 10% 75% 15% 

   V10     V11     V12   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 4% 51% 45% 0% 0% 3% 27% 69% 0% 0% 0% 17% 83% 

C2 0% 3% 15% 59% 23% 0% 3% 14% 54% 29% 0% 0% 12% 41% 47% 

C3 0% 3% 22% 70% 4% 0% 3% 18% 74% 5% 0% 0% 17% 68% 15% 

   V13     V14    V15    

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 4% 16% 47% 27% 5% 0% 0% 14% 86% 0% 0% 0% 0% 15% 85% 

C2 4% 16% 62% 15% 3% 0% 3% 45% 45% 6% 0% 0% 12% 43% 45% 

C3 4% 9% 73% 11% 2% 0% 3% 79% 7% 11% 0% 0% 17% 73% 9% 

   V16     V17     V18   

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

C1 0% 0% 75% 16% 9% 0% 0% 75% 12% 13% 3% 17% 51% 23% 5% 

C2 0% 0% 39% 59% 3% 0% 0% 39% 57% 5% 2% 18% 69% 9% 2% 

C3 0% 0% 7% 93% 1% 0% 0% 7% 93% 1% 0% 13% 77% 10% 0% 
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The differences between the clustering results appear to be due, in part, to the 

sampling process associated to the first approach and to the fact that in this 

approach we work only with the total scores of each independent group of 

individuals in each variable. Thus, in the remainder text, we will only refer to the 

best partition provided by the second approach: Cluster 1: {O1, O3, O11}; Cluster 

2: {O4, O5, O9, O10}; Cluster 3: {O2, O6, O7, O8}. From the observation of 

Table 4, it can be seen some of the main differences between the profiles 

associated to these three clusters. 

In a 2D Zoom Star, axes are linked by a line that connects most frequent 

categorical values of each variable, so it allows us to identify the main 

characteristics of the objects. Figure 3 shows the 2D Zoom Stars associated to the 

clusters of the second approach. We observe that, for instance, most respondents 

included into cluster 3 are: generally satisfied with the aspects associated to 

variables V1, V3, V4, V9, V10, V11, V12, V15, V16 and V17; and neither 

satisfied nor dissatisfied with the aspects associated to variables V2, V5, V6, V7, 

V8, V13, V14 and V18 (see Figure 3 and Table 4). 

 
 

 
 

Cluster 1      Cluster 2    Cluster 3 

 

Fig. 3. 2D Zoom Stars representation for the clusters- Approach 2 

 

 

4 Conclusions 
 

The knowledge about the satisfaction profiles is useful, because customers respond 

better to the Market segmentation strategies which address their specific needs. 
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In the case of the first approach we loss information because we can´t work with 

the entire sample but only with a stratified random subsample, and this approach 

works only with the total scores of each independent group of individuals in each 

variable (that is, we also loss information about the scores of the groups in the 

modalities of the variables). Contrary, using the second approach (weighted 

generalized affinity coefficient, for complex or symbolic objects) it is possible to 

work with the entire dataset, and with the frequency distributions associated to the 

scores of each independent group of individuals in the modalities of each variable. 

The differences between the clustering results (satisfaction typologies) provided by 

the two approaches of AHCA of independent groups of individuals were due, in 

part, to the smaller number of individuals of each group when we apply the first 

approach as a consequence of the sampling process. Nevertheless, we might have 

opted by inquiring a larger number of individuals in each group, during the 

planning of the investigation.  
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Abstract. This paper focuses on the smoothing procedure used at Statistics 
Sweden for handling of probabilities of death for persons in the highest ages, 
where the population is small and mortality is high. The paper also 
demonstrates how the smoothing affects the estimated average life expectancies 
at the national and regional levels. 
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1 Introduction 
Life expectancy tables in Sweden are based on data on population size and 

deaths during either a one-year or a five-year period. The tables are produced 

annually for the whole country, for its 21 counties and 290 municipalities (the 

table based on one year of data is only produced for the whole country). In 

addition to the remaining average life expectancies, the publication of the life 

expectancy table includes sex-specific probabilities of death for all ages. 

In 2012, Statistics Sweden conducted a review of the calculations for the 

periodic life expectancy tables. The project had two main objectives, of which 

the second is addressed in this paper: 

 

1. A quality assured production system, and 

2. Review of the handling of probabilities of death for very old persons at 

the national and regional levels. 
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Usable estimates of probabilities of death 
xq  can be difficult to obtain for the 

highest ages in a population. Since there might be few survivors and hence few 

deaths in higher ages the observed probabilities of death can often be seen to 

fluctuate significantly between ages or between time periods.  

 

 
Fig.1. Non smoothed probabilities of death (‰) for the population of Sweden 

2012 and 2013 

 

To address this problem Statistics Sweden applies a smoothing procedure to the 

probabilities of death for the highest ages and over the years various methods to 

do this has been tried. Until 1986 Wittstein’s method was used, which 

overestimated the probabilities of death for the oldest persons. Therefore in 

1987, Sten Martinelle at Statistics Sweden constructed a new smoothing 

procedure which was used successfully for many years. However, this method, 

where by Martinelles modeled probabilities of death replaced the observed 

probabilities for ages 90 and above, relied heavily on mortality data for Sweden 

and some other countries up to 1987 and did not fully take into account the 

observed probabilities to be smoothed. Therefore, over time, the smoothing 

process deteriorated, resulting in a systematic underestimation of probabilities 

of death and an overestimation of the remaining life expectancy for newborns, 

e0. Thus, in 2012, when the calculations for the life expectancy table were up for 

review it was decided that Martinelles method was to be evaluated, resulting in 

an updated method which provides smoothed probabilities of death with a better 

fit to the observed data.    

This report focuses on the updated method used since 2012 by Statistics 

Sweden. It also demonstrates how the updated smoothing affects estimated 

average life expectancies at the national and regional levels. 
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2 The model for smoothing probabilities of death 

The updated method used by Statistics Sweden for smoothing of the 

probabilities of death in high ages is based on the model chosen by Sten 

Martinelle for old-age mortality, Martinelle[3].  

The basic assumption underlying the model states that age specific adult 

mortality for a single individual in a population, in terms of the force of 

mortality )(x  where x denotes age, is well approximated by the Gompertz-

Makeham formula 

.0,0,0)(  kBABeAx kx
 

The constant B is called the ‘frailty’ of the individual and measures his or her 

inability to withstand destruction. 

In the past many authors has pointed out that it is medically well established that 

frailty is different for different individuals in a population. It is hence customary 

to assume that frailty follows a probability distribution over a population rather 

than being the same number for all individuals. This line of thought has given 

rise to the study of so called frailty models within the theory of survival 

analysis, see for example Wienke[5]. It was proved by Beard[1] that if the 

frailty B is gamma distributed then the mean of the force of mortality taken over 

the population follows the Perks formula, as suggested by Perks already in 

1932, Perks (1932): 

.0,0,0,0
1

)( 



 kDBA

De

BeA
x

kx

kx


 

Martinelles main objection towards using Perks formula is that it implies that 

the force of mortality approaches a constant limit value DB /  in high ages. He 

argues that there is no empirical evidence for a plateau in the mortality for 

centenarians. Therefore he modifies the assumption leading to Perks formula, 

and replaces the assumption of a gamma distributed frailty with an assumption 

of a frailty with a generalized gamma distribution which has been shifted to the 

right, thus assuming that it is impossible for the frailty to assume values very 

close to zero. 

In the case where the constant A in the Gompertz-Makeham formula is assumed 

to be zero, which seems reasonable in Sweden in modern times, Martinelles 

model of the frangible man states the following: 

If the force of mortality for individuals with frailty z follow the Gompertz-

Makeham law kxzezx )|( and the frailty variable z has a shifted gamma 

distribution with density 
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( 0,, cba ), then the mean force of mortality over the population, )(x , is 

given by 

kx

x
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Where   and  are the mean and the relative standard deviation of the 

variable cz  .  

As usual the probabilities of death 
xq is (with good approximation) associated 

with the force of mortality by  
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Substituting the expression above for the modelled mean force of mortality into 

this expression for
xq , we end up with the formula we use for smoothing of the 

probabilities of death for high ages 

kx

x
x

kt
e

dte
c

x eq

















 0

21
1





. 

This far, the new updated procedure used by Statistics Sweden since 2012 

follows Martinelles suggestions in Martinelle[3]. The fitting of the model to 

mortality data is however new and improved. Martinelle used a large set of 

historical mortality data for a number of countries to produce a more or less 

universal smoothing curve which was used for all regions and all time periods. 

Instead of using a large set of historical data the model is now, whenever 

possible, fitted using only probabilities of death observed for the region and the 

time period for which the life expectancy table is to be produced. Thus the 

smoothed probabilities now more explicitly take into account the observed 

difference in mortality between regions and between time periods.  

The model for the age specific probabilities of death contains 4 

parameters: , k , c and . The modeled probabilities dependence on  and 

k is indicated in the diagram below where 
710363,1 c  and 710535,5  .   
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Fig.2. Modeled probabilities of death 

 

For the very high ages a decrease in  leads to a steeper increase of the 

probabilities of death between ages, an increase in k leads to an almost constant 

increase of the probabilities for a broad interval of high ages. 

It is technically cumbersome to fit this model to mortality data without first 

fixing two of the parameters. After testing numerous different parameter settings 

against data we decided to fix the parameters 5,0 and 14,0k . Our 

experimentation also showed that it is not recommended to use probabilities of 

death for all available ages to fit the model. We got much better results when we 

restricted the mortality data used as input to the fitting procedure to ages in a 

span between m and n , to be specified below, then when we used all ages or 

even all higher ages. Finally we decided it preferable to use age specific weights 

in the fitting of the model. The reason for this is that especially for smaller 

populations, the probabilities of death for certain ages can be zero (if no one 

dies) or one (if everybody dies) and these extreme values has a tendency to gain 

an unjustified influence on the modeled probabilities of death for the other ages. 

Therefore we decided to use the number of deaths per age as weights in the 

fitting of the model. 

To fit the model to observed probabilities of death we use a weighted least 

square method: If the model ),( cqq xx  , where  and k has been fixed as 

above, is to be fitted to the observed probabilities of death 
nm qq ~,...,~  over the 

age interval from age m to age n , we try to find c and   which minimizes the 

expression 

22
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where xv are the nonnegative weights. To do this in practice we use the model 

procedure in SAS.  

 

 

3 Results 
 

At the national level, the model is fitted using probabilities of death observed in 

the age interval between 90m and 100n years. Since the number of 

individuals in the higher ages, and hence the number of deaths among them, has 

increased over the years the age at which the smoothing start to take place was 

also increased from 91 to 95 years. 

 

 
Fig.3. Observed and adjusted probabilities of death by sex and age (90 to 113) 

for Sweden 2012 

 

The effect of the update of the smoothing method on the probabilities of death 

can be seen in the diagram below. For example the probability of death for 

women age 100 in 2011 was raised by over 10% with the updated method 

compared with the old method. 
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Fig.4. Difference in probability of death between new and old smoothing 

method 2011 

 

Although the probabilities of death for ages 95 and over have clearly changed 

with the new method compared with the old one, the update of the smoothing 

method did not bring about particularly large changes in average life 

expectancies for the whole of Sweden. As suspected, the updated method gives 

life expectancies which are very close to those gained if the life expectancy 

table were to be produced without any smoothing. For the whole country the 

smoothing has thus more of a cosmetic effect on the mortality data (which is a 

good thing and can be very important for the presentation of the data). 

