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Abstract:  

 

Wireless communications in Nepal has expanded greatly in last decade and the number of 

the wireless users has grown to more than 1500 thousand. However, the distributions are 

more concentrated in major cities. Thus there are double challenges we are facing namely 

how to take telecom revolution to the rural areas especially to the mountainous villages 

and tourism area. This article focuses how to provide voice, email and internet services to 

the mountainous tourism villages: near a Base Camp of Mount Everest, the summit of 

world. Satellite link is presented as only one of the quick and cost effective option for 

providing backhaul link to this proposed project. Wireless LAN (Wi-Fi) is chosen as 

technology for connecting different villages or business houses or trekking camps of that 

area. These Telecenters is expected not only to revolutionize the system of social 

participation of local people by internet and communications but also attracts the 

foreigners for trekking. Social awareness programs including education of rural mass can 

be achieved in most cost effective way in the shortest possible time to an extremely larger 

group of rural people. Installation of Telecenters certainly improves the life styles of local 

people as well as facilitates the tourists. 

 

1. Introduction 

 

The Country Nepal is situated in South Asia, on the southern slopes of the Himalayan 

mountain range, and lies between India and China. Eight of the world's ten tallest peaks, 

including the highest Mt. Everest (8848m), are located in Nepal. Administratively, Nepal 

is divided into 75 districts. The lowest administrative division is the Village Development 

Committee (VDC) of which there are 3914. The population of Nepal is estimated at 

around 25 million at present. Kathmandu is the capital of the country which has about 10 
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of the country's population. Around 80 per cent of Nepalese reside in rural areas. 

Presently teledensity has reached about 9 lines per 100 inhabitants including mobile, 

fixed terminals and PSTN lines. Telephone service is available in all 75 districts, of 

which all 75 have their own telephone exchange. There is still a large challenge to 

provide the telecommunication service in this mountainous and rural nation as around 

two-thirds of all telephones are in the Kathmandu area. There are more than 250 000 on 

the waiting list. Some 45 per cent of VDCs are waiting for telephone service. The Nepal 

Telecommunications Company Limited (NT) is the incumbent public 

telecommunications operator and, until recently, held a monopoly over PSTN in the 

country. Nepal Telecom (NT) is fully State-owned registered under company act of 

Nepal in 2005. NT started the GSM mobile service in May 1999 and had more than 

700000 subscribers as of August 2007. There is another private mobile operator named 

Spice Cell Nepal which has distributed around 600000 GSM mobile subscribers as of 

August 2007. United Telecom (U-TEL) is another WLL operator in Nepal serving 

CDMA technology to about 100 thousand subscribers. Nepal's Internet market got a 

boost in mid-1999 when Internet Service Providers (ISPs) were allowed to have their 

own international gateways. Prices dropped to the lowest level in the South Asia region. 

By January 2007, more than seventy ISPs were serving some 100,000 subscribers and an 

estimated 200,000 users. This facility is available only at the major cities. 

This paper tries to give a solution to install a Telecenters near the Base Camp of Mount 

Everest. Obviously, this will provide a guideline for the selection of technology and the 

installation procedures and the advantages and application of Telecenters at the 

mountainous villages. Similar installation can be carried out near the base camp of other 

peaks.   

This endeavor hopes to contribute in the bridging of the Digital Divide in the rural areas 

of the mountainous villages of Nepal by establishing facilities and provides a model for 

developing such facilities in the rural areas. 

 

2. Objectives 

The major goals of this project are: 
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• To establish Telecenters infrastructure in Syangboche, Solukhumbu of Nepal using 

VSAT technology as a backhaul link. 

•To provide ICT services (Voice, email, internet and multimedia applications) in 

Syangboche, Khumjung, Namche, Tyangboche, Firiche of Solukhumbu 

• To connect Syangboche, Namche, Tyangboche, Firiche of Solukhumbu to a Learning 

Center using Broadband Wireless LAN; 

• To develop human resource in the field of ICT; 

• To obtain the knowledge and skill in developing e-tourism business applications  

• To have an exchange of ideas between different countries of the world on tourism 

development  

• To strengthen partnerships between developed and developing countries as well as 

between rural areas and urban areas and 

• To promote tourism business in the trekking areas of Mount Everest 

• To promote tourism business of Nepal. 

• To provide VOIP, fax, email, internet to the tourists and local people 

• To share social and cultural values with others 

• To connect Mount Everest with the rest of the world 

• To make a model Telecenters so that other rural area can take the idea 

 

3. Project Site 

The proposed project will be located in the district of Solukhumbu. It is in the East of 

Kathmandu. These villages are bounded on the North by the Mount Everest, on the East 

and west by other mountains and on the south by the River and Forest. All villages are at 

an altitude of more than 3000m and takes 4 to 6 hours trekking to reach from one village 

to other. All of these villages are in the trekking routes to the Mount Everest. One can 

reach Syangboche by Helicopter or by two days foot trails from Lukla. There are regular 

flights from Kathmandu to Lukla. It takes about 20-30 minutes by small planes.  

The main business of these areas is tourism business. They run hotel business. The people 

of these villages rely on tourist and farming as major sources of income. All of these 

areas are a scenic place with small hospital, and natural sites. 
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Proposed sites for Telecenters: 

A. Airport building of Syangboche 

B. Buddhist Gumba of Tyangboche 

C. Three hotels of Namche 

D. High School at Namche 

E. Hotel of Firiche 

F. School of Khumjung village 

G. Hospital building of Khumjung 

H. Two Hotels of Khumjung 

I. Two for Temporary Base Camp near to the Mount Everest 

 

4. Technology Selections: 

The most important part of operating Telecenters is the connectivity. And the 

connectivity can be provided via various media and technologies. But the topography of 

the country is a major issue in this regard. It is not easy to provide connectivity to all 

parts of the country using a single technology or medium. For the areas with existing 

network and the terrain permitting, cable (copper as well as fiber) could be the better 

option; but for most of the remote and rural areas, radio or satellite could be the only 

viable option, though sometimes expensive. Copper cable, through technologies like DSL 

or leased lines could be affordable, and fiber could be a better option for larger bandwidth 

requirements. Various existing and upcoming radio technologies with continuously 

decreasing prices like Wi-Fi, WiMAX and Line of Sight Radio System could be used for 

regions not possible to be connected through cable. For this, policy decisions have to be 

made for deregulating the unlicensed bands used by Wi-Fi and WiMAX. The assessment 

of the existing services in operation and the demand and characteristics of the targeted 

services should be taken care of first. Here, the technological selection for reliable 

backhaul link is proposed as a satellite solution. Small VSAT terminals with 1.2m 

antenna is installed at Syangboche for connecting these Telecenters to the internet of 

Kathmandu and then to the world.  

Local area network will be done by using un-license Wi-Fi technology for connecting 

Namche, Khumjung, Tyangboche, Firiche and two temporary Base Camps.  
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Another important requirement for the operation of Telecenters is the power provisioning. 

Power sources are not readily available, especially in these remote areas. Radio 

technology usually requires more power than cable technology, and hence the power 

availability also defines the suitable connectivity technology. These sites do not have 

reliable AC supply so the solar power system is selected as a primary source of power 

supply.  

 

5.  Methodology 

Document Preparation -------Planning and Scheduling------Site Survey-----Detail System 

Design----Finalization of network design---Procurement of Equipment------Erecting of 

Poles---Installation of the system----Testing of the system---Training to the local 

people/community-----Preparation of local human resources---Handover of the project to 

the local community. 
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5.1. Network Layout 
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Table 1.0 List of Equipment and Accessories 

S/N Name of Sites Name of Equipment Specifications Remarks 

1 Syangboche 1.2m VSAT terminals Ku band Purchased 

from local 

ISP 

2 Syangboche 2 Wi-Fi terminals with 

repeater stations 

Server computer, Hub, 

three directional antenna 

IEEE802.11 

PIV with 

necessary 

software 

‘’ ‘’ 

3 Namche 4 Wi-Fi terminals with 

computer, fax, and IP 

phone 

IEEE802.11 

PIV with 

necessary 

software 

One web cam 

for school 

4 Khumjung 4 Wi-Fi terminals with 

computer, fax and IP 

phone 

IEEE802.11 

PIV with 

necessary 

software 

1 web cam 

for school 

and 1 for 

hospital 

5 Tyangboche 1 Wi-Fi terminals with 

computer, fax and IP 

phone 

IEEE802.11 

PIV with 

necessary 

software 

One web cam 

for Gumba 

6 Firiche 1 Wi-Fi terminals with 

computer, fax and IP 

phone 

IEEE802.11 

PIV with 

necessary 

software 

One web cam 

for 

community 

7 Base camp 2 Wi-Fi terminals with 

computer, fax and IP 

phone 

IEEE802.11 

PIV with 

necessary 

software 

One web cam 

for tourist 

Total 7 sites 14 Telecenters 2.4 GHz+10Mb/s 6 web cam 

Note: Two computer servers can be placed in two different sites of Syangboche, one 

acting as a mirror site for web-based applications and twelve sites will be provided with 

computer workstations equipped with multimedia capabilities such as web cams, headsets, 

speakers etc, IP Phones will be provided in all sites for voice connectivity and 6 m 2” 

pipes will be used to mount Antenna at each sites. 

 

6. Result and Applications: 

Installation of Telecenters can provide a new dimension in every sphere of life ranging 

from tourism, agriculture, environment, education, medicine, space, remote sensing, 

weather prediction, security and all types of business in the installed area and the country. 

It provides not only unprecedented opportunities to solve the pressing problems of rural 

15



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010   

 

 

masses but also offers sustained improvement in the quality of life. It enables finding 

innovative solutions to the many and varied practical problems, confronting the present 

society. Now, the society requires such an innovative solution for better management of 

rural problems, where development has to be very fast, highly cost effective and more 

efficient than earlier. ICT development is expected to revolutionize the system of social 

participation of people by internet, email and other means of communications. ICT 

enabled social awareness programme demands active participation of the people for 

national development especially for rural people. Education of the rural people can be 

achieved in a most cost effective way in the shortest possible time to an extremely larger 

group of people. By this method, not only we can reach larger groups of people, collect 

information from experienced people of world at large and implement this faster. This 

can provide very broad, unlimited super highway for best management at international 

level. Through this super highway, we can ever sell out village products and ideas to the 

global market and earn the good will at international level as well as earn lot of foreign 

exchange which could be utilized for rural development of that area.  

The services of Telecenters should revolutionize rural development programme, medical 

applications, tele-medicine, rural health care, spreading education to poor people, rural 

bank etc, bringing together all the global villagers on the common platform of happy, 

healthy and wealthy knowledge based society. There are various issues of rural people. 

