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Abstract: In this paper we present and analyze the first exit time problem. The main parts of 
the underlying stochastic theory are given. Stochastic simulations take place and illustrations 
of the probability density functions for few cases are presented.
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1  Introduction

The first exit time distribution for a stochastic process is the distribution of the 
times at which particles following this process cross a certain (often linear) barrier. 
It is often referred to also as hitting time. It is closely related to the probability 
density function p(xt, t) of a stochastic process xt over time t.
For a linear horizontal barrier located at a, the first exit time density function 
relation is given by:
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For other types barriers (e.g. quadratic), a tangent approximation may be used to 
obtain a satisfactory estimate as is presented below.
The probability density function may be computed in some cases using the Fokker-
Planck equation. In particular in the one-dimensional diffusion problem expressed 
by a stochastic differential equation of the form:

tt dwdx   ,

where σ is the variance and wt is the standard Wiener process, the corresponding 
Fokker-Planck equation for the probability density function p(xt ,t) associated to the 
above stochastic differential equation has the form:
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This partial differential equation form is also known as the one-dimensional heat 
equation first solved by Joseph Fourier (1822). Later on Fick (1855a, b) applied 
this equation to express one-dimensional diffusion in solids.



Albert Einstein (1905) proposed the same form for the one-dimensional diffusion 
for solving the Brownian motion process. It was the first derivation and application 
of a probabilistic-stochastic theory to the classical Brownian motion problem that 
is the movement of a particle or a molecule into a liquid. He resulted in giving the 
development over space and time of this particle. One year later Smoluchowski 
(1906) proposed also a theory for solving the Brownian motion problem.

Solving this partial differential equation with the boundary conditions, 
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the probability density function pt for the stochastic process results:
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2  The First Exit Time Density Function

The finding of a density function expressing the distribution of the first exit time of 
particles escaping from a boundary is due to Schrödinger (1915) and 
Smoluchowsky (1915) in two papers published in the same journal issue. Later on 
Siegert (1951) gave an interpretation closer to our modern notation whereas Jennen 
(1985), Lerche (1986) and and Jennen and Lerche (1981) gave the most interesting 
first exit density function form. For the simple case presented earlier the proposed 
form is:
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Jennen (1985) proposed a more general form using a tangent approximation of the 
first exit density. Application of this theory to the mortality modeling leads to the 
following form (earlier work can be found in Janssen and Skiadas (1995) and 
Skiadas and Skiadas (2007, 2010):
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Fig. 1. Linear barrier Fig. 2. Curved barrier

The last form is associated to the following stochastic process:

ttt dwdtdx  

where μt is a function of time and there exists a function Ht  related to μt  with the 
differential equation: dtdHt /
The associated Fokker-Planck equation is:
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and the solution is given by:
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Two realizations are provided in figures 1 and 2. In the first case the first exit time 
probability density function is provided and stochastic simulations are done for a 
linear barrier located at a. figure 2 illustrates the case when a curved barrier is 
present.

3 Conclusions

We have briefly discussed the first exit time problem; first giving a definition and 
then presenting the main findings. Stochastic simulations are done and the related 
graphs are presented. Several references related to the key-points of the stochastic
process are included.
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