 

Sex Age 
No 

smoothing 

Old 

smoothing 

method 

Updated 

smoothing 

method 

Male e0 79.8 79.81 79.79 

  e85 5.51 5.54 5.5 

Female e0 83.67 83.7 83.67 

  e85 6.61 6.66 6.61 

     

 

Table.1. Average life expectancies for Sweden 2011 

 

At the county level, in order to capture regional differences in mortality among 

the elderly, the model is also fitted using only the observed probabilities of 

death for the region at hand. However, the population in most counties is too 

small to appropriately apply the same method for the counties as for the national 

level. After extensive testing, it was decided that the fitting of the model would 

be based on observations in the age interval of 80 to 100. It was also decided 

that the smoothed probabilities of death would be used from the age of 90.  
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Fig.5. Observed and adjusted probabilities of death (‰) by sex and age (90 to 

115) for Örebro county 2012 

 

The updated smoothing method has a larger impact on the life expectancies for 

the counties than for the whole of Sweden, but the effects are not dramatic. 

Among the counties we noted the greatest change for the county of Norrbotten 

(2007-2011) where the updated method subtracts about a month from the mean 

total lifespan of women. Also for the counties, the updated method (compared 

with the old one) gives life expectancies which are closer to those gained if the 

life expectancy table were to be produced without any smoothing. 

 

In the smoothing of the probabilities of death for municipalities, the population 

and hence the number of deaths are in many cases too small to use as basis for 

the fitting of the model. There are 290 municipalities In Sweden with 

populations ranging from just under 2 500 inhabitants to nearly 900 000 

inhabitants. One-half of the municipalities have a population of around 15 000 

inhabitants or less. Therefore, the smoothed probabilities of death at the 

corresponding county level are used for all the constituent municipalities from 

the age of 90. An exception is made for the three largest municipalities: 

Stockholm, Gothenburg and Malmö, where the adjustment of probabilities of 

death is based on the individual municipalities in the same way as for the 

counties. 
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Fig.6. Observed and adjusted probabilities of death (‰) by sex and age for the 

municipality of Sandviken (population 40 000) 2013. The smoothing curves 

have been borrowed from the county of Gästrikland 

 

 

The updated method has had a greater impact at the municipal level than at the 

national and county levels. Based on the period 2007-2011, the average life 

expectancy for newborn females is affected up to a shorter life expectancy of 

just over three months, compared with the old smoothing procedure. The largest 

increase in average life expectancy for newborns in a municipality was an 

increase of about two months. 

At the national level and for some of the counties the effect of the smoothing on 

the average life expectancies is marginal for the most ages, compared to results 

gained without smoothing. However, for many municipalities the smoothing of 

the probabilities of death is absolutely necessary. Without it, for some 

municipalities, we would end up with very unstable average life expectancies. 

For example, for the small municipality of Jokkmokk in the north of Sweden, 

the smoothing subtracts 150 days from e0 for women. 
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Fig.7. Difference in average life expectancy by age between smoothed and not 

smoothed results for Jokkmokk 2013 

 

Conclusions 
 

For the study of differences in mortality between time periods and between 

geographical regions it is important that the mortality data is analyzed using 

methods which preserve the differences. In this paper we have demonstrated a 

method for smoothing of mortality data for the elderly which does just that. 

For the probabilities of death for the elderly the smoothing has a large effect for 

individual ages, and usable estimates of these probabilities are important in 

many applications. However, for large and stable regions like the whole of 

Sweden, the smoothing does not have a large effect on remaining life 

expectancies; actually our new updated method for smoothing gives results 

which are closer to ‘non-smoothed’ life expectancies than the old smoothing 

method. This is a good thing since we don’t want to add model effects where 

they are not needed. 

For smaller regions some form of model is necessary in the production of the 

life table and our smoothing procedure works well at the county level and for 

most of the municipalities. However for the smallest municipalities the methods 

needed to produce a reliable life table should be studied further.  
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Stochastic Modelings in Software Reliability

Nuria Torrado1
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University of Coimbra, Coimbra, Portugal
(e-mail: nuria.torrado@gmail.com)

Abstract. The reliability of software systems has become a major concern for our
modern society because the demand for complex software systems has increased
within the first decade of the 21st century. A software reliability model (SRM) is a
mathematical tool to evaluate the software quantitatively. A large number of models
have been proposed in the literature to predict software failures (see, e.g. Singpur-
walla and Wilson[18]), but a few incorporate some significant metrics data observed
in software testing. In this work, we present a new procedure to predict numbers of
software failures using metrics information, from a Bayesian perspective. This new
Bayesian software reliability model has been developed in collaboration with R.E.
Lillo and M.P. Wiper (see Torrado et al.[19]).
Keywords: nonhomogeneous Poisson process, software failures, Bayesian statistical
methods.

1 Introduction

Software reliability is defined as the probability that the software will function
without failure under given environmental conditions during a specified period
of time. Most software reliability models (SRMs) are based on the assumption
that the software is possibly imperfectly corrected after each failure or after
various fixed time periods. Often, it will be the case that information in the
form of software metrics such as code length or complexity will be generated
each time the software is corrected. See Fenton and Pfleeger[4] for a review of
the main ideas.

From a statistical point of view, the random variables that characterize
software reliability are the epoch times in which a failure of software takes
place or the times between failures. Most of the well known models for software
reliability are centered around the interfailure times or the point processes that
they generate. A software reliability model specifies the general form of the
dependence of the failure process on the principal factors that affect it: fault
introduction, fault removal, and the operational environment.

A number of analytical models have been proposed for software reliability
assessment. Most of these models are based on the assumption that the software
is possibly imperfectly corrected after each failure or after various fixed time

3rdSMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal
C. H. Skiadas (Ed)

c© 2014 ISAST
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periods. Starting from Jelinski and Moranda[6] and Moranda[10] many models
have been developed. For good recent reviews till 2007 see e.g. the book by
Pham[12].

Most of the works in the literature are devoted to estimate model parame-
ters. Some important early references are Jelinski and Moranda[6], Moranda[10],
Goel and Okumoto[5], Littlewood and Verrall[7], Mazzuchi and Soyer[9], Musa
and Okumoto[11], among others.

Some interesting software reliability modelling developed in the last two
decades can be found in Boland and Singh[1], Rinsaka et al.[15], Shibata et
al.[17], Wiper[20], Pievatolo et al.[13] and Torrado et al.[19].

In this paper, we shall develop an alternative approach to both Type I and
Type II software reliability models based on exponential interfailure times or
Poisson failure counts where the rates are modeled as Gaussian processes where
software metrics data are used as inputs. This approach may be thought of
as an extension of the work of Ray et al.[14] which generalizes this earlier,
parametric regression based method to a nonparametric regression model.

Rather than use classical statistical inference techniques we shall here adopt
a Bayesian approach, which has the advantages of being able to take into ac-
count any prior information available and also of taking parameter uncertainty
into account when prediction of reliability is undertaken. Starting from Little-
wood and Verrall[7], Bayesian approaches to many software reliability models
have been considered.

In the article and in the presentation a short overview on the wide field of
Bayesian inference in software reliability model is given, showing some results
given by Torrado et al.[19] and also some of the current research the author is
doing in moment.

2 Short review on software reliability modeling

The use of statistical methods in software engineering has been increasing in
the last decades. In the context of this discipline, as we defined above, software
reliability measures the probability that a piece of software runs without failing
under certain operational conditions for a given time. In software testing, soft-
ware is run under an operational profile, that is certain conditions simulating
real usage and after a given test period, the software is modified in order to
correct any observed faults. Testing then proceeds until the software is judged
sufficiently reliable for release.

A software reliability model (SRM) is a mathematical tool to evaluate the
software quantitatively. The SRM’s have been extensively developed in the lit-
erature. Most SRM’s are based on stochastic counting processes, such as bino-
mial process, pure birth process and nonhomogeneous Poisson process (NHPP).
One may refer to two excellent books by Singpurwalla and Wilson[18] and
Pham[12] on this topic. These stochastic models attempt to model either the
times between successive failures of a piece of software or the number of failures
in fixed time periods. Our classification scheme (see Figure 1) follows that of
Singpurwalla and Wilson[18], and divides models into two types: Type I and
Type II.
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SR models

Type I
Times between

failures

Jelinski & Moranda
(1972)

Schick & Wolverton
(1978)

Type II
Numbers of

failures

Goel & Okumoto
(1979)

Musa & Okumoto
(1984)

Fig. 1. Classification of software reliability (SR) models

Type I models are those that model the times between successive failures.
Under these types of models, the random variables T1, T2, . . ., are modeled
directly. This is often done by specifying the failure rate function for each
random variable, hi, i = 1, 2, . . ., an then invoking the exponentiation formula
to obtain their survival function, F̄i. Typically, each hi is a nondecreasing
function on t, for t ≥ 0 to reflect the fact that between failures the reliability
of the software increases.

Type II models are those that model the number of failures up to a given
time. These models are based on stochastic counting processes for N(t), the
number of times the software fails in an interval [0, t]. The earliest and best
known Type II models are those which assume that N(t) is described by a
Poisson process whose mean value function is based on assumptions about how
the software experiences failure.

It is remarkable that a model of either type defines a model of the other.
Specifically, for a sequence of interfailure times T1, T2, . . ., for which a Type I
model has been proposed, there is an implicit Type II model (cf. Singpurwalla
and Wilson[18]), because

N(t) = max

{
n |

n∑
i=1

Ti ≤ t

}
,

and conversely, for a Type II model there is a Type I model, because with
T0 = 0, and i = 2, 3, . . .,

Ti = inf {t | N(t) = i} − Ti−1.

It is noteworthy two differences between Type I and Type II models. First,
the total number of potential failures of Type II models is assumed to be in-
finite, so that the number of observed failures is a random variable having a
Poisson distribution, as opposed to a fixed number of faults N that is assumed
by Type I models. Second, in the Type II models the interfailure times are
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dependent whereas in the Type I models they were typically assumed indepen-
dent.

2.1 Type I models

The Type I group of models is used to study the program hazard rate per fault
at the failure intervals. The hazard rate function of the i ’th interfailure time
of some of these models are reported in Table 1.

Table 1. Some Type I software reliability models

Jelinski-Moranda Moranda

hi(t) = φ (N − i+ 1) hi(t) = Dki−1

Goel-Okumoto Schick-Wolverton

hi(t) = φ (N − p(i− 1)) hi(t) = φ (N − i− 1) t

The first model to be widely known and used is the model by Jelinski
and Moranda[6] (hereafter JM). They assume that the software contains an
unknown number, say N , of faults and that each time the software fails, a
bug is detected and perfectly corrected. Furthermore, the failure rate of Ti is
proportional to N − i+ 1, the number of faults remaining in the code, that is,
for some constant φ > 0, the hazard rate at the i ’th failure interval is given by

hi(t) = φ (N − i+ 1) , i = 1, . . . , N.

The survival function is

F̄i(t) = e−φ(N−i+1)t, i = 1, . . . , N.

The property of this model is that the failure rate is constant and the software
during the testing stage is unchanged or frozen.

A modification to the JM model is the Geometric Model developed by
Moranda[10]. He proposed a new model in which the program failure rate
function is initially a constant D and decreases geometrically at failure times.
In this case, the hazard rate function of the i ’th interfailure times is

hi(t) = Dki,

and its survival function is

F̄i(t) = e−tD ki ,

where D > 0 is the initial program failure rate and k is the parameter of a
geometric function (0 < k < 1).

744



Goel and Okumoto[5] extend the JM model by assuming that a fault is
removed with probability p whenever a failure occurs. This model is called
the JM model with imperfect debugging and the hazard rate function of time
between failures when the imperfect debugging is at the i ’th failure interval
becomes

hi(t) = φ (N − p(i− 1)) .

The survival function is

F̄i(t) = e−φ(N−p(i−1)) t, i = 1, . . . , N.

The model by Jelinski and Moranda is a special case of the preceding when
p = 1.

The model by Schick and Wolverton[16] (hereafter SW) is another modifica-
tion of the JM model. They assumed that the hazard rate of Ti is proportional
to both the number of remaining faults in the software and the elapsed time
since last failure. Thus, the hazard rate function between the (i − 1)’th and
the i ’th failure can be expressed as

hi(t) = φ (N − i− 1) t,

where φ and N are the same as that defined in the JM model.

2.2 Type II models

In this subsection we shall describe briefly some Type II software reliability
models. The models described here are only a small subset of those which
appear in the literature.