They have enough time compared to urban people to devote for each problem. But they 

do not have enough library facility, information, knowledge and education. We have 

large number of school teachers, college teachers in various cities who can translate the 

local facilities in the English such that global village concept can be achieved. Efforts 

have to be made to educate some local people of mountainous areas to download the 

information of their need about agricultural, educational, medicinal and business 

information o f rural products. They will be able to float their quarries on relevant topics. 

These Telecenters can help to increase the literacy rate of the rural areas. This literacy 

can be achieved through the internet. It should be made attractive through animation. 

Children’s should not be forced to education. Through animation, they will be 

automatically attracted for education. Initially local language may be taught. Then 

gradually, history, geography, mathematics, science and English language can be taught.  

16
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It is truth that people of these areas are very simple and open minded. Some of these rural 

innovators are generously share their knowledge, innovations and practices, based on 

local resources, traditional knowledge and tools etc at no cost. They do not always derive 

the high benefits of such sharing. That is the one reason why may of them remain poor. 

ICT will help new generation to select the path of modern science and technology. They 

can store all the local and traditional resources through the internet and can be shared. 

  

The proposed Telecenters can be utilized in the following ways and this center can make 

sustainable for long time by opting following options: 

a)  e-Learning Application: 

• Conducting training coursed on computer hardware and software and applications 

• Training on finding information on the Internet through search engines. 

• Web page creation and web programming training. 

• Remote lectures with other schools. 

b)  e-Governance Applications 

• Access by the local government officials to other government websites. 

• Possibility to communicate with other departments and officials 

• Forums and dialogue between local government officials for example the officials 

from the Khumjung VDC can talk to the Local Development Officer of 

Solukhumbu. 

• Geographical Information System (GIS) Integration 

• Record keeping of details of local people of  that VDCs 

c) e-tourism Business Applications 

• Record keeping of tourists and visitors 

• Explore possibility of hosting services for local people and tourists. 

• Provide VOIP, e-mail, internet surfing to the tourist with minimal fees. 

• Possibility of utilizing e-cards 

d)   Offline Computer Applications  

• By providing computer familiarization through training on basic computer 

operations and use of Office applications (MS word, Power point, Excel etc). 
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• By providing training on basic computer maintenance e.g. on proper use and 

identification of viruses distributed as e-mail attachments and through malicious 

websites. 

e) Operation and Maintenance/ Sustainability Requirements  

• Make every internet access points as Community e-Centers (CeCs). CeCs for 

internet surfing, educational games, software applications development, website 

development, content development, e-business and ICT Training. ICT Training 

for both hardware and software, management of CeC, etc 

• ICT Training:  Basic and Advance Course in Computer Education, Computer 

Networking   Specialized application software courses, Specialized Group 

Training (Housewives, Elderly, Physically challenged, Farmers, Fishermen, 

Students, Government Employees, Businessmen, Out-of-School Youth, etc.) 

• Coordinate, collaborate, cooperate and manage all these ICT activities through: A 

small group of concerned individuals/institutions to lead Public consultations and 

Activity promotion for Continuing ICT development in the villages 

• Establish or create a Small Group of Telecenters Management Team 

• Funding Options can be as: 

o Fees from Tourists and locals by using facility 

o Support from NGOs and INGOs 

o Support from VDCs 

o Minimum fees from Local Hotel and other business organizations 

7. Conclusion and Recommendations 

As a result of the implementation of this Project, selected sites will be provided with a 

modern wireless transmission network. They will be provided with a server computer, 

workstation computers, faxes and IP Phones that will be capable of delivering useful 

offline and online services to the recipient of the villages and tourists. Offline services 

such as word processing, spreadsheets, presentation and database applications are now 

available for the benefits of the local people. Online communications services can be 

utilized like sending and receiving emails, VoIP and video conferencing, as well as basic 

online applications like gathering information from the Internet. Various forms of e-
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services can be developed; applications such as e-tourism business, e- Learning, e-

Government, and e-Commerce can be learned and offered through these facilities. 

This introduction of the Wireless LAN Technology in mountainous villagers opens a lot 

of possibilities for the advancement of the community. It will help them achieve reforms 

needed in education, business and governance. Similar kind of system can be duplicated 

in other areas of the mountainous villages and trekking areas. Final Goal should be set in 

such a way that Revenue should be enough to sustain the operation and maintenance of 

Telecenters. Telecenters are operated in non profit making basis. 
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Abstract. The aim of this study is the mathematical modelling of the architecture
with differentiation of services ( DiffServ) as it is defined by the IETF workgroup
with an M/G/1/N queue with multiple vacations and exhaustive service. We are
interested by the evaluation of the performances of the EF ( Expedited Forwarding)
class of the core routers which contains the most critical packages (voice, video).
For the validation of the analytical chosen model, a simulation of a simple network
under DiffServ was realized with NS2. This modelling (with M/G/1/N queues)
serves for the sizing of the network parameters: debit and size of buffer according
to the load of the network.
Keywords: IP networks, DiffServ (differentiated services), M/G/1/N queue with
multiple vacation.

1 Introduction

With the development of the multimedia applications, the IP network has
to allow the deployment of these applications to guarantee its success. How-
ever these applications have specific requirements in term of QoS (Quality
of service). Certain services as the vocal services need weak delay and weak
jitter (variation of the crossing delays). We find many works in the literature
dealing with the QoS of the real-time applications on IP networks. Our study
represents one of these works which aims to the determination of the network
parameters (debit and size of buffer) according to its load.
We call QoS all the mechanisms providing a good service level to spe-
cific flows. QoS refers to the ability of the network to transport in good
conditions flows from different applications. This definition is reflected in
the following technique characteristics: Availability; Bandwidth; Delay; The
jitter; Loss ratio.

2 DiffServ description

Unlike the IntServ based on the booking of the resources in routers, the
approach ”differentiated services” tries to establish the QoS by sorting of en-
trant packages on the border of the network under DiffServ following various
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criteria (delay, bandwidth, address). The sorting is made at the level of the
border routers. The streams of data are classified according to three cate-
gories of service (Expedited Forwarding, Assured Forwarding and Best Effort)
and four classes of traffic predefined according to the performances needed
for their transmission. Packages are ”marked” and managed in routers by
specific queues for every category or class.
In DiffServ there are border routers which are connected to border routers

of other field. They take charge of the classification of entrant packages. We
also find core routers which are connected to core routers or border routers
of the same field. They take charge of treatment with differentiating the
packages of various categories or classes.

Border routers

The structure of a border router can be divided into 4 modules [2]:

Fig. 1. Border router

- Classification: To treat different flows generated by users with differenti-
ated way, the border router must first make a packet classification, which is
based on the header IP.
- Checking: A controller is responsible for determining the level of compli-
ance for each packet flow coming into the router. This depends mainly on the
instantaneous flow behavior and the characteristics of the contract (SLA).
- Actions ( dropper & shaper ): The corrective action to be taken for
non-compliant packets varies according to the service. Three penalty types
can be identified:
*The elimination is probably the most severe action, but necessary for the
proper functioning of certain services.
* The formatting is to delay, if necessary, the flow of a stream to conform
it.
- Marker: Before entering the network, the DSCP field (a part of header
IP) of all packets that pass through the entry router is updated. It forms the
DiffServ label and should not be changed by the core routers in the network.

Core routers

A PHB is the description of the delivery characteristics that will be observed
by all packets containing the same DSCP. The use of a PHB or a group of
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Fig. 2. Architecture of core routers.

PHB added to the packaging operations performed at the input of a field
forms a DiffServ.
Diffserv defines four PHB or classes of service:
- Expedited Forwarding (EF) [5]: Corresponds to the maximum priority
and aims to ensure bandwidth with low loss ratio, delay and jitter, achieving
the flow transfer with severe time constraints like IP telephony.
- Assured Forwarding (AF) [1] : Groups several PHB guaranteeing de-
livery of IP packets with a high probability regardless of deadlines.
- Best Effort (BE) [6]: PHB by default.
- Default Forwarding (DF): Used only for Internet streams that do not
require a real-time traffic.
In each queue, a management mechanism must decide on the manner of elim-
inating the packets in case of congestion.
- DropTail; - Random Early Discard (RED ); - Weighted Random Early
Discard (WRED); - RED with In and Out (RIO). Several scheduling tech-
niques (algorithms) have been developed to control the sharing of resources
between the classes of service:
- Fair Queueing (FQ) or Round Robin (RR) - Weighted Fair Queue-
ing (WFQ). * Generalized Processor Sharing GPS; * Weighted Fair Queuing
(WFQ); * Weighted Round Robin (WRR); * Priority Queuing (PQ).

3 Modeling of core router

We focus on core routers of the architecture DiffServ, because the operations
of these routers (queue management and scheduling), will determine network
performances. We consider that our model is represented by an M/G/1/N
queue with multiple vacations and exhaustive service.
- Packets of the EF priority Class represent the customers of the system. -
The output link is considered as the system single server, it can get only one
packet at once. - Packets of Class EF arrive according to a Poisson process
with rate �. - The variation of the service time is due to the packets random
length and not to the server capacity, which is expressed by a general ser-
vice law with probability density function b(t), and cumulative distribution
function B(t). Let X be the service mean time. - The size of the queue is
limited to (N-1) packets. - During the idleness period, the server begins to
serve packets of other classes, which corresponds in our model to a vacation
with general random duration, with probability density function fv(t), and
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Fig. 3. Model

distribution function Fv(t). Let V be the vacancy mean duration. - At the
end of a vacation period, the server will not return in vacancy only when
there will be no packets to serve in the EF class (multiple vacancy and com-
prehensive service).
The performance evaluation of the M/G/1/N system with finite capacity
and server vacation has been the concern of Frey and Takahashi [3]. They
used the induced Markov chain method (included), where they observe the
system at moments that are: either at the end of a service or at the end of a
vacation period.
The state of the system at the induced points is represented by the pair
(ni, �i), with:
- ni: The traffic number (EF packets) in the system just after the i-th in-
duced point;

- �i =

{
0, If the i-th induced point corresponds to an end of period vacation;
1, If the i-th induced point corresponds to an end of service.

Consider the system in the steady state. Note by:
- qk,∀k = 0, . . . , N , the probability to be in the state (k, 0);
- rk,∀k = 0, . . . , (N − 1), the probability to be in the state (k, 1);
- fj ; j = 0, . . . ,+∞, the probability to have j packets of the EF class in the
system just after a vacation period, this probability is given by:

fj =

∫ ∞
0

(�t)j

j!
e−�tfv(t)d(t), j = 0, . . . ,∞. (1)

- �j ; j = 0, . . . ,+∞, the probability that j packets of the EF class arrive in
the system during a service time, this probability is given by:

�j =

∫ ∞
0

(�t)j

j!
e−�tb(t)d(t), j = 0, . . . ,∞. (2)

The state probabilities of the system:

qk = (q0 + r0)fk , k = 0, . . . , (N − 1); (3)

qk = (q0 + r0)

∞∑
k=N

fk , k = N ; (4)
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rk =

N+1∑
j=1

(qj + rj)�k−j+1 , k = 0, . . . , (N − 2); (5)

rN−1 = qN +

N−1∑
j=1

(qj + rj)

∞∑
k=N−j

�k , k = N − 1. (6)

N∑
k=0

qk +

N−1∑
j=0

rj = 1. (7)

These state probabilities are used to get some performance parameters of the
system:

- The load: �c = (1−q0−r0)X
(q0+r0)V+(1−q0−r0)X

. - The offered load: � = �X.

