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Abstract. Exact analytic solutions of some stochastic differential equations are
given along with characteristic futures of these models as the Mean and Variance.
The procedure is based on the Ito calculus and a brief description is given. Classical
stochastic models and also new models are provided along with a related bibliog-
raphy. Stochastic models included are the Gompertz and the Generalized Logistic.
Emphasis is given in the presentation of stochastic models with a sigmoid form
for the mean value. These models are of particular interest when dealing with the
innovation diffusion into a specific population, including the spread of epidemics,
diffusion of information and new product adoption.
Keywords: Stochastic simulation, Stochastic modeling, Analytic solutions, Sto-
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1 Introduction

The Stochastic Differential Equations (SDE) play an important role in nu-
merous physical phenomena. The numerical methods for solving these equa-
tions show low accuracy especially for the cases with high non-linear drift
terms. It is therefore very important to search and present exact solutions
for SDE. The resulting solutions are also important to check for the accuracy
of existing numerical methods.

The first attempts for solving SDEs where based on proposing an integrat-
ing factor that could transform a SDE to a linear form that could be solved
explicitly. A systematic method for reducing a non-linear SDE to a linear
one was due to Kloeden and Platen, 1992 [7], and Kloeden et al 1999 [8],
2007 [9]. They proposed a suitable transformation function for the reduction
of a particular SDE. This method is suitable for the cases presented here.
The main theoretical issues are given in the following.

? the complete version appears in Methodology and Computing in Applied
Probability (MCAP), Springer, 2009. DOI 10.1007/s11009-009-9145-3,
http://www.springerlink.com/content/e86662j38168r247/
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2 Solution Methods of Stochastic Differential
Equations

The method that will be presented and applied further down is based on the
Ito norm [5], [6] and is used for the reduction of an autonomous nonlinear
stochastic differential equation in the form of [7]:

dy(t) = a(y(t)) · dt + b(y(t)) · dw(t) (1)

into a linear for x(t) stochastic differential equation,

dx(t) = (a1 · x(t) + a2) · dt + (b1 · x(t) + b2) · dw(t) (2)

Then the solution of this last equation is given by

xt = Φt

{
x0 + (a2 − b1b2)

∫ t

0

Φ−1
t ds + b2

∫ t

0

Φ−1
t dws

}
where

Φt = exp
{

a1t −
1
2
b2
1t + b1wt

}
By the use of a suitable transformation function x(t) = U(y(t)) the re-

duction method was initially presented by Gihman and Skorokhod (1972) [3]
both for autonomous and for non-autonomous stochastic differential equa-
tions. In this case, only the reduction method for autonomous stochastic
differential equations will be presented.

In applying this formula to Ito in the transformation function U(y) the
following results:

dU(y) =
ϑU(y)

ϑy
· dy +

1
2
· ϑ2U(y)

ϑy2
· (dy)2

The above method will be used for the solution of some nonlinear stochas-
tic diffusion equations which are presented in the following providing closed
form solutions.

3 The Gompertzian Stochastic Model

The deterministic Gompertzian Model (Gompertz, 1825 [2]) has the form:

dxt

dt
= −bxt lnxt

where b is a constant. This a growth model and the maximum growth rate is
achieved when xinf = exp(−1). This Gompertz function was proposed as a
model to express the law of human mortality and can be used for population
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estimates. It is a sigmoid (S-shaped) model as regards the form xt plotted
against t. The Gompertz model is also applied in innovation diffusion model-
ing and in new product forecasting. In these cases the fluctuations are related
to the magnitude xt of the measurable characteristic part of the system and
it is assumed that the noise term could be expressed by a multiplicative 1-
dimensional white noise process. Thus the S.D.E. model resulting from the
above deterministic one must have the form (see Skiadas et al [17]):

dxt = −bxt lnxtdt + cxtdwt

where xt is the unknown stochastic process, b and c are constants and wt is
1-dimensional Wiener process.

The solution of the last stochastic differential equation is obtained by
applying the Ito formula to the transformation function yt = lnxt so that,

dyt = d lnxt = x−1
t dxt −

1
2
x−2(dxt)2

By substituting xt from the above Gompertz stochastic differential equa-
tion and rearranging yields:

dyt = d lnxt = (−byt −
1
2
c2)dt + cdwt

The last equation is a stochastic linear differential equation and it is solved
using the previous formulas to give the the following solution for xt

xt = exp
{

lnx0 exp(−bt) − c2

2b
(1 − exp(−bt)) + c exp(−bt)

∫ t

0

exp(bs)dws

}

4 The Generalized Logistic Stochastic Model

A deterministic version of this model was developed by Richards (1959) [11]
based on a previous simpler model proposed by Von-Bertalanffy for the de-
scription of the increase of weight as a function of the metabolism process
of animals. Other deterministic forms of Generalized models can be found
in [12], [13], [14].

4.1 The deterministic model

The deterministic Generalized Logistic model model is expressed by the dif-
ferential equation

dxt = bxt

(
1 −

(xt

F

)m)
dt

where b, m and F are parameters.
By dividing both sides of the last equation by F and placing yt = xt/F

results
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dyt = byt (1 − (yt)
m) dt

To solve this differential equation the method of change of variables is
needed by using zt = y−m

t . Then the last differential equation reduces to the
linear differential equation

dzt = −bm(zt − 1)dt (3)

which is easily solved to give

ln(zt − 1) = ln(z0 − 1) = bmt (4)

where z0 = z(t = 0) = y−m
0 = (x0/F )−m

Finally by transforming to yt and then to xt the solution of the determin-
istic Generalized Logistic model results

xt = F
[
1 + ((x0/F )−m − 1) exp(−bmt)

]−1/m (5)

This is a sigmoid form model with saturation level achieved at the upper
limit F . The parameter b accounts for the speed of the product adoption
process. The inflection point is achieved at xinf = (1/(m + 1))1/m.