The Type II models provide another analytical framework for describing the
software failure phenomenon during testing. Recall that in this case, we look
at N(t) as the number of failures to time t. Then, N(t) is modeled by a Poisson
distribution with mean Λ(t), that is, E [N(t)] = Λ(t). Under such models the
reliability of the software for a mission of duration t is simply Pr(N(t) = 0).

The Goel-Okumoto model [5], referred to hereafter as GO, is a NHPP vari-
ant of the JM model. The GO model assumes that the cumulative number of
failures detected by time t is a NHPP and its expectation could be described
by the mean value function

Λ(t) = a(1− e−bt). (1)

The intensity function is

λ(t) =
dΛ(t)

dt
= abe−bt.

Observe that ∆(t) <∞ as t→∞. Therefore, this model cannot be applied
to situations where new faults might be introduced in the process of debugging.
Some NHPP models can incorporate the situation where new faults may be
added during repairs, these models are the infinite failures models. It means
that ∆(t)→∞ as t→∞.
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The Duane model [3], referred to hereafter as DU, originally devised for
hardware reliability model, is an infinite failures model. This model is a NHPP
with the expected number of failures

Λ(t) = atb, (2)

and the intensity function
λ(t) = abtb−1.

This function is increasing for b > 1, decreasing for b < 1 and constant for
b = 1. The DU model could be stochastically represented as a Weibull process,
allowing for statistical procedures to be used in the application of this model
in reliability growth. In particular, this model is the counting process of the
record values from a Weibull distribution.

In these NHPP models, usually parameter a represents the mean number of
software failures that will eventually be detected, and parameter b represents
the probability that a failure is detected in a constant period.

Musa and Okumoto[11] proposed another model for infinite failures. This
NHPP is also called the logarithm Poisson model, referred to hereafter as MO.
The mean value function is

Λ(t) = a ln(1 + bt), t > 0,

and the intensity function is derived as

λ(t) =
ab

1 + bt
.

Let us mention an homogeneous pure birth process, referred to hereafter
as HPBP, for software reliability which is another variation of the JM model.
This model, proposed by Boland and Singh[1], is a birth process approach to
the geometric SRM. In this case, the cumulative number of failures detected
by time t is a HPBP with birth rates

λi = D · ki, i = 0, 1, . . . .

Boland and Singh[1] showed that the mean value function is

Λ(t) = Dt+
∞∑
i=1

(−1)i
(Dt)i+1

(i+ 1)!

i∏
j=1

(1− kj),

and the intensity function

λ(t) = D

1 +

∞∑
i=1

(−1)i
(Dt)i

i!

i∏
j=1

(1− kj)

 .

Other types of mean value functions suggested by Yamada and Osaki[21],
are the hyperexponential growth model and the Yamada-Osaki exponential
growth model, respectively. Some of these models are reported in Table 2. For
more details on software reliability models, see e.g. Pham [12] and Singpurwalla
and Wilson[18].
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Table 2. Some Type II software reliability models

Goel-Okumoto Musa-Okumoto

Λ(t) = a
(
1 − exp(−bt)

)
Λ(t) = a ln(1 + bt)

Duane Boland and Singh

Λ(t) = a tb Λ(t) = D t+
∞∑
i=1

(−1)i (D t)i+1

(i+1)!

i∏
j=1

(1 − kj)

Ohba Yamada-Osaki

Λ(t) =
n∑

i=1

ai
(
1 − exp(−bit)

)
Λ(t) = a

n∑
i=1

pi
(
1 − exp(−bit)

)

3 A new software reliability model

In this subsection we present a new approach to both Type I and Type II
software reliability models (see Section 2). Our model is a hierarchical non-
parametric regression model based on exponential interfailure times or Poisson
failure counts where the rates are modeled as Gaussian processes where software
metrics data are used as inputs.

Gaussian process models have recently been used in Bayesian approaches to
regression, classification and other areas. Formally, a Gaussian process is de-
fined as following: A Gaussian process (hereafter GP) is a collection of random
variables, any finite number of which have a joint Gaussian distribution.

It is well known that a GP is a generalization of the Gaussian probability
distribution. Just as a Gaussian distribution is fully specified by its mean and
covariance matrix, a GP is specified by a mean and a covariance function. We
define the mean function m(x) and the covariance function C(f(x), f(x′)) of
a real process f(x) as

m(x) = E [f(x)] ,

C(f(x), f(x′)) = E [(f(x)−m(x)) (f(x′)−m(x′))] .

GPs are used in regression and classification problems. Here, we consider a
regression problem where we have a data set D of M scalar observations with an
arbitrary distribution with parameter λi and that the software being analyzed is
possibly imperfectly corrected after each period. If we assume that we observe
the times between successive M failures, say T1 = t1, . . . , TM = tM , then, in
this case, D = {ti : i = 1, . . . ,M}. We might also assume that interfailure times
are exponentially distributed, that is,

Ti | λi ∼ E(λi).

When we assume that we observe the numbers of failures, sayN1 = n1, . . . , NM =
nM inM time periods of length L1, . . . , LM respectively, thenD = {ni : i = 1, . . . ,M}.
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We also assume that the numbers of failures follows a Poisson distribution, that
is, for i = 1, . . . ,M , we have

Ni | λi ∼ P(Liλi) .

As part of the correction procedure, we shall suppose that after the (i−1)’th
failure the software is possibly imperfectly corrected and software metrics, say
xi = (xi1, . . . , xik) are generated for i = 1, . . . ,M . Such metrics may reflect
both characteristics of the code such as number of lines or also measures of the
amount of work undertaken on correction such as many hours or costs. Thus, it
is reasonable to suppose that changes in the quality of the code will be reflected
in changes in the values of the software metrics.

In both cases, the rate, λi can be modeled as a function of the software
metrics, xi, available after the last correction as

lnλi | fi = f(xi) + εi, (3)

where εi ∼ N(0, σ2) and f : <k → < can take different forms. The most
important problem to consider is how to model the unknown function, f . One
possibility is to assume that f is a linear function of the software metrics, say

f(xi) = β0 +

k∑
j=1

βj xij ,

but there is quite a lot of evidence to illustrate that the relationship between
software quality and software metrics is often highly non-linear and therefore,
it seems preferable to use a more general, fully nonparametric model as for
instance a GP model. Therefore, we have an approach to both Type I and
Type II SR models which can be summarize, respectively, as following:

Ti | λi ∼ E(λi),

lnλi | fi = f(xi) + εi,

f | θ ∼ GP(0, C(θ)).

Ni | λi ∼ P(Liλi),

lnλi | fi = f(xi) + εi,

f | θ ∼ GP(0, C(θ)).

One possibility would be to use classical, nonparametric regression tech-
niques, but here we prefer to use a Bayesian approach, as outlined in the next
section.

4 A Bayesian approach to failure rate modeling

In this Section, we explain a Bayesian approach to software reliability modeling
using Gaussian process prior distributions for the functional form, f . In our
context, we propose using the Gaussian process as a prior distribution for
the function f of (3). This, so called Gaussian process prior distribution is
characterized by the form of the mean and covariance functions. Firstly, we
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assume that the mean function is E[f(x)] = 0 and as covariance function we
shall assume the squared exponential covariance function defined as

C(f(xi), f(xj) | θ) = η2 exp

{
−1

2

k∑
`=1

ρ−2` (xi` − xj`)2
}
, (4)

where θ =
(
ρ21, . . . , ρ

2
k, η

2
)

is the unknown parameter set, i.e., the hyperparam-
eter set.

One advantage of the Gaussian process prior structure is that it leads to
straightforward inference and prediction in the presence of normal noise. From
(3), set ζi = log λi, when ζi = f(xi) + εi, for i = 1, 2, . . ..

Assume now that for i = 1, 2, . . ., the number of failures in a fixed time
period of length Ti for the i’th release of the software follows a Poisson distri-
bution and that the logged failure rate, ζi, is modeled as described above.

The basic Bayesian model is completed by defining prior distributions for
the error variance, σ2 and for the GP parameters, θ. Here, we assume inverse
gamma priors, σ2 ∼ IG(αs, βs), η

2 ∼ IG(αe, βe) and ρ2j ∼ IG(αrj , βrj), for
j = 1, . . . , k.

In Torrado et al.[19], we present an explicit and detailed Bayesian posterior
inference for the failure rate model and applied this new model to three real
data sets.

Our proposed model class includes many simpler models such as the JM
model (see Section 2) which are independent of covariate information and also
simpler regression functions. Furthermore, in many problems we may often
have large numbers of metrics available and therefore, which model or which
metrics to choose is an important problem. The standard approach to model
selection in the classical context is to use selection criteria such as the Akaike or
Bayesian information criterion. The most popular Bayesian selection criterion
is the deviance information criterion (hereafter DIC). However, this criterion is
highly dependent on the stability of the posterior (mean) parameter estimates
and in the Gaussian process context, we have found that it is unstable. There-
fore, we prefer to use a variant of the DIC, denoted DIC3. This criterion is
defined, for the Type II model with data n = (n1, . . . , nM ) and model M as

−4E [ln p(nθ) | n,M] + 2 ln p̂(n | n,M),

where

p̂(n | n,M) =

M∏
i=1

p̂(ni | n,M),

and

p̂(ni | n,M) =
1

J

J∑
j=1

p(ni | n, λi,j ,M) =
1

J

J∑
j=1

λni
i,j e

−λi,j

ni!
.

This criterion is straightforward to calculate from the MCMC output and,
in our experience, gives much more satisfactory results than the DIC. As with
the AIC and BIC, lower values of this criterion imply better fitting models.
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5 Applications to a real data set

Finally, we present the analysis of a real data set, see Torrado et al.[19] for the
analysis of two other real data sets.

The data set, referred to hereafter as DS, was presented by Dalal and McIn-
tosh[2]. This data set consists of number of failures in given time periods and
therefore can be analyzed using Type II models. DS contains approximately
400000 new or changed non-commentary source lines (hereafter NCNCSL), the
staff time spent testing and the number of faults found. In order to undertake
Bayesian inference for the models described before, prior distributions for the
GP parameter σ2 and hyperparameters θ = (ρ21, . . . , ρ

2
k, η

2) must be defined.
As is typical in such problems, we shall assume independent, proper but rela-
tively uninformative inverse gamma, IG(α, β), priors, where α = β = 0.001.

We shall consider three training sets for DS consisting of 99 (50%), 149
(75%) and 178 (90%) data, and three test sets consist of 99, 49 and 20 data,
respectively. We then compute the estimated values of the deviance information
criterion of our model using the new or changed noncommentary source lines
(NCNCSL) as covariate. In order to study whether software metrics provide
information to the model, we compare the GP model with two classical NHPP-
SR models defined in Subsection 3. In particular, we shall consider a Bayesian
approach to the GO model and the DU model as follows,

Ni | a, b ∼ P(Λ(ti))

a ∼ G(αa, βa)

b ∼ G(αb, βb),

where Λ(t) is defined in (1) for the GO model and in (2) for the DU model.

Table 3. DIC3 criterion for DS

Model 50% 75% 90%

GP(NCNCSL) 299.80 517.90 625.73
GO-SRM 690.81 1.0786e+ 003 1.2929e+ 003
DU-SRM 694.12 1.0744e+ 003 1.3161e+ 003

From Table 3, it can be seen that our model can give the smallest DIC3

value, i.e., in the estimation of software failure data is appropriate to use soft-
ware metrics information.
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Abstract. This paper investigates the generalized Fisher’s entropy type information
measure with respect to the multivariate γ–order Normal distribution and certain
boundaries are obtained. Also the Rényi and Shannon entropies are evaluated and
discussed.
Keywords: Fisher’s entropy type information measure, γ–order Normal distribution,
Rényi entropy.