- Blocking probability (rejection): PB = �−�c
� .

- Mean time D between successive included points: D = (q0 + r0)V + (1 −
q0 − r0)X.
To determine the usual system parameters, such as the mean number of
customers in the system M and the mean sojourn time W , note by:
- Qk = P{k customers in the system, the server is in vacation }, k = 0, . . . , N ;
- Rk = P{k customers in the system, the server is busy}, k = 0, . . . , (N − 1);
The state probabilities are given by:

Qk =

⎧⎨⎩

1
�D

N∑
j=k+1

qj , k=0,. . . ,(N-1);

1− �c − 1
�D

N∑
j=1

jqj , k=N.

(8)

Rk =

⎧⎨⎩

1
�D

⎛⎝rk − N∑
j=k+1

qk

⎞⎠ , k=1,. . . ,(N-1);

�c(�−1)
� + 1

�D

N∑
j=1

jqj , k=N.

(9)

In general: ⎧⎨⎩
P0 = Q0, j=0;

Pj = Qj +Rj =
rj
�D , j=1,. . . ,(N-1);

PN = QN +RN = (�−�c)
� , j=N.

(10)
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The usual parameters of the system are:
- The mean number M of packets of the EF Class in the system is:

M =
1

�D

N−1∑
j=1

jrj +N

(
�− �c
�

)
. (11)

- The mean sojourn time of a packet in the system is:

W =
M

�(1− PB)
. (12)

- The probability that the server is busy is:

N∑
k=1

Rk = �c = �(1− PN ). (13)

4 Simulation

For the validation of our analytical model, a simulation of a simple network
under DiffServ was realized. For this network two types of transactions are
used: a CBR (Constant Bit Rate) stream based on the UDP protocol that
models audio traffic, and an FTP flow based on TCP protocol which models
best-effort traffic. We focus our efforts on measuring the quality of service
parameters (delay, number of lost packets) of CBR streams.
The architecture of our network consists of an UDP source, a TCP source,
two border routers, a core router and a destination.
The simulation model incorporates features of DiffServ architecture. Two
different queues are managed. They model different classes of service: EF and
BE traffic classes. These queues are served by a scheduler Priority Queuing
(PQ) where the queue of the EF class has the highest priority and the queue
of the BE class has the lowest one. All DiffServ queues domain are managed
by a RED mechanism, and the other queues are handled by DropTail, this
latter waits for the filling of the buffers (queues) to reject the packets.
When the number of packets in the queue is equal to N , all the packets
received after, are rejected. In NS2, it is sufficient to compute the number
of lost packets and divide it on the simulation duration. Analytically, it
corresponds to 1/blocking probability, given in the section 3.

5 Results and interpretation

The implementation of the analytical model (section 3) with Matlab allows
us to obtain the analytical results of this system, by varying:
- The arrival rate of packets of the EF priority class (Packet / ms); - The size
of the system (packet); - The service law and its parameters; - The vacation
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law and its parameters.
The different analytical results obtained are shown in the following tables
(Table 1., Table 2. and Table 3.) with those of the simulated topology under
NS2.

service vacation M/G/1/N NS2

law para law para loss delay(W) loss delay

Expo � = 1 0.4063 0.5777
Erlang � = 1 0.5894 0.7514

Expo � = 3 �1 = 1
Cox-2 �2 = 0.1 1.4684 1.9498

a = 0.7

Expo � = 0.1 3.08 × 10−6 0.1146

Erlang � = 1 6.34 × 10−7 0.1146
Erlang � = 6 �1 = 1 0.019 0.186

cox-2 �2 = 0.1 2.59 × 10−6 0.1146
a = 0.7

Expo � = 1 0.4138 0.5298
�1 = 4 Erlang � = 1 0.5459 0.6535

cox-2 �2 = 7 �1 = 1
a = 0.7 Cox-2 �2 = 0.1 1.2666 1.5069

a = 0.7

Table 1. Obtained results for N=5 and �= 3

service vacation M/G/1/N NS2

law para law para loss delay(W) loss delay

Expo � = 1 0.0186 0.6985
Erlang � = 1 0.0292 0.7147

Expo � = 3 �1 = 1
Cox-2 �2 = 0.1 0.1097 0.8136

a = 0.7
Expo � = 1 0 0.2583
Erlang � = 1 0 0.2583

Erlang � = 6 �1 = 1 0.014 0.336

cox-2 �2 = 0.1 9.99 × 10−16 0.2583
a = 0.7

Expo � = 0.1 0.3559 0.8007
�1 = 4 Erlang � = 1 0.1538 0.7497

cox-2 �2 = 7 �1 = 1
a = 0.7 Cox-2 �2 = 0.1 0.1850 0.7908

a = 0.7

Table 2. Obtained results for N = 10 and �= 3

service vacation M/G/1/N NS2

law para law para loss delay(W) loss delay

Expo � = 1 3.18 × 10−5 1.5227

Erlang � = 1 3.19 × 10−5 1.5227
Expo � = 3 �1 = 1

Cox-2 �2 = 0.1 1.93 × 10−4 1.5231
a = 0.7

Expo � = 1 0 0.5457
Erlang � = 1 0 0.5457

Erlang � = 6 �1 = 1 0.004 0.404
cox-2 �2 = 0.1 0 0.5457

a = 0.7
Expo � = 1 0.6923 1.581

�1 = 4 Erlang � = 1 0.1429 1.5962
cox-2 �2 = 7 �1 = 1

a = 0.7 Cox-2 �2 = 0.1 0.1429 1.5962
a = 0.7

Table 3. Obtained results for N = 20 and �= 3

All the tested laws give good results for a good choice of the parameters
either for the service or vacation law:
- For a considerable packet traffic (burst) of the EF Class, the occupation
rate of the server is of order 1, which does not allow it to go on vacation.
Therefore, we will have the independence of performance metrics of vacation
time. Unlike the case when the traffic is less intense, performance metrics
depend on the vacation law due to the fact that the server will have the pos-
sibility to go on vacation. The duration of this latter has a large influence on
these metrics. Indeed, a long vacation period creates rise in the period and
the rate of loss.
- The length of the EF queue is a parameter that also affects the loss of pack-
ets. Because a bad dimensioning of this queue may degrade the transmission
of these packets with considerable losses. As can be expected more the length
of the queue is long less is the number of lost packets and conversely more
important is the delay, and more the length of the queue is small more we
have lost packets and an acceptable delay.
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6 Conclusion

We have studied quality of service parameters in a network where audio
streams share resources with Best Effort traffic. We analysed two QoS pa-
rameters for audio flows : the mean delay end to end and the number of lost
packets. The measurements were made in an environment with a scheduler
DiffServ with strict priority PQ (Priority Queueing) by modeling with an
M/G/1/N queueing system with multiple vacations and exhaustive service
together with a simulation under Network Simulator NS2. The presented re-
sults show that the proposed model (M/G/1/N queue with vacation) allows
us to evaluate the criteria of the quality of service of real time applications in
a satisfactory manner for a good choice of laws parameters (service or vaca-
tion). These criteria are used for the dimensioning of the system parameters:
debit and size of the buffer (queues), according to the load of the system.
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Abstract. Queueing systems with arrival processes having stochastic periodic in-
tensity functions are considered. Many important queueing models have an input of
this type. We prove the convergence of the interarrival times sequence to a station-
ary one and show how to use this property to analyze the asymptotical behaviour
of many queueing systems.
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1 Introduction

The motivation for the investigation of queueing systems with periodic ows
comes from numerous applications. Many applied problems from such areas
as reliability, inventory theory, computer science, transport networks and so
on, can be embedded into queueing problems for suitably selected input ow
with time-dependent periodic intensity. These problems are also of theoret-
ical interest. They are often associated with the analysis of di�erential and
integro-di�erential equations with periodic coe�cients. We restrict our at-
tention to two problems, namely, the determination of conditions of a limit
distribution existence and the asymptotical analysis of the queue in a heavy
tra�c situation. Queues with non-homogeneous Poisson arrivals were stud-
ied by many authors, see, e.g., (Harrison and Lemoine [6]). One of the main
new elements in the present study is the input ow with a random intensity
function.

2 Basic de�nitions and properties of the input ow

We consider below queueing systems with a doubly stochastic Poisson process
(DSPP) as input ow. To begin with we recall the de�nition of a DSPP. As-
sume two independent stochastic processes {A∗(s); s ≥ 0} and {�(t); t ≥ 0}
to be de�ned on a probability space (
;F;P). The process A∗(s) is a stan-
dard Poisson process and �(t) has non-decreasing left-continious trajectories
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and �(0) = 0. Then doubly stochastic Poisson process is de�ned by the
formula

A(t) = A∗(�(t)): (1)

Further we assume that �(t) =
t∫

0
�(y)dy; where a random intensity function

�(t) has nonnegative bounded trajectories.
Basic properties of DSPP are described, e.g., in (Grandell [5]). First of

all let us note that interarrival times for this process form a sequence of de-
pendent random variables even for a deterministic but nonconstant intensity
function. Besides, for any nonrandom function �0(t) the conditional distri-
bution of the process A(t) given �(t) = �0(t) coincides with the distribution
of the Poisson process having the intensity function �0(t).

We focus our attention on the periodic and regenerative intensity func-
tions.
De�nition 1. A stochastic process {V (t); t ≥ 0} is a periodic one with the
period T if its �nite-dimensional distributions are T-time-shift invariant.
Some examples will be given later on.
For a DSPP with a regenerative intensity function �(t) we introduce the
following notation: t0 = 0,
tn is the moment of the n-th customer's arrival to the system (n = 1; 2 : : : ),
{an = tn − tn−1}∞n=1 is the sequence of the interarrival times,
{�n}∞n=1 are consecutive regeneration points of �(t; !),
{�n = �n+1 − �n}∞n=1 are regeneration periods of �(t; !),
�n = A(�n+1) − A(�n) is the number of customers arriving during the n-th
regeneration period.
The following result provides new opportunities for asymptotical analysis of
queueing systems with a DSPP as input ow.