4.2 The stochastic model

The stochastic Generalized Logistic model with a multiplicative noise term
is given by the stochastic differential equation

dxt = bxt

(
1 −

(xt

F

)m)
dt + cxtdwt

As for the deterministic model above by dividing both sides of the last
equation by F and placing yt = xt/F results

dyt = byt (1 − (yt)
m) dt + cytdwt

For the solution of the last stochastic differential equation the reduction
method will be used. The change of variables is achieved by using the same
integration factor as for the deterministic case zt = y−m

t .
Then the Ito formula is applied to the transformation function zt and by

introducing the values for yt and dyt from the previous forms and rearranging
the following form of the transformed stochastic differential equation results:

dzt =
((

c2

2
m(m + 1) − bm

)
zt + bm

)
dt − cmztdwt

This is a linear autonomous stochastic differential equation. The solu-
tion arises after using the following general form for the solution of a linear
stochastic differential equation of the type:
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drt = (a1rt + a2)dt + (b1rt)dwt

where a1, a2 and b1 are parameters. The solution is given by:

rt = Φt

{
r0 + a2

∫ t

0

Φ−1
t ds

}
where Φt = exp

{
(a1 − b2

1/2)t + b1wt

}
Considering that in our case a1 = c2m(m + 1)/2 − bm, a2 = bm and

b1 = −cm; Φt is given by:

Φt = exp{(−bm + c2m/2)t − cmwt)}

Then the resulting solution for zt is

zt = Φt

{
z0 + bm

∫ t

0

Φ−1
s ds

}

zt = Φt

{
z0 + bm

∫ t

0

(exp((−c2m/2 + bm)s + cmws))ds

}
Finally, the solution of the Generalized Logistic stochastic differential

equation arises after the application of the reversal transformations yt =
z
−1/m
t and xt = Fyt and is in the form of:

yt = Φ
−1/m
t

{
y−m
0 + bm

∫ t

0

Φ−1
s ds

}−1/m

xt = FΦ
−1/m
t

{
(x0/F )−m + bm

∫ t

0

Φ−1
s ds

}−1/m

The resulting mean value for zero noise c = 0 is

xt = F
[
1 + ((x0/F )−m − 1) exp(−bmt)

]−1/m (6)

That is precisely the solution of the deterministic case.

5 The Stochastic Logistic Model

The Logistic model, a model with very many applications in several fields,
results as a special case of the Generalized Logistic model when the parameter
m = 1. The stochastic version of this model is given by:

dxt = bxt

(
1 −

(xt

F

))
dt

(See analytic solution and related applications in [4] and for a more general
model in [15]) Then from the solution for the Generalized Logistic model
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the formula for the solution of the Logistic model results immediately by
introducing m = 1.

xt = FΦ−1
t

{
(x0/F )−1 + b

∫ t

0

Φ−1
s ds

}−1

where
Φt = exp

{
(−b + c2/2)t − cwt

}
xt = FΦt

{
(x0/F )−1 + b

∫ t

0

exp
{
(b − c2/2)s + cws

}
ds

}−1

The resulting value for zero noise c = 0 is

xt = F
[
1 + ((x0/F )−1 − 1) exp(−bt)

]−1
(7)

5.1 The mean value

To find the mean value of the Logistic stochastic model first we observe that
the following relation holds for the expectation of a stochastic process g(w)

E{exp(g(w))} = exp
E(g(w))2

2
Thus the following two relations result

E{exp(cwt)} = exp
E(cw)2

2
= exp

E
(
c2t

)
2

= exp

(
c2t

)
2

and

E
{

exp
∫ t

0

(cws)ds

}
= exp

∫ t

0

E
{
(cws)2/2

}
ds = exp

∫ t

0

(c2s/2)ds

We thus obtain

E{Φt} = exp(−bt)

and

E
{

exp
(

b

∫ t

0

Φ−1
t ds

)}
= E

{
exp

(
b

∫ t

0

((b − c2/2)s + cws)ds

)}
= exp

(
b

∫ t

0

(bs)ds

)
= exp(bt) − 1

Finally the mean value of the stochastic Logistic model is:
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E{xt} = F/
(
(x0/F )−1 exp(−bt) + (1 − exp(−bt)

)
E{xt} =

F

1 + ((x0/F )−1 − 1) exp(−bt)

Fig. 1. The Stochastic Logistic Model

5.2 The Variance

To calculate the Variance of the stochastic Logistic model first we estimate
the autocorrelation function that is

E{xtxt} = F 2 exp(2bt)
{
(x0/F )−1 + exp(bt) − 1

}−2

The Variance is calculated by the following form:
Var{xt} = E{xtxt} − (E{xt})2. Then

Var{xt} = F 2 exp(2bt)
{
(x0/F )−1 + exp(bt) − 1

}−2
(exp(c2t) − 1)

We can now give an illustrative example of the Stochastic Logistic Model
including several stochastic paths presented in Figure 1. The parameters
selected are: c = 0.0025, x0 = 2, F = 100, b = 0.2.

6 Conclusion

Exact solutions of several stochastic models are given along with the related
analysis. The solution methods are based on the Ito theory for the solution
of stochastic differential equations. Some sigmoid form models are given in
the deterministic and the stochastic form and an illustrative example of the
stochastic Logistic model is presented. The provided exact analytic forms
could be very useful for testing the existing and new approximate methods
for the solution of stochastic differential equations.
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