1 Introduction

In principle, the information measures are divided to three main categories:
parametric (typical example Fisher’s information), non parametric (with Shan-
non information measure to be the most well known) and entropy type, see
Cover and Thomas [1], which are adopted at this paper. The introduced new
entropy type measure of information Jα(X) is a function of the density fX of
the p-variate random variable X , see Kitsos and Tavoularis [2], defined as

Jα(X) := E (‖∇ log f(X)‖α) =
∫

Rp

f(x) ‖∇ log fX(x)‖a dx. (1)

Notice that, J2 = J, with J being the known Fisher’s entropy type informa-
tion measure.

Moreover, the known entropy power N(X), defined through Shannon en-
tropy H(X), has been extended to

Nα(X) = να exp{α
pH(X)}, (2)

with

να = (α−1
e )π−α/2

[

Γ (p2 + 1)

Γ (pα−1
α + 1)

]

α
p

, α > 1,

see Kitsos and Tavoularis [2] for details. Notice that, ν2 = (2πe)−1 and N2 =
N, where N the known Shannon entropy power for the normal distribution.

3rdSMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal

C. H. Skiadas (Ed)

c© 2014 ISAST

753



Moreover, it can be proved that

Jα(X)Nα(X) ≥ p, (3)

which extends the well known result with α = 2, see Kitsos and Tavoularis [2].
The so called Information Inequality, is generalized due to the introduced

information measures, Kitsos and Tavoularis [2]. The Generalized Information
Inequality (GII) is given by

[

2πe
p Var(X)

]1/2 [
1
pναJα(X)

]1/α

≥ 1.

When α = 2 we have Var(X)J2(X) ≥ p, and therefore, the Cramer–Rao in-
equality (Cover and Thomas [1], Th. 11.10.1) holds. The lower boundary Bp

α

for the introduced generalized information Jα(X) is

Jα(X) ≥ Bp
α := p

να

[

2πe
p Var(X)

]−α/2

. (4)

In Fig. 1 the lower boundariesBp
α across α are depicted, assuming Var(X) =

1 and for all dimensions p. Moreover, Fig. 2 depicts the boundaries B1
α across

Var(X) and for parameter values α = 1, 2, . . . , 100.

Fig. 1. Graphs of the boundaries Bp
α across α, with fixed VarX = 1 for every

dimension p ≥ 1.

Let H denote the Shannon (differential) entropy of a r.v. X with p.d.f. fX ,
i.e.

H(X) :=

∫

Rp

fX(x) log f(x)dx. (5)

For any multivariate random variable X with zero mean and covariance matrix
Σ, it holds

H(X) ≤ 1
2 log{(2πe)p |det Σ|}, (6)

while the equality in (6) holds if and only ifX is a normally distributed variable,
i.e X ∼ Np(µ,Σ), see Cover and Thomas [1]. Moreover, the Normal distribu-
tion, according to Information Measures Theory, is adopted for the noise, acting
additively to the input variable when an input–output time discrete channel is
formed.
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Fig. 2. Graphs of the boundaries Bp
α across VarX for parameters α = 1, 2, . . . , 100.

Kitsos and Tavoularis in ([2] and [3]) introduced and studied the multivari-
ate (and elliptically contoured) γ–ordered Normal distribution, i.e. N p

γ (µ,Σ),
see also Kitsos and Toulias [4] and Kitsos et al. [5] for further reading. Recall
the definition of Nγ :

Definition 1. The p–dimensional random variable X follows the γ–order Nor-
mal, N p

γ (µ,Σ) with mean vector µ ∈ Rp and positive definite scale matrix
Σ ∈ Rp×p, when the density function, fX , is of the form

fX(x; µ,Σ) = Cp
γ |detΣ|−1/2

exp

{

− γ−1
γ Q(x)

γ
2(γ−1)

}

, x ∈ R
p, (7)

with Q the quadratic form Q(x) = (x−µ)Σ−1(x−µ)T, x ∈ Rp. We shall write
X ∼ N p

γ (µ,Σ). The normality factor Cp
γ is defined as

Cp
γ = π−p/2 Γ

(

p
2 + 1

)

Γ(pγ−1
γ + 1)

(γ−1
γ )

p γ−1
γ . (8)

Notice that, for γ = 2, N p
2 (µ,Σ) is the well known multivariate normal dis-

tribution. Moreover, the function φ(α) = fα(µ,Σ)
1/α with Σ = (σ2/α)2(α−1)/αIp,

corresponds to extremal function for an inequality extending LSI due to Del
Pino et al. [6]. The essential result is that the defined γ-ordered Normal distri-
bution works as an extremal function to a generalized form of the Logarithmic
Sobolev Inequality.

The family of N p
γ (µ,Σ), i.e. the family of the elliptically contoured γ–

ordered Normals, provides a smooth bridging between the multivariate (and
elliptically countered) Uniform, Normal and Laplace r.v. U , N and L, i.e.
between U ∼ Up(µ,Σ), Z ∼ N p(µ,Σ), and L ∼ Lp(µ,Σ) respectively, with
density functions

fU (x; µ,Σ) =







Γ (
p
2+1)

πp/2
√

|detΣ|
, x ∈ Rp, with Q(x) ≤ 1,

0, x ∈ Rp, with Q(x) > 1,
(9)

fZ(x; µ,Σ) =
1

(2π)p/2
√

|detΣ|
exp

{

− 1
2Q(x)

}

, x ∈ R
p, (10)
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fL(x; µ,Σ) =
Γ (p2 + 1)

p!πp/2
√

|det Σ|
exp

{

−
√

Q(x)
}

, x ∈ R
p, (11)

respectively. That is, the N p
γ family of distributions, not only generalizes the

Normal one but also two other very significant distributions, as the Uniform
and Laplace distributions, are induced. Indeed:

Theorem 1. The multivariate γ-ordered Normal distribution, N p
γ (µ,Σ), for

order values of γ = 0, 1, 2,±∞ coincides with

N p
γ (µ,Σ) =























Dp(µ), γ = 0 and p = 1, 2,
0, γ = 0 and p ≥ 3,
Up(µ,Σ), γ = 1,
N p(µ,Σ), γ = 2,
Lp(µ,Σ), γ = ±∞.

(12)

2 Entropy and Information Measures

Besides the generalized entropy power Nα, another significant entropy measure
that generalizes the Shannon entropy is the Rényi entropy. For a p–variate
continues random variable with p.d.f. fX , the Rényi entropy Rα(X) is defined,
through the α–norm of fX ∈ L α(Rp), by

Rα(X) := − α
α−1 log ‖fX‖α = 1

1−α log

∫

Rp

|fX(x)|αdx, α > 0, α 6= 1. (13)

For the limiting case of α → 1 the Rényi entropy converges to the usual Shannon
entropy H(X) as in (5). Notice that we use the minus sign for Rα to be in
accordance with the definition of (5).

Considering now a r.v. from the γ–GND family, the following holds.

Theorem 2. For the p–variate, spherically contoured γ–order normally dis-

tributed Xγ ∼ N p
γ (µ, σ

2Ip), the Rényi entropy of Xγ is given by

Rα(Xγ) = p γ−1
γ(α−1) logα− log(Cp

γσ
−p). (14)

Proof. Consider the p.d.f. fXγ as in (7). From the definition (13) it is

Rα(Xγ) =
α

1−α log(Cp
γσ

−p) + 1
1−α log

∫

Rp

exp
{

−α(γ−1)
γ ‖x−µ

σ ‖ γ
γ−1

}

dx,

and applying the linear transformation z = (x − µ)σ−1 with dz = d{(x −
µ)/σ} = σ−pdx, the Rα above is reduced to

Rα(Xγ)=
α

1−α log
(

Cp
γσ

−p
)

+ 1
1−α log



σp

∫

Rp

exp
{

−α(γ−1)
γ ‖z‖ γ

γ−1

}

dz





= α
1−α log(Cp

γσ
p 1−α

α ) + 1
1−α log

∫

Rp

exp
{

−α(γ−1)
γ ‖z‖ γ

γ−1

}

dz.
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Switching to hyperspherical coordinates, we get

Rα(Xγ) =
α

1−α logK(σ) + 1
1−α log

∫

R+

exp
{

−α(γ−1)
γ ρ

γ
γ−1

}

ρp−1dρ,

where K(σ) = Cp
γσ

p(1−α)/αω
1/α
p−1 with ωp−1 = 2πp/2/Γ(p/2) denoting the vol-

ume of the (p − 1)–sphere. Transforming du := d(γ−1
γ ργ/(γ−1)) = ρ1/(γ−1)dρ

we obtain successively

Rα(Xγ) = α
1−α logK(σ) + 1

1−α log

∫

R+

e−αuρ
(p−1)(γ−1)−1

γ−1 du

= α
α−1 logK(σ) + 1

1−α log

∫

R+

e−αu
(

ρ
γ

γ−1

)

(p−1)(γ−1)−1
γ

du

= α
1−α logK(σ) + 1

1−α log( γ
γ−1)

p γ−1
γ −1 + 1

1−α log

∫

R+

e−αuupγ−1
γ −1du

= α
1−α logK(σ) + 1

1−α log( γ
γ−1)

p γ−1
γ −1 − pγ−1

γ · logα
1−α + 1

1−α log Γ(pγ−1
γ ).

Finally, by substitution of the expressions for K(σ), ωp−1 and the normalizing
factor Cp

γ , we obtain

Rα(Xγ) = p log σ − α
1−α logCp

γ + 1
1−α logCp

γ + pγ−1
γ · logα

α−1 ,

and hence (14) holds true.

Corollary 1. For the special cases of α = 0, 1, 2,+∞ Rényi entropy of Xγ ∼
Nγ(µ,Σ) reduces to

Rα(Xγ) =















+∞, α = 0, (Hartley entropy )

pγ−1
γ − log(Cp

γ/σ
p), α = 1, (Shannon entropy )

pγ−1
γ log 2− log(Cp

γ/σ
p), α = 2, (collision entropy )

− log(Cp
γ/σ

p), α = +∞. (min–entropy )

Rényi entropy Rα(Xγ), as in (14), is an decreasing function of parameter
α, and hence

R+∞(Xγ) < R2(Xγ) < R1(Xγ) < R0(Xγ).

Example 1. For the multivariate and spherically contoured Uniform random
variable U ∼ U(µ, σ2Ip), the Hartley, Shannon, collision and the min– entropies
coincide as,

Rα(U) = log
πp/2σp

Γ(p2 + 1)
, α ∈ R+,

while for the univariate case of U ∼ U(µ− σ, µ− σ) we are reduced to

Rα(U) = log(2σ), α ∈ R+.
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Notice that for a uniformly distributed r.v. the Rényi entropy Rα is α–
invariant, depending only on the dimension p ∈ N and the scale parameter
σ.

Example 2. For the multivariate and elliptically contoured Laplace random
variable L ∼ L(µ, σ2Ip), the Hartley, Shannon, collision and the min– entropies
are given by,

Rα(L) =















+∞, α = 0, (Hartley entropy)

p+ log{p!πp/2σp Γ(p2 + 1)−1}, α = 1, (Shannon entropy)
log{2pp!πp/2σp Γ(p2 + 1)−1}, α = 2, (collision entropy)

log{p!πp/2σp Γ(p2 + 1)−1}, α = +∞. (min–entropy)

Example 3. According to the classification Theorem 1 and Corollary 1, we can
evaluate the usual Shannon entropy for the multivariate (and spherically con-
toured) Uniform, Normal and Laplace distributions with Σ = σ2Ip, i.e.

H(X) =















log πp/2

Γ(
p
2+1)

√

|detΣ|, for X ∼ N p
1 (µ,Σ) = Up(µ,Σ),

1
2 log{(2πe)

p |detΣ|}, for X ∼ N p
2 (µ,Σ) = N p(µ,Σ),

p+ log p!πp/2

Γ(
p
2+1)

√

|detΣ|, for X ∼ N p
±∞(µ,Σ) = Lp(µ,Σ),

see also (6) for the Normal case, while for the univariate case p = 1, we are
reduced to

H(X) =







log 2σ, for X ∼ N 1
1 (µ, σ

2) = U1(µ, σ2) = U(µ− σ, µ− σ),

log
√
2πeσ, for X ∼ N 1

2 (µ, σ
2) = N (µ, σ2),

1 + log 2σ, for X ∼ N 1
±∞(µ, σ2) = L1(µ, σ2) = L(µ, σ).

where U(µ − σ, µ − σ), N (µ, σ2) and L(µ, σ) are the usual notations for the
univariate Uniform, Normal and Laplace distributions respectively.