Without loss of generality and for the sake of brevity we can put �1 = 0.
Moreover, we write � instead of �1.
Theorem 1. Let �(t) be a regenerative process and E� < ∞. There ex-
ists a stationary sequence {âk}∞k=1 such that the sequence {an+k}∞k=1 weakly
converges to {âk}∞k=1 as n→∞.
Proof. Denote by �n the number of the regeneration period of �(t) on which
the n-th jump of A(t) occurs, i.e. �n = min{k ≥ 1 : tn ≥ �k}.
For j = 0,1,2. . . introduce �(n)

j = tn+j−��n and denote by f (m)
n (x0; x1; : : : ; xm);

x0 < x1 < · · · < xm, the density of the distribution of (�n0 ; : : : ; �
(n)
m );

m = 0; 1; : : : ; fn(x) = f (0)
n (x).

At �rst we prove the following
Lemma 1. There exists a limit

lim
n→∞

fn(x) = E�(x)1�>x
E�(�) ; (2)
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where 1�>x is the indicator of the event {� > x}.

Proof. In view of properties of DSPP one can see that {�i}∞i=1 is a sequence
of i.i.d.r.v's and

kj = P(�i = j) = E�(�)j
j! e−�(�):

From this point of view �n is the discrete renewal process generated by the
sequence {�i}∞i=1, i.e. �n = min{k ≥ 1 :

k∑
i=1

�i ≥ n}; n = 1; 2; : : : .

Denote by n = n−1−
�n−1∑
j=1

�j the defect of the renewal process generated by

{�i}∞i=1. Moreover, n is the number of customers that had entered the system
on the period before the n-th customer's arrival. Set �n(j) = P(n = j). In
accordance with the renewal theorem (Feller [4], ch. XI) there exists a limit

lim
n→∞

�n(j) = 1
E�(�)

∞∑

i=j+1
ki = �(j):

Then
fn(x)dx =

n−1∑

j=0
P(tn ∈ (x; x+ dx)|n = j)�n(j): (3)

The probability P(tn ∈ dx|n = j) is equal to the conditional probability
that the n-th jump of A(t) occurs on the interval (x; x + dx) from the re-
generation period beginning provided that its index on the period is j + 1.
This probability does not depend on n as far as �(t) is a regenerative process.
Furthermore, for j < n,

P(tn ∈ dx|n = j) =
E�

j(x)
j! e−�(x)�(x)1�>xdx

E
�∫
0

�j(x)
j! e−�(x)�(x)dx

=
E�

j(x)
j! e−�(x)�(x)1�>x

∞∑
i=j+1

ki
dx:

(4)
Now we complete the proof of Lemma 1 by substitution of this expression in
(3) and taking a limit.

Let us return to the proof of Theorem 1. For nonnegative y1; : : : ; ym
we denote by P (m)

n (y1; : : : ym) the distribution density of the vector
(an; an+1 : : : ; an+m). Taking into account Lemma 1 we have

P (m)
n (y1; : : : ym) = E

�∫

0

f (m)
n (x; x+ y1; : : : ; x+ ym)dx =

= E
�∫

0

fn(x)e
−(�(x+

mP
j=1

yj)−�(x)) m∏

j=1
�(x+

j∑

i=1
yi)dx →

n→∞
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→
n→∞

1
E�(�)E

�∫

0

e
−(�(x+

mP
j=1

yj)−�(x)) m∏

j=0
�(x+

j∑

i=1
yi)dx: (5)

One can see that the distribution of the vector (an+s; an+s+1 : : : ; an+s+m)
has the same limit for any s. Now the weak convergence follows from the
regeneration property of �(t).

For illustration we write the density of the one-dimensional distribution:

pbak(y) = 1
E�(�)E

�∫

0

e−(�(x+y)−�(x))�(x)�(x+ y)dx: (6)

It follows from regeneration property of �(t) that there exists a limit

lim
t→∞

�(t)
t = � a.s. and � = 1

Eân
= E�(�)

E� :

Now we consider some examples.

Example 1. In the case of deterministic periodic intensity �(t) with a period
T the density f(x) is of the form f(x) = �(x)=�(T ).

Example 2. Let v(t) be a nonnegative function on [0;∞) and {�i}∞i=1 be a
sequence of i.i.d.r.v's with d.f. F (x). We put �0 = 0; {�i =

i∑
j=1

�j}∞i=1

and N(t) = max{n ≥ 0 : �n ≤ t}. Intensity function �(t; !) is given by the
relation �(t; !) = v(t − �N(t)): We note that process �(t) is a regenerative
but nonperiodic one. The limit distribution of �(n)

0 is given by the formula
f(x) = v(x)F (x)/∞∫

0
v(y)F (y)dy. If v(t) ≡ v we get f(x) = F (x)=E� and this

function does not depend on v.

Example 3. Let {�ij(t); t ≥ 0}Mi;j=0 and {�i(t); t ≥ 0}Mi=0 be collections of
nonnegative bounded periodic functions with period T . A control Markov
chain U(t) for a Markov modulated process A(t), see (Asmussen [3]), is de-
�ned by in�nitesimal parameters �ij(t). A stochastic intensity function �(t)
is given by the relation

�(t) =
M∑

i=0
�i(t)1U(t)=i: (7)

Let us introduce a Markov chain Uk = U(kT ). The regeneration points
{�j}∞j=1 of �(t) are de�ned as consecutive hitting times of the state {0} by
Uk, i.e. �0 = 0; �i = min{kT > �i−1 : Uk = 0} and �i = �i − �i−1: One
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can easily see that a Markov chain U(t) has a limit periodic distribution and
there exists lim

k→∞
P(Uk = j) = �j so that E� = T

�0
. In this case we have

f(x) =





�0
T

M∑
j=0

P0j(x)�j(x) for x ∈ [0; T ];

�0
T

M∑
i=1

P(� > kT; Uk = i)
M∑
j=0

Pij(x− kT )�j(x− kT )

for x ∈ [kT; (k + 1)T ):

Here Pij(y) = P (U(T + y) = j|U(T ) = i).
Example 4. Assume a semi-Markov process {U(t); t ≥ 0} taking values
0; 1; 2; : : : to be de�ned on a probability space (
;F ;P). Let {Un}∞n=0 be its
embedded Markov chain having an ergodic transition matrix P = ||Pij ||. For
the process U(t) let Fij(x) be the d.f. of the sojourn time in the state i given
that the next state will be j. Let mij =

∞∫
0
xdFij(x); Fi(x) = ∑

j
PijFij(x)

and mi =
∞∫
0
xdFi(x), moreover, 0 < mij < m < ∞ for all i; j. Additionally

suppose that a family of the functions {�ij(t); t ≥ 0}∞i;j=0 is de�ned. Let
{sj}∞j=0; s0 = 0, be a nondecreasing sequence of jump times for the process
U(t). Introduce a counting process n(t) = max{k ≥ 0 : sk < t}. A random
intensity function of DSPP is determined by the relation

�(t) = �Un(t);Un(t)+1(t): (8)

It is natural to call such a process semi-Markov modulated. If �ij(t) ≡ �ij for
all i; j = 0; 1; : : : , then the process �(t) is regenerative one. The regeneration
points {�n}∞n=1 are the consecutive moments when the control process U(t)
reaches some �xed state, for example {0}. If �ij(t) are periodic functions
with period T and Fij(x) are distribution functions with jumps in points
{jTn−1; j; n ∈ N}, then �(t) is a periodic regenerative process. Additionally
one can see that �(t) is a periodic regenerative process if, e.g.,
F0j(x) = 1− e−�0x, j=1,2,. . . .

For arbitrary distributions Fij(x) and time-dependent �ij(t) the random
intensity �(t) is not a regenerative process.
Theorem 1 allows us to apply traditional asymptotical methods of queueing
theory to the analysis of periodic models. As illustration we give two results
concerning the limit regime existence and the heavy tra�c situation.

3 Existence of the limit regime.
We consider an r-server queue with FIFO queueing discipline and doubly
stochastic Poisson process A(t) as input ow. Service times {�i}∞1 are sup-
posed to be independent random variables with a common d.f. B(x) and
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�nite mean b. It is also assumed that the sequence {�i}∞1 does not depend
on A(t). Additionally, for the n-th customer there exists a random variable �n
which bounds its sojourn time in the system. On the expiration of the period
�n the customer leaves the system. It is possible that � = P(�n = ∞) > 0,
i.e. a customer may be in the system during arbitrary long time. In the case
� = 1 we get a system with unbounded sojourn time. Moreover, we suppose
that �n is a sequence of i.i.d.r.v's not depending on {�i}∞1 and A(t).

We de�ne the tra�c coe�cient as � = ��b: Let wn be waiting time of
the n-th customer, W (t) virtual waiting time process and q(t) the customers
number in the system at time t.

Theorem 2. Let �(t; !) be a regenerative process and E� <∞. Then there
exists the limit

lim
n→∞

P(wn ≤ x) = H1(x): (9)

a) If regeneration period � has a nonlattice distribution then there exists

lim
t→∞

P (W (t) ≤ x) = H2(x): (10)

b) If �(t; !) is a periodic process with period T and regeneration period � has
a T-lattice distribution then for any t ≥ 0 there exists the limit

lim
n→∞

P (W (nT + t) ≤ x) = H(t; x) (11)

where H(t; x) is a periodic function in t.
In the case a) H1(x) = H2(x) and in the case b)

H1(x) = 1
E�(�)E

�∫

0

H(t; x)�(t)dt (12)

Functions H(x) and H(t; x) are d.f.'s i� the tra�c coe�cient � < 1.
Otherwise they are identically zero.

Proof. Existence of the limit (9) follows from Theorem 2 and results for
a queueing system with a stationary metrically transitive control sequence
{an; �n; �n}∞n=1 obtained in (Afanaseva and Martynov [1]). Furthemore, we
get that H1(x) is a d.f. i� tra�c coe�cient � < 1. Otherwise, the sequence
{wn} is stochastically unbounded. It means thatW (t) stochastically bounded
i� � < 1. We note that W (t) is a regenerative process. The regeneration
points {�n}∞n=1 can be de�ned by the relations

�n = min{�j > �n−1 : q(�j − 0) = 0}; �0 = 0:

So, the regeneration points of W (t) are the consecutive moments �n when
the system is empty. Thus existence of the limit (10) follows from Smith's
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theorem (Smith [7]). Moreover we �nd that H2(x) is a d.f. if � < 1 and
H2(x) ≡ 0 if � ≥ 1.

To prove the existence of the limit (11) we note that W (nT ) is a regener-
ative process and �n is a sequence of its regeneration points. As above, using
Smith's theorem, we establish that there exists the limit
lim
n→∞

P(W (nT ) ≤ x) = H(0; x): Furthermore, H(0; x) is a d.f. i� � < 1. For
y ∈ [0; T ] we consider a system Sy with DSPP input having intensity function
�y(t) = �(t+ y). Let Wy(t) be a virtual waiting time process for this system
and Wy(0) = W (y). It is clear that Wy(t) = W (t+y). Therefore there exists
the limit (11).