Now, we shall evaluate the generalized Fisher’s entropy type information of
a random variable following the multivariate γ-order Normal, N p

γ .

Theorem 3. The generalized Fisher’s information Jα of a r.v. Xγ ∼ N p
γ (µ, λΣ

∗)
where λ ∈ R+ \ 0 and Σ∗ is a real matrix with unit orthogonal vectors, i.e.

Σ∗ ∈ R
p×p
⊥ , is given by

Jα(Xγ) = ( γ
γ−1 )

α
γ

Γ
(

α+p(γ−1)
γ

)

λα/2 Γ
(

pγ−1
γ

) . (15)

Proof. From (1) we have

Jα(Xγ) = αα

∫

Rp

∥

∥

∥
∇f

1/α
Xγ

(x)
∥

∥

∥

α

dx,
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while from the definition of the density function fXγ , in (7), we have

Jα(Xγ) = ααCp
γ

∫

Rp

∥

∥

∥∇ exp
{

− γ−1
αγ Q(x)

γ
2(γ−1)

}∥

∥

∥

α

dx

= αα(γ−1
αγ )αCp

γ

∫

Rp

exp
{

− γ−1
γ Q

γ
2(γ−1) (x)

}∥

∥

∥∇Q
γ

2(γ−1) (x)
∥

∥

∥

α

dx.

(16)

For the gradient of the quadratic form Q(x) we have ∇Q(x) = λ−1∇{(x −
µ)Σ∗−1(x − µ)T} = 2λ−1Σ∗−1(x − µ)T, while from the fact that Σ∗ is an
orthogonal matrix we have ‖Σ∗−1(x− µ)T‖ = ‖x− µ‖. Therefore, (16) can be
written as

Jα(Xγ) = λ−αCp
γ

∫

Rp

exp
{

− γ−1
γ Q

γ
2(γ−1) (x)

}

Q
αγ

2(γ−1)
−α(x) ‖x− µ‖α dx.

Applying the linear transformation z = (x−µ)(λΣ∗)−1/2 in the above integral,
it is dx = d(x−µ) =

√

λp |detΣ∗|dz = λp/2dz, the quadratic form Q is reduced
to

Q(x) = (x−µ)(λΣ)∗−1(x−µ)T = (x−µ)(λΣ∗)−1/2[(x−µ)(λΣ∗)−1/2]T = ‖z‖2 ,

and thus,

Jα(Xγ) = λ(p−α)/2Cp
γ

∫

Rp

‖z‖ α
γ−1 exp

{

− γ−1
γ ‖z‖ γ

γ−1

}

dz.

Switching to hyperspherical coordinates, we get

Jα(Xγ) = λ(p−α)/2Cp
γωp−1

+∞
∫

0

ρ
α

γ−1 exp
{

− γ−1
γ ρ

γ
γ−1

}

ρp−1dρ,

where ωp−1 = 2πp/2

Γ(p/2) is the volume of the (p− 1)–sphere, Sp−1, and hence

Jα(Xγ) = 2
πp/2

Γ(π2 )
λ(p−α)/2Cp

γ

+∞
∫

0

ρ
α+(p−1)(γ−1)

γ−1 exp
{

− γ−1
γ ρ

γ
γ−1

}

dρ.
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From the fact that d(γ−1
γ ρ

γ
γ−1 ) = ρ

1
γ−1 dρ and the definition of the gamma

function, we obtain successively

Jα(Xγ) = 2
πp/2

Γ(π2 )
λ(p−α)/2Cp

γ

+∞
∫

0

ρ
α+(p−1)(γ−1)

γ−1 −
1

γ−1 exp
{

− γ−1
γ ρ

γ
γ−1

}

d(γ−1
γ ρ

γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2Cp

γ

+∞
∫

0

ρ
α+pγ−γ−p

γ−1 exp
{

− γ−1
γ ρ

γ
γ−1

}

d(γ−1
γ ρ

γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2( γ

γ−1)
α−γ+p(γ−1)

γ Cp
γ×

+∞
∫

0

(γ−1
γ ρ

γ
γ−1 )

α−γ+p(γ−1)
γ exp

{

− γ−1
γ ρ

γ
γ−1

}

d(γ−1
γ ρ

γ
γ−1 )

= 2
πp/2

Γ(π2 )
λ(p−α)/2( γ

γ−1)
α−γ+p(γ−1)

γ Cp
γ Γ(

α+p(γ−1)
γ ),

and, finally, applying the normalizing factor Cp
γ as in (8), we derive (15) and

the Theorem has been proved.

For the defined generalized Fisher’s information measure and the γ–ordered
Normal, it is clear that the values of Jα(Xγ) depends on the two parameters α
and γ. Therefore, we shall investigate under what values of α and γ there are
bounds for Jα(Xγ).

In the following Proposition we provide some inequalities for the gener-
alized Fisher’s entropy type information measure Jα for the family of the
γ–order Normal distributions with positive order γ, i.e. for Jα(Xγ) where
Xγ ∼ N p

γ (µ, σ
2Ip), considering parameters α > 1 and γ > 2.

Proposition 1. The generalized Fisher’s information measure Jα of a ran-

dom variable Xγ following the multivariate and spherically contoured γ–order
Normal distribution, i.e. Xγ ∼ N p

γ (µ, σ
2Ip), α, γ ≥ 2, satisfy the inequalities

Jα(Xγ)







> pσ−α, for α > γ,
= pσ−α, for α = γ,
< pσ−α, for α < γ.

(17)

Proof. For the spherically contoured r.v. Xγ ∼ N p
γ (µ, σ

2Ip) we are reduced
to (15) where λ = σ2. Thus, for the proof the first branch of (17) we assume

α > γ, i.e. α
γ > 1. Then, we have α+p(γ−1)

γ > 1 + pγ−1
γ . This implies,

Γ(α+p(γ−1)
γ ) > Γ(1 + pγ−1

γ ) = pγ−1
γ Γ(pγ−1

γ ), (18)

if 1 + pγ−1
γ ≥ Γ0, where Γ0 ≈ 1.4628 denotes the point of minimum for the

positive gamma function, Γ(x), x > 0. That is, if the inequality x = 1+pγ−1
γ ≥

Γ0 holds, then Γ(x) ≥ Γ(Γ0), as the gamma function is an increasing function
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for x ≥ Γ0. Inequality, 1 + pγ−1
γ ≥ Γ0, is equivalent to, γ ≥ p

p+1−Γ0
≈

p
p−0.4628 > 1, which is true as γ ≥ 2 in our assumption for the values of

parameter γ. Thus, (18) holds indeed, for orders γ ≥ p
p+1−Γ0

, and so,

Γ(α+p(γ−1)
γ )

Γ(pγ−1
γ )

> pγ−1
γ . (19)

Our assumption, α
γ > 1, together with the fact that, γ

γ−1 > 1 for all defined

orders γ ∈ R\[0, 1], leads us to ( γ
γ−1 )

α/γ
> γ

γ−1 . Then, inequality (19) provides

(

γ
γ−1

)
α
γ Γ(α+p(γ−1)

γ )

Γ(pγ−1
γ )

> γ
γ−1p

γ−1
γ = p,

and, using (15), we derive that, Jα(Xγ) > p
√

|detΣ| for α > γ, i.e. the first
branch of (17) holds. Similarly the other two branches also hold.

Corollary 2. The generalized Fisher’s information Jα of a spherically con-

toured r.v. Xγ ∼ N p
γ (µ, σ

2Ip), with α/γ ∈ N∗, is reduced to

Jα(Xγ) = σ−α(γ − 1)−αγ

α/γ
∏

k=1

{α− p+ (p− k)γ}.

The following Fig. 3 depicts the generalized Fisher’s information Jα of the
bi–variate (and spherically contoured) γ–order normally distributed random
variables Xγ ∼ N 2

γ (µ, I2) across the parameter α > 1, and for various shape
parameters γ = 1, 1.1, . . . , 1.9, 2, 3, . . . , 10. The usual Normal distribution case
of γ = 2 is also highlighted.

Fig. 3. Graphs of Jα(Xγ) across parameter α > 1, with Xγ ∼ N 2

γ (µ, I2), and for
various γ values.
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3 Discussion

In this paper we considered the generalized form of the multivariate normal
distribution, namely the γ–order Normal distribution, N p

γ . This generalization
is obtained as an extremal of the LSI corresponding a power–generalization of
the entropy type Fisher’s information Jα. This generalized entropy type infor-
mation measure, which extends the known entropy type Fisher’s information, is
discussed and evaluated for the γ–order normally distributed random variable,
say Xγ .

Moreover, the corresponding Rényi and Shannon entropy were evaluated for
Xγ , including the specific cases of the multivariate (and elliptically contoured)
Uniform, Normal and Laplace distributions, resulting fromN p

γ . Finally, certain
boundaries of the Jα were obtained for the spherically contoured N p

γ family of
distributions.
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Abstract. In this work we present a new technique using the Crump-Mode-Jagers
branching process theory to model human population. We are addressing questions
like: How the population grows according to given scenarios and how these results
could be used in decision making to choose an appropriate demographic policy. Nowa-
days, such issues are especially important in view of the tasks before the knowledge-
based society. Our aim is to estimate the growth of young population and the pen-
sioners count and to forecast the development of the population structure in time.

Keywords: General Branching Process, Malthusian parameter, demography, popu-
lation projections.

1 Introduction

Studying the population and forecasting its development and age structure is
important for governments. It allows them to make an efficient policy so the
negative developments are slowed down. It is important not only to make a
policy to target the maximization of the total population count but to target
the specific age groups that are important for the economy and the country
as a whole. For example the study shows the working force in Bulgaria is
diminishing, the number of young people finishing school and possibly going to
universities is decreasing, which affects not only universities but businesses too.
Less qualified specialists means some companies may struggle finding enough
specialists in future and the less qualified work is less paid so the GDP of the
country is affected. As a consequence the ability of the government to issue
debt is more limited and more costly. This is an example that demographic
problems are something that affects many aspects of life in the country. Most
demographic problems however take much time to be solved so the social policy
and demographic strategy must be lingering and long term.

The empirical results are derived using General Branching Process Theory.
We choose the General Branching Process (GBP) as a model because of its
generality and flexibility (see Jagers [7]). Modelling human population however
requires some additional tools presented in Trayanov [16] and Trayanov and
Slavtchova-Bojkova [17]. These models however are developed for a population
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of women only so in this article we show how we can adjust them to include the
population of men. In Section 1 we present a brief description of the proposed
mathematical model of human population. In Section 2 we discuss the data we
need and the available data. Then in Section 3 we present the empirical results
and their implication for the population of Bulgaria.

2 Mathematical model

A branching process is a model describing particles or individuals who live
and die according to some probabilistic laws and give birth to one or more
individuals in different moments of time according to probabilistic laws (see
Slavtchova-Bojkova and Yanev [14] and Jagers [7]). The General Branching
Process (GBP) gives the most flexible and close to reality stochastic model
for a population and is general enough to incorporate the complex stochastic
processes of birth and death. Women in this model can give birth to different
number of children and in different moments of time. In addition the life length
of women and men are modelled by random variables. This generality of the
model is the reason the theory of Branching processes is a natural candidate
for modelling human population.

In this section we present a brief description of the theory behind our model.
First we define a GBP starting from a woman aged 0 at time 0. If x is an
individual, we denote λx to be his/her life length and ξx to be her point process
describing her the births in time. A point process is a random measure that
represents the number of children born to a woman in a particular interval. The
number of children born in interval [a, b] is denoted by ξ([a, b]). An accurate
mathematical definition of point process can be found in Jagers [7] and Feller
[4]. We denote ξx(t) = ξ([0, t]) and µx(t) = Eξx(t) which is the expected
number of children that woman x gives birth to till age t.

Let f(s) = E(sξ(∞)), |s| ≤ 1, L(t) = P(λx ≤ t) and µ̂ is the Laplace-
Stieltjes transformation of µ and S(t) = 1 − L(t). We denote zat to be the
number of people at time t on age less then a. The stochastic process zat is
called General Branching Process. A key mathematical result is that we can
actually compute the expected number of individuals at time t on age less than
a with the following theorem.

Theorem 1. (see Jagers [7]) If f(s) < ∞, |s| ≤ 1, then mt = E(zt) < ∞,∀t
and ma

t = E(zat ) satisfies

ma
t = 1[0,a)(t){1− L(t)}+

t∫
0

ma
t−uµ(du), (1)

where 1[0,a)(t) is the indicator function on the interval [0, a). If m = µ(∞) < 1,
then lim

t→∞
mt = 0. If m = 1 and µ is non-lattice, then

ma
t →

a∫
0

{1− L(u)}du
∞∫
0

uµ(du)

.
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If further
∞∫
0

tL(dt) <∞, then

ma
t →

∞∫
0

uL(du)

∞∫
0

uµ(du)

.

If m > 1, µ is non-lattice and α > 0 is the Malthusian parameter defined by
µ̂(α) = 1, then for 0 ≤ a ≤ ∞

ma
t ∼ eαt

a∫
0

e−αu{1− L(u)}du
∞∫
0

ue−αuµ(du)

.

In the lattice cases corresponding assertions hold.

This theorem however gives us the expected population starting from a
woman aged 0 at time 0. To calculate the expected population that starts
from a woman aged b at time 0 we use the following theorem.

Theorem 2. (see Trayanov [16]) If we denote bmt to be the expected number
of individuals started from a woman aged b and bµ(t) to be her point process
expectation then the following holds:

bmt = bS(t) +

t∫
0

mt−u bµ(b+ du), (2)

where bS(t) denotes the probability a woman of age b to survive to b+ t, i.e.

bS(t) =
S(b+ t)

S(b)
. (3)

To model real population however we need additional assumptions. We
assume the fertility interval for each woman is [12, 50] and women do not give
birth outside it. In terms of GBP this means P(ξ [a, b) = 0)) = 1, when
[a, b) ∩ [12, 50] = ∅ and P(ξ[λ,∞) = 0) = 1. This assumption is made because
we do not have data for births on ages less than 12 and greater than 50 and
because births outside this age interval are very few and can be disregarded.
The second assumption is that a woman could have 0 or 1 child during a year
and each birth is a live birth. This means the number of live births is equal
to the number of women who gave birth. The assumption is made because of
missing data for the number of women that give birth and available data for
the number of children born each year. In addition we do not have data for
the sex of the child born, so we assume the probability for a girl is 100/205.

The model above gives us information of how a stationary population will
change over time, but it is not sufficient to describe a dynamic population

765



with changing birth and death laws. This problem could be easily avoided
however (see Trayanov and Bojkova[17]). We achieve this by making population
projection for only one year forward using the model and then change the birth
and death laws according to what we forecast them to be and repeat the same
for the next year. This gives us projections year after year incorporating the
point process forecast and the life length forecast. For every year we know
the number of men by age and we can model their contribution by the same
equation (2) noting that their function µ(t) is actually zero for every t. The
contribution of a single man aged b at time t is actually his survivability function

bS(t). This small enhancement in the model allows us to include the men in
predicting the age structure. We must note that their survivability function
is different from women’s one and is modelled separately. Once we have a
model for the survivability function and the birth probabilities by age we can
substitute them in equation (1) and (2). We must note that equation (1) is
actually a renewal equation and the renewal theory (see [9]) explains how it
can be solved.

3 Incorporating the available data into the model

In order to calculate bmt in Theorem 2 from real data we need the following
mathematical result which reduces it to solving equation (1) in Theorem 1.

Theorem 3. (see Trayanov [16]) If mt has a continuous second derivative then
a third order approximation of equation (2) is given by

bmt ≈ bS(t) +

n∑
k=1

mb+k−0.5 · bµ(b+ k − 1, b+ k),

where the expected number of births in [b+ k − 1, b+ k) of a woman aged b is

bµ[b+ k − 1, b+ k) = bS(b+ k − 1) · P(ξ [b+ k − 1, b+ k) = 1|λ ≥ b+ k − 1).

The probability P(ξ [b, b+ 1) = 1|λ ≥ b) can be calculated from the Age Specific
Fertility Rate and the expected number of years lived by a woman in [b, b+1)
(see Trayanov [16]).

The data we use can be found in Eurostat database [3]. We use the number
of births and deaths by age and sex, the population count by age and sex.
We use data both by age reached during the year and by age of last birthday.
There are some missing data about the death count for ages 80+ for some years
so we need to fill them first. We use the Kannisto model (see Thatcher et al.
[15]) for this purpose. Then we calculate the fertility and mortality rates using
the methodology described in Wilmoth et al. [18] and Shkolnikov [13] and
then calculate the age specific fertility and mortality probabilities (see Chiang
[2], Keyfitz [8] and Mode [10]) for every year since 1960. These probabilities
however contain noise which we want to filter first and we achieve this with
smoothing splines. The smoothing splines theory is explained more accurately
in Ramsay [12] and de Boor [1]. The software used for calculations is R project
[11] with additional packages for fitting smoothing splines (see gam [5]) and
demography (see demography [6]).
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4 Forecasting scenarios. Empirical results

In this section we will focus on forecasting the age structure and the population
count. We discuss two scenarios for forecasting. The first scenario is called ”No
Change” because it assumes the current birth and death probabilities don’t
change in time. It projects the current state into the future. Although this
projection gives us information about the future it gives us information about
the present state too, answering the question if the the current state persists
through time what development it expresses.

The second scenario is called ”Dynamic Scenario” because it tries to cap-
ture trends in birth and death probabilities. This scenario requires several
procedures to calculate:

• Principal Components Analysis (PCA) is used for decomposition of log-
death probabilities and the point process density function for each year
from 1980 to 2012. This gives us the main directions in which these function
historically changed and reduces the forecasting of enormous amounts of
points for each curve to forecasting only several parameters (see Hyndman
[6]).

• ARIMA model is used to fit and forecast the principal components of birth
and death probabilities. We find the best model according to Akaike in-
formation criterion (AIC) and use it to forecast the curves (see Hyndman
[6]).

• We feed the forecasts into the General Branching Process model and com-
pute the expected future population by age.

Fig. 1. Total population count.

The expected future total population count can be seen on Figure 1. We can
see that according to both scenarios the population is decreasing rapidly in the
next 50 years. There are 3.57 mil men and 3.76 mil women by the beginning of
year 2012. The ”No Change” scenario is expecting this count to be reduced to
2.03 mil men and 2.21 mil women by the end of 2061. The ”Dynamic” scenario
gives us slightly less pessimistic expectations for 2.21 mil men and 2.48 mil
women by the end of 2061. This is a reduction of 38% and 32% respectively.

The two scenarios give similar forecasts for the total population count but
forecast different structure of the population. This can be seen in Figures 3
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Fig. 2. Number of retired people.

and 6. In Figure 3 we can see the number of retired women is far greater than
the number of retired men as of 2012 and the model is expecting this ratio to
continue to grow. This is partly due to the smaller retirement age of women
in Bulgaria (age 63) than men (which retire on age 65) but it is also result of
different mortality rates for men and women. Women traditionally live longer
than men. In Bulgaria the expected life length of women is 77 as of 2012 and
is greater than the expected life length of men (70). The ”Dynamic” scenario
expects the life length for men to stay the same and for women to live 3 years
longer in year 2060.

Fig. 3. Ratio of retired women against retired men.

An interesting feature in Figure 2 is that even though the percentage of
pensioners is increasing in the past years it is expected to slow down in the
near future and begin to decrease. It is interesting to see if this decrease of
people on pension will help the economy recover. On Figure 4 is displayed the
percentage of working people and how it will change over time. It shows that
even though people on pension will decrease, those on working age will decrease
even more so the economy will be under even greater demographic stress than
it is now.

The ”Dynamic” scenario shows that the population on working age is ex-
pected to decrease by 46%, whereas the people on pension are expected to
decrease by 22%. This puts Bulgaria in a very difficult position because the
working force will have to earn more to sustain the people on pension or the
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Fig. 4. Percentage of people on working age.

government will have to increase the retirement age. Calculations show that
if we want to keep the current ratio of people on working age to people on
pension in 2062, we need to gradually increase the retirement age of men by 4
years and to increase the retirement age of women even more - 6 years.

Fig. 5. Newborns count.

Another application of the model could be forecasting the number of new-
borns which can be used as a predictor of how many children will begin kinder-
garten or the number of people on age 6 or 7 years which is a predictor of
how many children will begin school in the future. Figure 6 shows the number
of children beginning school is expected to decrease till 2035 but then it will
start growing again. This change of trend is caused by the current age struc-
ture of the population that will change over time. The number of newborns is
shown on Figure 5. It is expected to decrease till year 2030 due to the bad age
structure but eventually it will start growing again.

The number of people on age 18 and 19 is going to decrease till year 2017
by 25% and then start to increase for short while. This is important because
the number of people on this age is the main source of students for universities.
A decrease with 25% for 5 years puts the universities in difficult position.
Calculations show that the number of young people of age between 18 and
30 is going to decrease too by 14% in year 2017 and continue decreasing till
year 2026 by 34%. This results in fewer candidates for students and less young
people in the economy.
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Fig. 6. People of age 6 or 7.

Fig. 7. People of age 18 and 19.

5 Final remarks

Modelling and forecasting the population is important for the country. It tells
us about the current state and what is wrong with it so the government can
make an efficient demographic policy. It tells us what to expect in the future
so we can prepare. It gives us a tool to make social plans like how many new
kindergartens we need to build in the future or can we expect a low number
of students in the schools or universities. It answers economic questions - how
many people will be on working age and how many on pension so the gov-
ernment could adjust their policy appropriately and efficiently. The forecast
results for Bulgaria should teach us that we need to pay attention to demogra-
phy and make a social policy that counteracts these trends. The demographic
problems are difficult to solve, affect many aspects of life in the country and
require a long term strategy to be solved.
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Abstract. Climatic changes, such as large temperature fluctuations and increase in the 
occurrence of heat waves, have been evidenced to affect mortality worldwide. In this 

paper we examine the effect of high temperatures on mortality in Cyprus, an island 
which is characterized by a Mediterranean climate. The modeling approach is described. 
First, the temperature function is created within the newly-developed framework of 
distributed lag non-linear models, to simultaneously capture non-linearities and delayed 
effects. The temperature function is, then, incorporated in a Generalized Linear Model 
with a quasi-Poisson distribution to allow for overdispersion, together with possible 
confounders such as meteorological indicators, trends and seasonality. Comparisons are 
additionally made, regarding the effect of temperature on mortality, between inland and 

coastal areas. All the results are presented in a tabular or graphical form and the 
conclusions are discussed. 
Keywords: heat waves, mortality, distributed lag non-linear model, strata constraints, hot 
threshold, GLM, quasi Poisson, harvesting effect. 

 

 

1  Introduction 
 

Global climate change is projected to further increase the frequency, intensity 

and duration of heat waves. Exposure to high temperatures can result in a 

variety of adverse health effects including deaths due to heat-related causes such 

as heat stroke, but also exacerbating many preexisting health conditions 

(Rainham and Smoyer-Tomic[32]; Kovats and Hajat[25]; Gosling et al.[16]). 

Many studies conducted worldwide, have, in fact, indicated a consistent strong 
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association between elevated temperature and all-cause (excluding external 

causes) mortality, despite any variation observed amongst diseases 

(Armstrong[3]; Baccini et al.[5]; Michelozzi  et al.[27]; Zanobetti and 

Schwartz[40]; Biggeri and Baccini[7]; Hajat et al.[22]).  