The relation (12) one can easily obtain from (2).
Now we return to our examples.
If �(t) is a deterministic (non-random) periodic function (Example 1)

the condition of the periodic distribution existence takes the following form
�bT−1

T∫
0
�(y)dy < 1. This result for the case � = 1 was obtained in (Harrison

and Lemoine [6]).
For the Example 2 we have � =

∞∫
0
v(y)F (y)dy/∞∫

0
F (y)dy:

For the case of a periodic Markov modulated process (Example 3) we get

� = T−1
m∑
i=0

T∫
0
Pi(t)�i(t)dt, where Pi(t) is a periodic distribution of the control

Markov chain U(t).
Consider a semi-Markov modulated process (Example 4). If �(t) is a

periodic regenerative process, we get the formula � = ∑
i; j
�i�ijmijm−1

i ; where

�ij = T−1
T∫
0
�ij(t)dt and �i is a stationary distribution of the control semi-

Markov process U(t).
So conditions of the limit periodic regime existence can be found in the

terms of the control process characteristics and the mean intensity over pe-
riod.

4 Heavy tra�c situation.
For queueing systems with rather complicated input ow, in particular, DSPP,
it is impossible (with rare exceptions) to obtain explicit expressions of their
operating characteristics such as queue length, waiting time or loss probabil-
ity. Therefore we give in this section an asymptotic result for queue length
in a single-server system with bounded sojourn time.

Let {S"} be a family of such systems depending on parameter " ∈ (0; 1).
The input ow for S" is DSPP with the intensity function

�"(t) = (1− ")�−1�(t): (13)
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We consider the limit regime and denote by q"(t) the customers number in
S" at time t.
Theorem 3. Let �(t) be a regenerative process, � < 1 and E�2+� < ∞,
E�2+� <∞ for some � > 0. Then

P("q"(t) > x) →
"→0

e−2x=�2 ; where

�2 = ��
(b2
b + D(�(�)− ��)

�2E�

)
and b2 = E�2:

The proof is based on the theorem for queueing systems with unbounded
sojourn time, obtained in (Afanaseva and Bashtova [2]) and the following
fact.
Lemma 2. Let q̃"(t) be the customers number in the system with unbounded
sojourn time and an intensity function �"(t) de�ned by (13). Under the
Theorem 3 conditions processes q̃"(t) and q"(t) are asymptotically equivalent,
i.e. for any �xed t

q̃"(t)
q"(t)

P→
"→0

1:

The proof is based on majorizing methods. It is omitted containing many
technical details.

It is possible to establish some results concerning C-convergence for q"(t).
They allow us to study the asymptotical behaviour of functionals (such as
supremum) on trajectories of the process under consideration.
Acknowledgement. The research was partially supported by RFBR grant
10-01-00266a.
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Abstract. In this paper we present the methods of proving ergodicity conditions
for queueing models with the input ows operating in a stochastic environment. We
consider two models. The �rst one is a single-server system with a cyclic input ow
and the second one is a system with impatient customers (i.e. with the possibility
of rejections). The conditions of the stochastic boundedness and necessary and
su�cient ergodicity conditions are established.
Keywords: Queueing theory, Cyclic process, Regeneration, Rejection, Waiting
time.

1 Introduction
We consider queueing models with the cyclic or regenerative input processes
evolving in a random environment. The majority of the ows considered in
queueing theory falls within this class. They also �nd useful applications in
inventory theory, reliability theory, transportation nets, etc. To illustrate our
approaches we give two models. The �rst of them is a single-server system
with unbounded waiting time. The second model is a system with rejections.

2 Basic de�nitions
A stochastic process {X(t); t ≥ 0}, X(0) = 0, on a probability space (
;F ;P)
with nondecreasing left-continuous trajectories is called a stochastic ow.
Further this process will represent either the number of the arriving customers
during the time interval [0; t) or their total service time. In the �rst case
trajectories of X(t) have unit jumps only.

Let {�k; k ≥ 0}, �0 = 0, be a nondecreasing sequence of random variables.
For k ≥ 0 we put

�k = �k+1 − �k; �k(t) = I[0;�k)(t); xk(t) = [X(�k + t)−X(�k)]�k(t);

�k = xk(�k); �k(!) = {xk(t); �k}; Sk =
k∑

j=1
(�j − �j); S0 = 0:
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De�nition 1. A stochastic owX(t) is said to be cyclic if the sequence of the
random elements {�k}∞k=1 is stationary and metrically transitive, E �1 < ∞,
E �1 <∞, and P(�0 <∞; �0 <∞) = 1.

The random elements �k are called cycles. We remark that X(t) has an
intensity limt→∞X(t)=t = E �1=E �1 a.s.

De�nition 2. A cyclic ow X(t) is called regenerative if it has independent
cycles.

Let {U(t); t ≥ 0} be a stochastic process on (
;F ;P) with values in a
topological space {E;BE}.
De�nition 3. A cyclic ow X(t) is evolving in the random environment
{U(t); t ≥ 0} if the following conditions hold:

1. The sequence {�k} consists of the Markov moments with respect to the
process U(t).

2. The sequence {�k(!); U(�k+t)�k(t)}∞k=1 is stationary and metrically tran-
sitive.

3. There exists a nonnegative and bounded function f(u) on E such that
a.s.

E(X(t) |U(s); 0 ≤ s ≤ t) =
t∫

0

f(U(s))ds:

There is a wide range of the ows that are cyclic or regenerative. We will
consider some examples below.

3 Stochastic boundedness and ergodicity conditions
for cyclic systems G|G|1|∞

Consider a single-server system S with unbounded waiting time. Let X(t)
be the total service time of the customers arriving during the time interval
[0; t) and � = E �1=E �1. Denote by W (t) the workload process.

Theorem 1. Let X(t) be a cyclic ow. If � > 1, then the process W (t) is
stochastically unbounded. If � < 1, then the process W (t) is stochastically
bounded.

Proof. We assume W (0) = 0. The case W (0) > 0 would not bring any
substantial di�erence. Put Wn = W (�n− 0) for n = 0; 1; 2; : : : and introduce

W−
n = [W−

n−1 + �n − �n]+; W+
n = [W+

n−1 − �n]+ + �n; W−
0 = W+

0 = 0: (1)

It is easy to see that W−
n ≤Wn ≤W+

n a.s. For � > 1 we have W−
n

P−→∞ as
n→∞ [1], so the �rst assertion of the theorem is clear.
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Let � < 1 and consider {W+
n }. We can assume that {�n; �n} is de�ned

for n = 0;±1;±2; : : : as a stationary and metrically transitive sequence. Let
us denote

S−k =
0∑

j=−k+1
(�j − �j); Mn = max[�0; max

1≤j≤n
[�−j + S−j+1]]:

After a series of transformations from the recurrent equations (1) we obtain
W+
n

d= Mn. Since E �j < E �j , the limit M = limn→∞Mn is �nite a.s. This
implies the stochastic boundedness of W+

n , Wn, and W (t).
The process {Wn} can be stochastically bounded if � = 1 [1], how-

ever, under certain conditions it is stochastically unbounded, for instance,
in GI|GI|1|∞ system [2].
Corollary 1. Let X(t) be a cyclic ow in the random environment U(t).
Then the tra�c intensity � is given by the relation

� = (E �1)−1 E
�2∫

�1

f(U(s)) ds: (2)

Proof. Since �n is a Markov moment with respect to U(t) we get

EX(�n) = E
∞∫

0

X(y)I(�n ∈ dy) = E
∞∫

0

E(X(y)I(�n ∈ dy) |U(s); s ≤ y) =

= E
∞∫

0

I(�n ∈ dy)
y∫

0

f(U(s)) ds = E
�n∫

0

f(U(y)) dy:

Now (2) follows from the relation E �1 = EX(�2)− EX(�1) and de�nition of
�.
Corollary 2. Let X(t) be a cyclic ow in the random environment U(t). If
there exists

lim
t→∞

P(U(t) ∈ A) = �(A) (A ∈ BE);

where �(A) is a probability measure on BE, then � =
∫
E
f(x)�(dx).

The proof is based on the law of large numbers for stationary and metri-
cally transitive sequences and properties of the random environment.

The problem of the proper limit distribution existence

lim
t→∞

P{W (t) ≤ x} = �(x) (3)

should be investigated under additional assumptions. It is easily solved for
regenerative ows.
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Theorem 2. Suppose that X(t) is a regenerative ow and the distribution
of �1 has an absolutely continuous component. Then there exists the limit (3)
for any initial state W (0). Furthermore, �(x) is a distribution function i�
� < 1.

4 Ergodicity of single-server queueing systems with
rejections

Let us consider a single-server queueing system S with rejections. A new
customer encountering j other customers in the system stays for service with
the probability fj and leaves with the probability 1 − fj , where fj ∈ (0; 1].
Service times are i.i.d.r.v.'s with an arbitrary d.f. B(x) and �nite mean b. The
process X(t) denotes the number of the customers arriving during [0; t). It is
a regenerative stochastic ow with unit jumps and intensity � = E �1=E �1.
To avoid technical details we suppose that the distribution of �1 contains an
absolutely continuous component. Let W (t) be the workload process and
Q(t) the number of customers in the system S at time t.

Theorem 3. Suppose fj > 0, j ≥ 0, and put f = lim supj→∞ fj, f =
lim infj→∞ fj. There exists

lim
t→∞

P{W (t) ≤ x} = �(x)

and �(x) is a distribution function if

�bf < 1 (4)

and �(x) ≡ 0 if �bf > 1.

Proof. To begin with we prove the following

Lemma 1. Let the sequence {fj} have the form

fj =
{
�1; if j < k,
�2; if j ≥ k, (5)

for some k ≥ 0, �1 > 0, �2 > 0. There exists the limit (3) and �(x) is a
distribution function if

�b�2 < 1: (6)
We have �(x) ≡ 0 if

�b�2 > 1: (7)

Proof of Lemma 1. First suppose (6) to be ful�lled. In the case �1 ≤ �2
the statement of the lemma is a simple corollary of Theorem 1. It is su�cient
to consider a system with f̂j = �2 for all j. So, we assume that �1 > �2. Set
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Wn = W (�n − 0), Qn = Q(�n − 0). These processes are regenerative with
the regeneration points {nk} such that Wnk = 0. It follows from Smith's
theorem [3] that limit (3) exists. Besides, we have two possibilities: �(x) ≡ 0
or �(x) is a distribution function. Suppose (6) holds, but �(x) ≡ 0, i.e.
processes W (t), Wn, Qn are stochastically unbounded.