The association between temperature and mortality has been evidenced to be 
non-linear, following a J-, U-, or V-shaped curve, where minimum mortality is 

detected at moderate temperatures, while an excess health risk is observed at 

temperatures above a certain threshold, with higher mortality at temperature 

extremes (Armstrong[3]; Armstrong et al.[4]; Baccini et al.[5]; Curriero et 

al.[9]; Hajat and Kosatsky[19]).  

In addition, many studies have shown evidence of the so-called “delayed 

effect”. They have indicated that temperature can affect not only deaths 

occurring on the same day, but on several subsequent days, where the converse 

is also true: deaths on each day depend on the effect of the same day’s 

temperature as well as the lag effects of the previous days’ temperatures 

(Anderson and Bell[2]; Braga et al.[8]; Gasparrini et al.[15]). The estimate of 

the effect depends on the appropriate specification of the lag dimension of the 
dependency, defining models flexible enough to represent simultaneously the 

exposure-response relationship and its temporal structure (Gasparrini et al.[15]).  

The island of Cyprus has a typical Mediterranean climate characterized by hot 

dry summers and rainy changeable winters, separated by short autumn and 

spring seasons of rapid change. During summertime, it is mainly under the 

influence of a shallow trough of low pressure extending from the great 

continental depression centered over Southwest Asia, which results in high 

temperatures with almost cloudless skies and negligible rainfall (Price et 

al.[31]). In Cyprus climate change has been observed, with an increase in the 

average annual temperature by 0.8°C in the last thirty-year period and a drop in 

precipitation by 17% from the second half of the century. Climate change is 
expected to act in many ways as a multiplier of existing environment and health 

problems (Symeou[36]). 

The current study is the first to provide evidence on the effect of extreme 

weather on mortality in a country with a Mediterranean climate, and the first 

that examines this issue for the island of Cyprus. The study, additionally, 

implements a new methodological approach. 

 

 

2  The GLM modeling framework 
 

A Generalized Linear Model (GLM) framework will be used in our analysis. A 

general form of the model for the mortality counts, , t=1,….n, is given by:  





K

k

tkk

J

j

jtjjt uxsg
11

);()(  β  ,                      (1) 

where )(Y , g is a monotonic link function and Y has a distribution 

from an exponential family (McCullagh and Nelder[26]). In epidemiological 
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studies of the impact of extreme weather on human health, where the response 

variable is a non-negative daily count (e.g., mortality), overdispersion is often 

observed, where the variance of the outcome is greater than its mean 

( 1,)(  YV ). GLM models with quasi-Poisson regression have been 

shown to capture overdispersion well, by extending the Poisson distribution 
with the estimation of an additional dispersion parameter (Armstrong et al.[4]; 

Guo et al.[17]; Everitt and Hothorn[12]; Hajat et al.[21]; Schwartz et al.[35]; 

Zeger[42]). The functions js  in equation (1) denote smoothed relationships 

between the variables jx and the linear predictor, defined by the (unknown) 

parameter vectors j . The variables ku  include other predictors with linear 

effects specified by the related coefficients k . 

 

2.1 The temperature function in GLM 

 

First, we consider the function );( 11 βtxs  for temperature, x , that will be 

included in the GLM framework of equation (1), hereafter called the 

“temperature function”. As mentioned in section 1, the relation between 

temperature and mortality has been evidenced to have two main characteristics: 

non-linearity and delayed effect. Many methods have been proposed to deal 

with non-linearity, depending on the shape of the relationship, the degree of 

approximation required and interpretational issues. Among the most commonly 

used methods are smooth curves, such as polynomials, quadratic B-splines or 

natural cubic splines (Dominici et al.[10]) or linear-threshold parameterizations 

(e.g., “hockey-stick model”), which assume a high temperature threshold, k, and 

can by represented by a truncated linear function (x−k)+ which equals (x−k) 

when x>k and 0 otherwise (Armstrong[3]; Hajat et al.[21]; Pattenden et al.[29]; 

Baccini et al.[5]).  
Among the methods that have been proposed to deal with delayed effects, a 

major role is played by distributed lag models (DLM) (Schwartz[34]; Zanobetti 

et al.[41]; Braga et al.[8]). When a linear relation is assumed, this methodology 

allows the effect of a single exposure event to be distributed over a specific 

period of time, using several parameters to explain the contributions at different 

lags, thus providing an estimate of the overall effect. The simplest formulation 

is an unconstrained DLM. However, each individual coefficient at specific lags 

is often imprecisely estimated and highly correlated with estimates of other 

coefficients, resulting in collinearity between exposures in adjacent days. To 

gain more precision in the estimate of the distributed lag curve, some constraints 

can be imposed, where an effective choice includes strata constraints (Welty and 
Zeger[38]; Armstrong[3]; Pattenden et al.[29]; Gasparrini et al.[15]; Gasparrini 

and Armstrong[14]). In such a “lag-stratified distributed lag model” several days 

are averaged as the effects of temperature over a period of time rather than from 

the contribution of one day, assuming a constant effect (equal coefficients) 

within lag intervals (strata). 
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Although there exist well-developed methods for dealing with non-linearity or 

time latency in the temperature-mortality association, these two components are 

rarely modeled simultaneously. We will use a methodology that unifies many of 

the previous methods to deal with delayed effects and at the same time provide 

more flexible alternatives regarding the shape of the relationships, relaxing the 
assumption of linearity. More specifically, the temperature function will be 

modeled using the newly-developed framework of Distributed Lag Non-Linear 

Models (DLNM) (Armstrong[3], Gasparrini et al.[15]; Gasparrini and 

Armstrong[14]). DLNM can describe non-linear relationships by choosing a 

“cross-basis”, which is a bi-dimensional space of functions describing on the 

same time the shape of the relationship along the predictor, x, (temperature) and 

the distributed lag effects.  Choosing a cross-basis amounts to specifying two 

independent sets of “basis” functions, which will be combined (Gasparrini et 

al.[15]). A DLNM can be specified by  

 

, 

where rtj. is the vector of lagged exposures for the time t transformed through 

the basis function, the vector wt. is the tth row of the cross-basis matrix W, C is 

an (L+1)×vl matrix of basis variables for the lag vector l, and η is a vector of 

unknown parameters. More details regarding the algebraic notation and 

estimation of DLNMs can be found in Gasparrini et al.[15].     

In our study, the choice of the non-linearity dimension of the cross-basis of 

DLNM will be led by visual inspection of the shape of the temperature-
mortality relation, assuming a high threshold temperature (see section 4). 

Regarding the lag dimension of the cross-basis, we will we assess the effect of 

temperature on mortality with lags up to 10 days before the day of death, using a 

constrained distributed lag model, with strata constraints on the coefficients 

(“lag-stratified distributed lag model”), to avoid collinearity and improve the 

precision of the estimates. We will define 3 strata intervals with dummy 

parameterization, assuming constant distributed lag effects along the strata of 

lags 0-1, 2-5 and 6-10.   

 

2.2 Confounding factors in the temperature-mortality relation 

 

The relationship between temperature and mortality may be confounded by 
measured or unmeasured covariates, which need to be controlled for properly in 

the GLM model (Peng et al.[30]; Touloumi et al.[37]; Dominici et al.[11]). The 

meteorological variable relative humidity has been shown to be a confounder of 

the mortality-temperature relation and natural cubic splines have been used as a 

smoothed function (Armstrong et al.[4]; Guo et al.[7]; Braga et al.[8]; Curriero 

et al.[9]; Anderson and Bell[2]; Armstrong[3]). We will similarly use natural 

cubic splines to control for the non-linear effect of relative humidity (function 

2s  in equation (1)). Our GLM model will also control for secular trends and 

seasonality, by using smooth functions of time (day of the year) (function 3s  in 

equation (1)). Natural cubic splines are most commonly used in this context, 
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where the degree of smoothness is very important, since it determines the 

amount of residual temporal variation in mortality available to estimate the 

temperature effect (Armstrong et al.[4]). The relation between temperature and 

mortality has also been evidenced to be affected by calendar days, where, for 

example, on weekends the number of hospital admissions can be lower than on 
weekdays and can also be lower during public holidays (Armstrong et al.[4]; 

Guo, et al.[17]; Michelozzi et al.[28]; Peng et al.[30]). Thus, any additional 

confounding by seasonally varying factors which vary on shorter timescales will 

be controlled by adding categorical/dummy variables for day of the week and 

public holidays (  in equation (1)).  
Since our interest is on the heat effect on mortality, the analysis will concentrate 

on the warm periods of each year, where a warm period is defined as the months 

from April to September. The same definition was chosen by many previous 

studies (e.g., Baccini et al.[5]; Michelozzi et al.[28]; Almeida et al.[1]; 

Pattenden et al.[29]), in order to ensure reasonable statistical power, given the 

small number of events (mortality), and based on the evidence that heat waves 

occurring at times other than summer may have just as strong a health impact 

(Hajat et al.[20]; Michelozzi et al.[27]). Therefore, the data are composed by 
multiple equally-spaced and ordered series of the same seasons for each year, 

and do not represent a single continuous time series. We will use the 

methodology suggested by Gasparrini and Armstrong[14], especially for 

seasonal analysis, in order to define this multiple series. 

The results will be obtained using R statistical software (The R Foundation for 

Statistical Computing). 

 

 

3  Data 
 

Daily mortality data were provided by the Ministry of Health of the Republic of 

Cyprus, for each of the five districts in Cyprus (Nicosia, Limassol, Larnaca, 

Paphos, Ammochostos) for the period between the years 2004 and 2009. The 

data included total (all-cause) mortality excluding external causes, as classified 

in the Eurostat Shortlist of 65 causes of death. 

Daily meteorological data were collected by the Cyprus Meteorological Service 

in the five main urban centers of the island. The meteorological parameters that 

were used for the purpose of this study included measures of temperature and 
relative humidity. No temperature measure has been shown to be consistently 

better at predicting mortality and thus there is no standard indicator of heat 

stress (Barnett et al.[6]; Michelozzi et al.[28]). We considered the daily surface 

maximum temperature (in °C), which was used in many related studies (e.g., 

Armstrong et al.[4]; Filleu et al.[13]; Guo et al.[17]; Rocklöv and Forsberg[33]). 

Daily values of relative humidity at 8:00 LST and 13:00 LST (in %) were 

obtained for each district, where the mean of the two values was calculated. We 

avoided unequal spacing of the observations by imputing missing values as the 

moving average of surrounding observations (e.g. Rocklöv and Forsberg[33]). 
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Cyprus was considered as a total area, using the combined data from all the 

stations, but separate analyses were also performed for Nicosia (urban area) and 

Limassol (coastal area) for comparative purposes. 

 

 

4  Analysis and results 
 

Table 1 presents descriptive statistics for the main variables of the study, all-

cause (total) mortality counts, maximum temperature and relative humidity, by 

district, for the warm periods (April to September) of the years 2004-2009.   

 

District 
Total Mortality 

Maximum 

Temperature (
oC) 

Relative 

Humidity (%) 

Mean SD Mean SD Mean SD 

Nicosia 4.56 2.19 32.84 5.48 43.02 13.66 

Limassol 3.33 1.91 30.41 4.25 63.22 10.30 

Larnaca 1.75 1.38 29.81 4.28 55.11 11.89 

Paphos 1.10 1.08 27.55 3.79 67.50 9.19 

Ammochostos 0.54 0.74 30.39 4.91 54.31 14.14 

Table 1. Descriptive statistics of the mortality and meteorological variables, per 

district, for the warm periods (April to September), 2004-2009. 
 

Figure 1 shows the relation between daily all-cause mortality and maximum 

temperature in Cyprus.  