De�ne a family {�nj }∞j=1, for n = 1; 2; : : :, of independent sequences of
i.i.d.r.v.'s with the d.f. B(x). Let {enj }∞j=1, for n = 1; 2; : : :, be a family of in-
dependent sequences of i.i.d.r.v.'s taking values 0 and 1 with the probabilities
1− �2 and �2 respectively. De�ne

n =
�n∑

j=1
�nj ; ̂n =

�n∑

j=1
�nj enj :

We introduce an event An that during the nth regeneration period
[�n−1; �n) of the process X(t) the number of the customers in the system
is greater than k. Since �(x) ≡ 0, for any " > 0 there exists N" such that for
n > N" we have

P(An) < ": (8)
Let us estimate

Wn ≤ (Wn−1 − �n + ̂n)I(An) + ([Wn−1 − �n]+ + n)I(An) ≤

≤ (Wn−1 − �n + ̂n)I(An) + ((Wn−1 − �n)(1− I(�n > Wn−1)) + n)I(An) ≤
≤Wn−1 − �n + ̂n + �nI(�n > Wn−1)I(An) + nI(An):

Consequently,

EWn ≤ EWn−1 − E �n + E ̂n + E �nI(�n > Wn−1)I(An) + E nI(An): (9)

From (8) it follows that each of the last two summands in (9) is less than "C
when n is large enough, where C is a constant independent of n. Hence,

EWn ≤ EWn−1 − E �1 + E �1b�2 + "C =

= EWn−1 + E �1(�b�2 − 1) + "C < EWn−1:
This fact contradicts the assertion that Wn is stochastically unbounded.
Therefore, W (t) and Q(t) are stochastically bounded, so they are ergodic.

Now assume (7) to hold. While Qn ≥ k the process Wn is minorized by
a random walk with positive drift that tends to +∞. Since �1 > 0 the
process Qn hits the range [k;∞) in�nitely often. We have �b�2 = E ̂n=E �n,
so P(̂n > �n) > 0 due to (7). Therefore, Wn and Qn are stochastically
unbounded. This completes the proof.

Further we shall consider two queueing systems, namely, S with an arbi-
trary control sequence {fj} and Ŝ with the control sequence {f̂j} having the
structure (5).
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Lemma 2. Assume Q(0) = Q̂(0) = 0 and �1 ≥ �2. If fj ≤ f̂j for all j ≥ 0,
then stochastically

Q(t) ≤ Q̂(t) + 1; t ≥ 0: (10)
If fj ≥ f̂j for all j ≥ 0, then stochastically

Q(t) ≥ Q̂(t)− 1; t ≥ 0:

The proof is based on the construction of a special probability space. It
includes a lot of technical details and is omitted here.

Now we proceed to the proof of Theorem 3. Let (4) hold. There exists
�2 ≤ 1, so that f ≤ �2 and �b�2 < 1. Therefore, there is k such that fj < �2
for j ≥ k. Consider a queueing system Ŝ with

f̂j =




�1 = max

0≤j<k
fj ; if j < k;

�2; if j ≥ k.

Since �b�2 < 1, we see that Ŝ is ergodic according to Lemma 1. Consequently
processes Ŵ and Q̂ are stochastically bounded. The systems S and Ŝ satisfy
the conditions of Lemma 2. In this case, stochastic inequality (10) holds.
This results in the stochastic boundedness of the processes W (t) and Q(t).
According to Smith's theorem S is ergodic.

The proof of the second part of the theorem is conducted in the same
way.
Corollary 3. Suppose there exists lim

j→∞
fj = f . If �bf < 1, then W (t) is

ergodic. If �bf > 1, then W (t) P−→∞, t→∞.
In the case �bf = 1 both possibilities can take place depending on the

sequence {fj}. To illustrate, consider a system with the Poisson input of in-
tensity � and independent exponentially distributed service times with mean
b. It follows from [4] that a Markov chain Q(t) is ergodic i�

∞∑

j=1

j−1∏

i=0

fj
f <∞: (11)

Suppose fj = fe−�j , where �j = (1 + j)−s, s > 0. One can easily see
that (11) is ful�lled if s ∈ (0; 1). Therefore, Q(t) is ergodic in this case. If
s > 1, then (11) does not hold, so Q(t) is nonergodic.

5 Examples
Here we provide some examples of regenerative ows. From now on we assume
that the process X(t) denotes the number of the customers arriving during
[0; t) and � = limt→∞X(t)=t.
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Example 1. Let {�(t); t ≥ 0}, �(0) = 0, be a regenerative stochastic ow
and {A(t); t ≥ 0} be a standard Poisson process not depending on �(t). The
random time substitution leads to a doubly stochastic Poisson process [5],
i.e.

X(t) = A(�(t)):

Further we assume that �(t) =
t∫

0
�(y) dy, where �(y) is a nonnegative locally

integrable bounded stochastic process named an intensity function. If �(t)
is a regenerative stochastic process [3], then �(t) and X(t) are regenerative
stochastic ows. Besides, �(t) is a stochastic environment for X(t) and the
function f(u) ≡ u.

From Corollary 2 we get � =
∫∞

0 s �(ds) if �(x) is the stationary d.f. for
�(t).

Example 2. For a Markov-modulated process (see [6]) the intensity function
has the form

�(t) =
∞∑

k=1
�kI(U(t) = k);

where U(t) is a stationary homogeneous Markov chain with a �nite or count-
able set of states and {�k; k = 0; 1; 2; : : :} is the collection of nonnegative
numbers such that �k ≤ �∗ < ∞ for any k. One can see that U(t) is a
stochastic environment for X(t) and the function f(s) is given by the rela-
tion

f(u) =
∞∑

k=1
�kI(u = k):

Besides, � = ∑∞
k=1 �k�k, where {�k} is a stationary distribution of the

Markov chain U(t).

Example 3. Assume that a stationary semi-Markov process {U(t); t ≥ 0}
de�ned on (
;F ;P) takes nonnegative integer values. Let {�n; n = 1; 2; : : :}
be its embedded Markov chain having an ergodic transition matrix P = (pij).
By Fij(x) we denote the d.f. of the sojourn time in the state i given that
the next state will be j. Let mij =

∫∞
0 x dFij(x); Fi(x) = ∑

j pijFij(x),
mi =

∫∞
0 x dFi(x); mij < m < ∞ for all i; j. Additionally, suppose that a

family of stochastic processes

Z = {{Z(n)
ij (t); t ≥ 0}∞n=1; i; j = 0; 1; 2; : : :}

with stationary increments, not depending on U(t), is de�ned on the same
probability space. Their trajectories are nondecreasing and left-continuous
functions taking nonnegative integer values. Furthermore, Z(n)

ij (0) = 0. Let
�ij be the intensity of Z(n)

ij (t). By {tj}∞j=0, t0 = 0, we denote the nondecreas-
ing sequence of the jump times for the process U(t). Introduce a counting
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process N(t) = max{n ≥ 0 : tn ≤ t}. For all integer k ≥ 1 let �k be the
increment of the process Z(k)

�k−1�k(t) on the interval [tk−1; tk) and let �(t) be
the increment on the interval [tN(t); t) of Z(N(t)+1)

�N(t)�N(t)+1
(t). Setting �0 = U(0),

we de�ne the process X(t) as

X(t) =
N(t)∑

k=1
�k +�(t):

We note that X(t) is a regenerative ow and the regeneration points
{�j}∞j=1 are the consecutive hitting times of some �xed state i∗ by the control
process U(t). It is easy to see that U(t) is a random environment for X(t)
and

E(X(t) |U(s); s ≤ t) =
N(t)∑

k=1
��k−1�k(tk − tk−1) + ��N(t)�N(t)+1(t− tN(t)):

Let {�j} be a stationary distribution for the random environment U(t).
One can get the following relation for the intensity of X(t)

� =
∑

ij
�ij�ipij

mij
mi

:

Using (4) we get the conditions of the limit distribution existence in terms
of input ow characteristics.
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Extended Abstract: In the first twenty years of its existence, the Web has proven, to have 

had a fundamental and transformative impact on all facets of our society. While the Internet 

has been introduced 20 years earlier, the Web has been its “killer” application with more 

than 1.5 billion users worldwide accessing more than 1 trillion web pages (excluding those 

that cannot be indexed, the “Deep Web”) (Googleblog 2008). Searching, social networking, 

video broadcasting, photo sharing, blogging and micro-blogging have become part of 

everyday life whilst the majority of software and business applications have migrated to the 

Web.  

Today, the enormous impact, scale and dynamism of the Web in time and space demand 

more than our abilities to observe and measure its evolution process. Quantifying and 

understanding the Web lead to Web modeling, the backbone of Web Science research 

(Berners-Lee et al 2006). Web models should invest on Complexity (Antoniou et al 2000) 

beyond reductionism, linking structure to function and evolution (Prigogine 1999, Prigogine 

et al 2001, Μeyers 2009). In this context, causality between events, temporal ordering of 

interactions and spatial distribution of Web components are becoming essential to 

addressing scientific questions at the Web techno-social system level.  

The first steps towards understanding cyberspace involved measurements and statistics of 

the Internet traffic (Faloutsos et al 1999, Fabrikant et al 2002, Antoniou et al 2002 a, b, 

Antoniou et al2003). The self-similar feature of the Internet was also found in the Web 

through preferential attachment (Barabasi et al 1999 a, b, Albert et al 1999).  

Network science being a useful mathematical framework to formulate the non-reducible 

interdependence of Complex Systems (Prigogine 1999, Prigogine et al 2001) recently led to 

significant results not only in Web graph statistics, but moreover in biology (Kitano 2002), 

economics (Easley et all 2010) and sociology (Liljeros et al 2001). These results initiated a 

new understanding of Complexity in nature (Newman et al 2006).  

The statistical analysis of the Web graph led to four major findings (Bonato et al 2005): on-

line property (the number of nodes and edges changes with time), power law degree 

distribution with an exponent bigger than 2, small world property (the diameter is much 

smaller than the order of the graph) and many dense bipartite subgraphs.  

In the light of these findings Kouroupas, Koutsoupias, Papadimitriou and Sideri proposed an 

economic-inspired model of the Web (KKPS model thereafter) (Kouroupas et al 2005 a, b) 

which explains the scale-free behavior. Web evolution is modeled as the interaction of 
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Documents, Users and Search Engines. The Users obtain satisfaction (Utility), when 

presented with some Documents by a Search Engine. The Users choose and endorse 

Documents with highest Utility and then the Search Engines improve their 

recommendations taking into account these endorsements, but not the dynamic 

interdependence of the Utility on the www state. Commenting on their results the authors 

have pointed out that (A) “more work is needed in order to define how the various 

parameters affect the exponent of the distribution” (of the in-degree of documents) and that 

(B) “increasing b (the number of endorsed documents) causes the efficiency of the algorithm 

to decrease. This is quite unexpected, since more user endorsements mean more complete 

information and more effective operation of the search engine. But the opposite happens: 

more endorsements per user seem to confuse the search engine.” 