 
Fig. 1. Mortality vs. maximum temperature: Cyprus, warm periods, 2004-2009. 
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Examination of figure 1 indicates a non-linear effect of temperature. More 

specifically, it appears to be constant up to one point (zero slope up to 

temperatures around 29oC) and then we have a V-shaped relation with a hot 

threshold, the common point where two linear terms are constrained to join, 

which corresponds to a change in the effect estimate and the temperature 
associated with the minimum mortality rate. Therefore, led by visual inspection, 

the non-linearity component of the temperature function in DLNM will be 

captured for our data by the “linear-thresholds” model (“hockey-stick” model), 

with a high threshold parameterization (see section 2.1). Similar plots were 

found for Nicosia (urban area) and Limassol (coastal area), when the respective 

data were examined separately.  

Based on figure 1, we tested a grid of temperatures from 31oC to 35oC, in 0.1oC 

increments, to identify the threshold temperature that satisfied our criteria for 

model choice (e.g., minimizing residual deviance and Akaike Information 

Criterion (AIC)) (Armstrong[3]; Guo et al.[17]). The hot threshold temperature 

for Cyprus was found to be 33.7oC. Using similar procedures, the threshold 

temperatures for Nicosia and Limassol were found to be 32.5oC and 38oC 
respectively.  

The GLM model was then fit to the data, including the temperature function and 

the potential confounders of the temperature-mortality relation. The final 

estimated GLM model could be described by the following equation:  

 

ttttt HolidayDOWdSRHSYE 2132 )4,()3,())(log(  γβΤα lt,

where t is the day of observation (days 151 up to 273 of each year, restricted to 

the periods from April to September), Yt is the observed daily death counts on 

day t, α is the intercept, ltT ,  is the temperature function (a matrix obtained by 

applying DLNM to temperature), l  corresponds to lags of temperature,   is 

the vector of coefficients for ltT ,  ,  )3,(2 tRHS  is a natural cubic spline with 3 

degrees of freedom to smooth relative humidity, )4,(3 tdS  is a natural cubic 

spline with 4 degrees of freedom for long-term trends (day of the year), as a 

smooth function to capture the variation within the warm period, tDOW  is the 

indicator variable for “day of the week” effect (1=Sunday) on day t (γ1 is the 

corresponding coefficient), and tHoliday   is a dummy variable for the holiday 

effect (1=Public Holiday; γ2 is the corresponding coefficient). All the 

components of the model were significant (p-values<5%), except the Holiday 

effect. The model had a good fit, with model criteria and diagnostics tools 

indicating that all patterns (autocorrelation and trends) were captured 
effectively. The corresponding GLM models were also fit for the separate 

analyses for Nicosia and Limassol. The significance of the components was 

similar, although relative humidity was not found to be a significant confounder 

for the urban area of Nicosia.  
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Table 2 shows the relative risk increment per degree of heat sustained per day 

(effect of lags in the same strata interval is equal), for Cyprus as a total area as 

well as for Nicosia and Limassol considered separately.  

 
Lags Relative risk: % per 

0C above threshold- 

per lag 

(95% CI): Cyprus 

(threshold=33.70C) 

Relative risk: % per 
0C above threshold- 

per lag 

(95% CI): Nicosia 

(threshold=32.50C) 

Relative risk: % per 
0C above threshold- 

per lag 

(95% CI): Limassol 

(threshold=380C) 

0-1 

2-5 

6-10 

4.24 (2.03 to 5.81) 

0.50 (-0.39 to 1.41) 

0.41 (-0.29 to 1.11) 

1.47 (0.41 to 2.54) 

0.49 (-0.09 to 1.08) 

0.30 (-0.15 to 0.76) 

21.18 (6.18 to 38.30) 

15.47 (5.79 to 26.03) 

-7.79 (-17.04 to 2.48) 

0-10 13.17 (8.50 to 18.05) 6.59 (3.49 to 9.79) 73.99 (-6.54, 223.91) 

Table 2. Results for relative risk (increase in mortality) from the Lag-stratified 

distributed lag linear threshold model - Cyprus, Nicosia, Limassol (2004-2009) 

 
The results in Table 2 show that the effect of heat in Cyprus is much more 

pronounced for lags 0-1 (4.2% in each of lags 0 and 1, compared to 0.5% in 

each of higher lags, more than 8 times higher). In other words, during the same 

and next day of a heat event, a 1 degree increase in maximum temperature 

above the threshold of 33.70C is associated with an estimated increase of around 

8.5% in all-cause mortality in Cyprus. Table 2 also provides the estimated 
overall effect of temperature over all 10 lags, which is the total effect from the 

lag-specific contributions, computed by summing the log relative risks of each 

lag and it is largely insensitive to constraints (Armstrong[3]; Gasparrini et 

al.[15]). Looking at the results for Cyprus, the total risk over the 10 lags is 

around 13% higher for every degree above 33.70C.  

Figure 2 presents the overall effect of temperature on all-cause mortality in 

Cyprus, over lags 0-10. 
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Fig. 2. Overall effect (relative risk) over all 10 lags: Cyprus (2004-2009). 
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As figure 2 indicates, the effect has zero slope up to the threshold temperature 

and increases after the threshold, with a significant increase in mortality risk at 

very high temperatures: at temperatures around 400C the risk of dying is around 

3 times higher compared to temperatures close to the threshold. 

Figure 3 shows a three-dimensional graph of the exposure-response relationship 
along temperature and lags, with reference at 33.70C, the threshold temperature 

and provides a general picture of the results. Slices of the 3D plot, for specific 

temperatures (350C, 370C, 400C and 420C), appear in the bottom part of the 

figure. 

 

 

 
Fig. 3. 3-D plot of relative risk along temperature and lags (upper) and slices of 

the 3-D plot (lag-specific effects) for various temperatures (bottom): Cyprus 
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Figure 3 shows that heat (i.e. temperatures above the threshold of 33.70C) has a 

much stronger effect at lags 0 and 1, compared to lags 2-5 and 6-10, and the 

effect is much stronger at higher temperatures. For example, it is 40% higher at 

420C compared to 350C, where at the temperature of 350C the risk is negligible 

at lags higher than 2. In addition, the effect at lower temperatures (e.g., 350C 
and 370C) has a smoother shape, compared to the sudden drop for temperatures 

above 400C, as we move further away from the event (e.g., a week away).  

Focusing on the results obtained from the separate analysis of the data from 

Nicosia (urban area), showed that, similar to the results for Cyprus, the effect of 

heat is much more pronounced for lags 0-1, however, the effect in Nicosia is 

much lower compared to considering Cyprus as a total area (Table 2). A 

comparison of the 3D plot of Nicosia (not shown) with the plot for Cyprus, 

showed that the change in effect from lags 0-1 to lags 2-5 is much smoother in 

Nicosia compared to Cyprus, with the effects in the two strata being very close. 

In addition, the effect on mortality is stronger at higher temperatures (e.g. 400C 

and 420C), around 10% higher compared to temperatures around 350C, where 

the increase in mortality is actually close to zero compared to the threshold 
temperature of 32.50C and it has an overall smoother shape, with a smaller 

decrease from lags 0-1 to higher lags. The results regarding Limassol (coastal 

area) shown in Table 2 similarly show that significant effects occurred within 0-

1 lags, which are much higher compared to the total area of Cyprus and the 

urban area of Nicosia for lags 0-1 and also quite high for lags 2-5 as well. The 

accumulated effect for Limassol is as high as 74%, but it is associated with a 

wide confidence interval that ranges from a negative effect to a highly positive 

effect, reflecting high variability/overdispersion within lags. The most 

noticeable result is that the relative risk for Limassol for lags 6-10 is highly 

negative, indicating a deficit of deaths in lags 6-10. 

 

5 Discussion 

 
The current study is the first to examine and quantify the effect of high 

temperatures on all-cause mortality in a Mediterranean island, Cyprus, using a 

methodology that captures simultaneously any non-linearities and lag effects, 

based on the general framework of distributed lag non-linear models, while also 

adjusting for the effect of potential confounders. 

The results showed that high temperatures have a significantly adverse effect on 

public health in Cyprus, irrespective of living in the inner part of the island or 
the coastal area. In addition, temperature had an effect on all-cause mortality, 

independent of the effect of relative humidity or seasonal factors, like day of the 

year (e.g. middle of July or August) or shorter-term effects, like the day of the 

week (e.g., after a prolonged exposure to the sun during the weekend). An 

immediate or direct health effect of heat was found, with higher risk within the 

current and next day of a severe heat event, as opposed to a lower effect in 

longer lags, as we move further from the event, where the risk drops 

significantly after two days. The delayed effect of heat could also be seen vice 
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versa: a death due to high temperatures is not due only to the thermal stress of 

the same day, but also of the previous couple of days. The results of a 

pronounced direct effect of heat (lags 0-1) on all-cause mortality agree with 

previous studies that have shown that the heat effect is immediate 

(Armstrong[3]; Braga et al.[8]; Guo et al.[17]; Pattenden et al.[29]).  
In addition to the immediate effect of heat, the results showed that the effect on 

public health is much more pronounced for higher temperatures, as opposed to 

temperatures close to the threshold, where the effect is smoother, with a sharp 

drop from lag 1 to lag 2. 

Focusing on the two areas, Nicosia and Limassol, provided similar results of an 

immediate short-term effect within the first two days, which is reduced in longer 

lags and for lower temperatures. However, the threshold temperatures 

corresponding to the lowest observed mortality varied. This variation by latitude 

and topographical features appeared in other studies (e.g., Baccini et al.[5]) and 

could reflect population differences in acclimatization or adaptation to high 

temperatures between coastal and inner-country areas. The meteorological 

indicator relative humidity should also be considered, since it appeared to play a 
significant role in the effect of high temperatures on mortality: the mean levels 

of relative humidity were, as expected, higher in coastal areas, compared to 

Nicosia, while it was not a significant confounder in the temperature-mortality 

relation for Nicosia, as opposed to Limassol (and Cyprus as a total area).  

In addition, differences in the level of the temperature effect between areas were 

observed in the study: the effect observed for Nicosia was less pronounced, 

much smaller and smoother, almost negligible at lags 2-10, indicating a lower 

risk of mortality in this urban area. The model for the coastal area of Limassol 

showed a deficit in deaths at longer lags (6-10), with negative relative risk. This 

reduction in mortality, one week or so after the event, suggests that the heat 

wave affected especially frail individuals whose health was already so 
compromised that would have died in the short term anyway (e.g., 2 or 3 weeks 

later) and whose events were only accelerated by a brief period of time by the 

effect of exposure. This so called “harvesting effect” or “mortality 

displacement”, has been observed in previous studies, where following heat 

waves there is a decrease in overall mortality in subsequent weeks, thus 

representing a short-term forward shift in mortality (Armstrong[3]; Guo et 

al.[17]; Braga et al.[8]; Hajat et al.[18]; Kinney et al.[24]).  

Although the effect of heat appeared to be strong during the first two days and 

disappeared gradually after this, the choice of including up to 10 lags in our 

model has led to capturing this harvesting phenomenon for Limassol. In fact, 

studies of the effect of high temperatures using short lags (up to 2 or 3 lags 

only) may overestimate the hot effect, as the harvesting effect could only be 
captured by using longer lags (Anderson and Bell[2]; Guo et al.[17]). To 

explore better the number of lags for the model, and ensure that any shorter or 

longer-term effects were captured, sensitivity analysis was additionally 

performed for the number of total lags, up to 27 lags. The results were very 

similar to the results for 10 lags, therefore no need for a change in the models 

was deemed necessary.  
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6  Conclusion 

 
The adverse health effects of heat waves are largely preventable, especially if 

appropriate measures are implemented, which include, among others, the setting 

up of early warning systems (Hayhoe et al.[23]; WHO[39]). As a result, a 

number of cities across Europe have already begun to develop and implement 

hot-weather response plans (Rainham & Smoyer-Tomic[32]). The results of the 
current study can thus be used for the development of early Heat-Health 

warning systems for the population in Cyprus, targeting climatic variables. 

Overall the heat effect appears to increase the risk of mortality and requires 

special attention. The corresponding Governmental departments must shift their 

focus from surveillance and response to prediction and prevention, to link 

accurate forecasts of extreme events with effective public health measures and 

interventions, taking at the same time into consideration the special 

characteristics of urban and coastal areas. 
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