The purpose of this paper is to address and clarify the issues (A), (B) arising within the 

KKPS modeling scheme (Kouroupas et al 2005 b), through analysis and simulations and to 

highlight future research developments in Web modeling. 

 

Results and Discussion   

 

1. Concerning the dependence of the power-law exponent on the number α of 

recommended Documents by the Search Engine, the number k of topics and the number b of 

endorsed documents per User-Query, we found that the validity of the power law becomes 

less significant as b increases, both in the case α=b and in the case α≤b, confirming the 

results of Kouroupas et al [21]. Our simulations however, extended the investigation for 

different initial random distributions of the in-degree of Documents and for different values 

of α and b (Section 4). 

 

2. In the case α=b, Utility is useful only in terms of establishing compatibility 

between Utility Matrix and the Users-Queries and Documents bipartite graph, since all 

recommended Documents are endorsed according to the highest in-degree criterion. 

3. Concerning the origin of the power law distribution of the in-degree of 

Documents, two mechanisms are identified in the KKPS model: 

• Users-Queries endorse a small fraction of Documents presented (b).  

• Assuming a small fraction of poly-topic Documents, the algorithm creates a high 

number of endorsements for them.    

The above mechanisms are not exhaustive for the real Web graph. Indexing algorithms, 

crawler’s design, Documents structure and evolution should be examined as possible 

additional mechanisms for power law distribution. 

4. Concerning the dependence of the efficiency of the search algorithm (price of 

anarchy [21]) on the number α of recommended Documents by the Search Engine, the 

number k of topics and the number b of endorsed documents per User-Query we found that 

the efficiency of the algorithm increases, as the number α of recommended Documents by 

the Search Engine, the number k of topics and the number b of endorsed Documents per 

User-Query increase (Section 5). Our simulations confirmed the results of Kouroupas et al 

[21], except the dependence on the number b of endorsed documents per User-Query where 

they found that “increasing b causes the efficiency of the algorithm to decrease. This is quite 

unexpected, since more user endorsements mean more complete information and more 

effective operation of the search engine. But the opposite happens: more endorsements per 
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user seem to confuse the search engine.” Therefore, in this case our result (Figure 7) 

confirmed their intuition but not their simulation. 

5. According to [21] “The endorsement mechanism does not need to be specified, as 

soon as it is observable by the Search Engine. For example, endorsing a Document may 

entail clicking it, or pointing a hyperlink to it.” This hypothesis does not take into account 

the fundamental difference between clicking a link (browsing) and creating a hyperlink. 

Clicking a link during browsing is the “temporal” process called traffic of the Web sites 

[23]. Web traffic is observable by the website owner or administrator through the 

corresponding log file [24] and by third parties authorized (like search engine cookies which 

can trace clicking behavior [25] or malicious. On the contrary, creating a hyperlink results in 

a more “permanent” link between two Documents which is observable by all Users-Queries 

and Search Engines. Therefore, the KKPS algorithm actually examines the Web traffic and 

not the hyperlink structure of Documents which is the basis of the in-degree Search engine’s 

algorithm. 

6. In this context, we remark that according to the published literature, Web traffic as 

well as Web content editing, are not taken into account in the algorithms of Search engines 

based on the in-degree (i.e. Pagerank [26]). These algorithms were built for Web 1.0 where 

Web content update and traffic monetization were not so significant. In the present Web 2.0 

era with rapid change [27], the Web graph, content and traffic should be taken into account 

in efficient search algorithms. Therefore, birth-death processes for Documents and links and 

Web traffic should be introduced in Web models, combined with content update (Web 2.0) 

and semantic markup (Web 3.0 [28]) for Documents.  

7. The discrimination between Users and Queries could facilitate extensions of the 

KKPS model in order to incorporate teleportation (a direct visit to a Document which avoids 

Search Engines) to a Document, different types of Users and relevance feedback between 

Documents and Queries [29].  

8. In the KKPS model, Utility is defined to be time invariant linear function of R and 

D which by construction is not affecting the www state when α=b. This is a first 

approximation which does not take into account the dynamic interdependence of the Utility 

on the www state. In reality, the evolution of the www state will change both R and D. A 

future extension of KKPS model should account for user behavior by incorporating Web 

browsing and editing preferences.  

9. Lastly, it would be very useful to offer deeper insight in the Web’s business model 

by incorporating economic aspects in the KKPS model. This could be achieved by 

introducing valuation mechanisms for Web traffic and link structures and monetizing the 

search procedure (sponsored search [30]).  

 

 

 

Keywords: Web science; Web modeling; scale-free networks; KKPS model; complex 

systems; 
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Abstract: In this paper the non-recurrent flow of arrivals is considered in a case, where 

interarrival times }{ nX  correspond to the Markov chain with the continuous state space 

),0( ∞=+R . The conditional probability density function of 1+nX  given }{ zX n =  

is determined by means of  

∑
=

===
k

i

iin xhzpzXxqzxq
1

)()()|()|( ,    +∈ Rxz, , 

where )}(),...,({ 1 zpzp k  is a probability distribution, 1)(...)(1 =++ zpzp k  for 

all +∈ Rz ; )}(),...,({ 1 xhxh k  is a family of probability density functions on +R . 

This flow is investigated for stationary case. One is considered as the Semi-Markov process 

J(t) on the state set {1, …, k}. Main characteristics are considered: stationary distribution of 

J and interarrival times X, correlation and Kendall tau (τ) for adjacent intervals, and so on.  

Further one is considered a Markovian system on which the described flow arrives. The 

system has a finite or countable set of (may be multidimensional) states 
rN+  with 

},...,1,0{ cN =+ , ∞≤c .  Arrival moments of the flow transfer the system from a 

state 
rNi +∈  into other state 

rNj +∈  with probability  

)(

,

v

jig , 1... )(

,

)(

1,

)(

0, =+++ v

ci

v

i

v

i ggg , 

where ν  is the Semi-Markov component’s J  value immediately before  the arrival.  

Let 0 be the beginning of the new interval and w be the new value of J: w = J (0+).  

Between time moments of the new and the successive arrivals, a dynamic of the system is 

described by homogeneous Markov process Y(t),  t > 0, on the sate set 
rN+ with transition 

probabilities  
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The stationary distribution and characteristics of the continuous-time process (Y, J) are 

considered.   

Within the framework of the suggested model, various problems of reliability, storage and 

queues are considered. 

Numerical results show that the dependence between interarrival times of the flow exercises 

greatly influences the efficiency characteristics of considered systems. Thus the study of 

stochastic models with dependencies is very important for applications. 
 

Keywords: Semi-Markov process, Markov subordinator, stationary distribution 

 

1  Introduction 
 

An important element of a probabilistic model is a description of considered 

random variable distributions. It is supposed usually that all random variables are 

independent. But numerous statistical data prove the opposite. For example, it has 

been experimentally stated that characteristics of Internet flows are dependent ones 

[6, 8, 12].  Analogously, flows of insurance claims for damages have dependent 

structure [2-5, 12].  In the first case, a correlation between interarrivals of the 

claims is described by so called Markov-Additive Processes of Arrivals [11], for 

example for Batch Markovian Arrival Process, where a claim circulates in some 

Markovian network before an arrival [14].  In the second case, copulas are used 

usually for a description of the dependence [1, 3, 5, 10].  

In our paper we wish to use natural and direct way for a description of the 

dependence between continue random variables ,..., 10 XX . We suppose that the 

lasts correspond a Markov chain with continue state space (0, ∞) where the initial 

variable 0X  has the probability density function )(0 xf and the distribution of any 

another variable 1+nX , n = 0, 1, …, depend from nX only. Let each random 

variable 1+nX  can have one probability density function from the family 

{ )(),...,(1 xhxh k }. The probability to have the i-th density )(xhi is a function 

)(zpi of fixed value ,zX n =  

 

                 1)(...)()( 21 =+++ zpzpzp k ,   ∀ z ∈ (0, ∞).                         (1)                                  

 

Therefore the conditional density probability function for 1+nX is determined as 
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      0,,)()()()(
1

>=== ∑
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xzxhzpzXxqzxq
k

i

iin .                     (2) 

then random variable nX  and 1+nX  are positively correlated, if one is the opposite 

order “less” then a negatively correlation has place.  

The sequence ,..., 10 XX can be used for a description of customer flow, of 

service times in the queueing systems and so on. We apply one for the first case. In 

the next section standard analysis of such flow will be performed. Further we   

consider a single server queueing system with the considered flow. It allows us to 

investigate an influence of flow’s correlation on performance characteristics of the 

queueing system.  

 

2  Flow analysis 

In fact the sequence ,..., 10 XX can be considered as partial case of Markov 

renewal processes or Semi-Markov ones [7, 9, 11]. For that we use the following 

interpretation of the relation (2).  The event { 1+nX  = x} given the event { nX  = z} 

occurs as follows. At first it is chosen the distribution ih with the probability 

)(zpi . Further the value x for 1+nX  is chosen with respect to the density )(xhi .  

In this case we set iLn =+1  and call it as the label of random variable 1+nX  

(Pacheco, Tang and Prabhu [11] name one the Markov component).  

The distribution of the first label 1L is calculated as  

.,...,1,)()(}{ 0

0

1 kidxxfxpiLP i === ∫
∞

                           (3) 

The sequence of labels ,..., 21 LL  forms an embedded Markov chain with finite 

state space {1, 2,…, k} and the transit probabilities per a step  

dxxpxhiLjLPP jinnji )()(}{
0

1, ∫
∞

+ ==== .                          (4) 

Obviously pair ,...2,1,,
0

=






 ∑
=

nXL
n

i

in  is a Markov renewal process [11]. 

Additionally to the transition probability matrix }{ , jiPP = , the last is set usually 

by distribution function  
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of the holding time in state  i ∈ {1, 2, …, k} till a transition in the state j.  

In our case  

.0,)()()()()()()(
0

1

00

1

,, ≥







== ∫∫∫

−∞
−

xdzzpzhdzzpzhdzzpzhPxF

x

jiji

x

jijiji
 

(6) 

 

Therefore a considered process is a special case of semi-Markov one with special 

structure of the transit probabilities (5) and the distribution of holding time (6).  

 

It allows us to use known results of the theory. By that the final results will have 

more simple form than ones for the total case of semi-Markov processes.  

Further we suppose that the matrix P corresponds to a finite ergodic Markov chain. 

Then this Markov chain has unique stationary (limiting) distribution 
T

k ),...,( 1 πππ = that can be find as unique positive solution of the equation 

                                                          PTT ππ = ,                                                 (7) 

satisfied the normalization condition 

                                                          .1
1

=∑
=

k

i

iπ                                                    (8) 

Now it is possible to calculate the stationary probability density function of ∞X : 

 

             .0),(}{)()(
0

≥=≤
∂
∂

=
∂
∂

= ∑
=

∞ xxhxXP
x

xF
x

xf i

k

i

iπ            (9)                        

Mean value and variance of ∞X  are 

    
222

1

2

1

)()(,)( µµσπσµπµ −+==== ∑∑
==

∞ ii

k

i

ii

k

i

i XDXE ,        (10)                  

where 

                    dxxhxdxxxh iiiii )()(,)(
0

22

0

∫∫
∞∞

−== µσµ .                        (11) 

Now our aim is calculating covariance and Kendall-τ [10] for lengths Z and X of 
two adjacent intervals for the stationary distribution (9) and the transition 

probability density (2). Firstly the bivariate density function  
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Then 
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1 1 0
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k

i

k

j

jiji .                      (14)                     

In order to calculate the Kendall-τ we consider two independent pair (Z, X) and  
(Z’, X’) with distribution (9). Then 

{ }
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ππ
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                                                                                                                              (15) 

Now the Kendall’s tau can be calculated [10] as  

 

                         1}','{4 −≤≤= YYZZPτ .                                 (16) 

 

3 Flow analysis: special case 
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Our numerical example of the considered flow is the following: k = 2,  

.0,
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For probability distribution { })(zpi  we have two variants: 

                   ,0,1)(,)( 21 az
a

z
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a

z
zp ≤≤−==                               (18) 

and 
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z
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Firstly we consider the case (18).  Calculations with respect to formula (4) give: 
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                                        ,
2

1
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2

1
121 =−== πππ                                     (21) 
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2

1
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2
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21 axee
a

xhxhxf xax ≤≤+
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=+= −−− λλ
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                                                                                                                               (22) 

Further we wish calculating such characteristics of the interarrival times as the 

expectation, variance and covariance.  In order to derive these characteristics, the 

following values will be used: 
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Now the expected value of the interarrival time can be calculated by (10):  
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In order to calculate the variance (10), at first the second moments (11) must be 

calculated: 
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Now we get 
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Further for the second moment (13) we have 
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Now we can calculate using previous formulas (23) – (25).  Finally for the case 

(18) 

                                 .
4

1
)(),( 2aZXEXZCov −=                                       (26) 

Let us consider the case (19). The formula (4) gives us 
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Also the cases (18) and (19) give opposite correlation. Further if 0→λ  then the 

distribution (22) tends to the uniform distribution on (0, a), for which the 

covariance equals zero. Further if ∞→λ  then as limiting distribution we have 

the two-point distribution   P{X = 0} = P{X = a} = ½, for which the correlation 

coefficient may be –1 ad 1. Therefore manipulating by λ it is possible to choose the 
arbitrary value for the correlation coefficient. 

 

3  Markovian system 
 

Considered system has a finite or countable set of (may be multidimensional) states 
rN+  with +N = {0, 1, …, c}, c ≤ ∞.  Arrival moments of the above-described flow 

transfer the system from one state i ∈ rN+  into other state j ∈ 
rN+ . Let us consider 

a time moment immediately after new arrival, denote one 0+ as a beginning of the 

new interval.  Earlier we have denoted X as a length of the new interval and  L(0+) 

as its label. If L(0+) = v then the transfer i → j takes place with probability 
)(
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jig , 
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0, =+++ v

ci
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i ggg Between time moments of the new and a consequent 

arrivals, a dynamic of the system is described  [7] by homogeneous Markov 

process Y(t),  t > 0, with transition probabilities 
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Let us suppose that the stationary distribution of the discrete-time Markov process 

( ),...1,0,, =nXY nn exists, then 

    { } .,0),()(,,)0()( r

jjj NixxR
x

xrxXjYPxR +∈≥
∂
∂

=≤=+=          (29) 

A usual reasoning and formula (2) gives the following equations for x ≥ 0: 
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Let us denote 
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Then instead of (30) we have 
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Multiplying both sides of (31) by )(xpm and integrating with respect to x we get 
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Denoting 
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we get the system of the linear equations 
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This system may be written as the systems (7), (8). Its solution allows calculating 

the distribution (31). 

 

5  Single server queueing system 
 

A widely known queueing system is GI/M/1/∞: claims arrive at a single server 

station in accordance with a recurrent flow. Upon arrival, the claim is immediately 

served if the server is free. Otherwise, one has to wait occupying one of an infinite 

number of places. The service time is assumed to be independent and identically 

exponentially distributed with intensity β. 
We consider the following modification of this system. At first, instead of the 

recurrent, the investigated in Sections 2 and 3 flow will be used. At second, a 

number of the waiting places are restricted and equal to c. If all places are busy, 

then an arrived claim is rejected. 

As earlier let us consider a time moment when a new claim arrives at the system. 

Now Y(t) denotes a number of the claims in the system at the time moment t after a 

last arrival, Y(0-)-  immediately before, and Y(0+)-  immediately after new arrival. 

We are interested in the corresponding distributions. 

Our special case of the general one has the following characteristics: r = 1, 

},...,0{,,1,, cNjiq iiji =∈= ++δ .  The transition probabilities do not depend 

on v and have the following expressions: ,)0( ,0,0 jjP δ=  
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We have from (33) for i = 1,…, с ; j = 2,…, min{i + 1, c –1}: 
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for i = c, j = c: 
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for i = c - 1, j = c: 
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Note that it is easy to get explicit formulas substituting the expressions for 

)(xhi and )(xpi  with respect to (17) – (19). 

Now we use the formula (34) to calculate the distribution of the random variables 

Y(0-) and Y(0+): 
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We perform a numerical analysis to evaluate various flows influence on queueing 

system efficiency. All three above described systems will be considered: the 

system GI/M/1/∞ with the distribution (9) of the independent interarrival times; the 

analogous system with restricted number c of waiting places and dependent 

interarrival times with the distribution (17) and for two cases: the case (18) and the 

case (19). We will denote these systems as N1/M/1/c and N2/M/1/c. 

As efficiency criteria, we will use the probability not to wait for a beginning of the 

service and the mean value of waited claims at the time moment of a new arrival 

E(Y(0-)). 

Let us give some comments. At first, we have chosen rather big value of c that 

gives the same results for the systems GI/M/1/∞ and GI/M/1/c with the infinite and 

restricted number of waiting places.  At second, all three systems differ from each 
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other by the interarrival times. They are independent for the first system, and they 

are dependent for the rest ones.   For the second system there is the following  

tendency: the next interarrival time will be distinguished from the previous 

interarrival.  Note that it is a positive fact for the queueing systems because long 

and short interarrival times will be alternate. For the third system there is an 

opposite tendency: the next interarrival time will be analogous to the previous 

interarrival time. It has a negative influence on the queueing systems, as it is highly 

probable to have long series of short interarrival times. 

At first we remind some necessary expressions for the system GI/M/1/∞. The 

probability ir  that an arrived claim finds i other claims in the system is calculated 

by the formula:  

,...1,0,)1( =−= iuur i

i                                     (41) 

where u∈ (0, 1)  is the unique root of the equation: 

.0)(
0

)1( =− ∫
∞

−− dxxfeu uxβ
 

Further, we give numerical results for the following input date. The intensity of the 

service times β  = 4, the scale parameter a = 1. Because the mean interarrival time 

equals to µ = a/2= 0.5, then the load coefficient of the server ρ =1/(µβ) = 0.5. The 
number of the waiting places for the systems with the dependent interarrival times 

c = 12. The parameter λ of the distribution (17) will be taking the following values: 
0.1, 0.5, 1, 2, 3, 5, 6, and 7. The tables contain the mean number of claims E(Y(0-)) 

and the probability of the service without waiting P{Y(0-) = 0}. 

 

Table 1. The mean number of claims in the systems E(Y(0-)) 
 

λ 
 

0.1 

 

 

0.5 

 

1 

 

 

2 

 

 

3 

 

 

5 

 

 

7 

 

 

9 

 

 

GI/M/1/∞ 
 

0.56

4 

 

0.567 

 

0.577 

 

0.611 

 

0.660 

 

0.776 

 

0.883 

 

0.971 

 

N1/M/1/c 

 

 

0.55

9 

 

0.539 

 

0.523 

 

0.508 

 

0.506 

 

0.521 

 

0.539 

 

0.556 

 

N2/M/1/c 

 

0.57
1 

 

0.600 

 

0.648 
 

 

0.794 

 

1.018 

 

1.692 

 

2.083 

 

2.459 

 

Table 2. The probability of the service without waiting P{Y(0-)=0} 

 
 

λ 
 

0.1 

 

 

0.5 

 

1 

 

 

2 

 

 

3 

 

 

5 

 

 

7 

 

 

9 

 

62



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010 

  

 

 

 

GI/M/1/∞ 
 

0.639 
 

0.638 
 

0.634 
 

0.621 
 

0.602 
 

0.563 
 

0.531 
 

0.507 

 

N1/M/1/c 

 

 

0.640 

 

0.643 

 

0.645 

 

0.641 

 

0.631 

 

0.606 

 

0.583 

 

0.564 

 

N2/M/1/c 

 

0.638 

 

0.632 

 

0.622 

 

0.595 

 

0.561 

 

0.496 

 

0.472 

 

0.457 

Let us discuss the represented results. The system GI/M/1/∞ with the recurrent 
input flow is a “neutral” one. The rest two systems are the opposite ones: the case 

(18) improves the efficiency characteristics of the service, the case (19) makes 

them worse. For example, if λ = 2, then the probability of the service without 
waiting and the mean number of claims in the system E(Y(0-)) consist of: for the 

system GI/M/1/∞  0.621 and  0.611; for the system N1/M/1/12 (the case (18)) 

0.641, and 0.508; for the system N2/M/1/12 (the case (19)) 0.595 and 0.794. Note 

the efficiency characteristics for the case (19) deteriorate catastrophically, when 

the value λ increases and long series of short interarrival times is probable. It 

seems to us that precisely such a situation appears in the various 

telecommunication and financial systems. 

 

6 Conclusions 
 

In this paper, we have considered a model of a nonrecurrent flow, for which 

interarrival times can be positive or negative correlated. Such flows often appear in 

various telecommunication and financial systems. This flow has been used as an 

input flow for a single server queueing system with exponential distributed service 

times. Numerical results show that the dependence between interarrival times 

exercises great influence on efficiency characteristics of the service. 

The elaborated approach gives a general tool for a construction of wide flows class 

with correlated interarrival times. 

 

The article is written with the financial assistance of European Social Fund.  

Project  Nr. 2009/0159/1DP/1.1.2.1.2/09/IPIA/VIAA/006 (The Support in 

Realisation of the Doctoral Programme “Telematics and Logistics” of the 

Transport and Telecommunication Institute). 
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Abstract:  The article presents the results of recent investigations  into Holter monitoring of 
ECG,   using  non-linear  analysis methods.  It is shown that one of the most precise 
characteristics of the functional state of biological systems  is the dynamical trend of 
correlation dimension and entropy. On the basis of this it is suggested that a complex 
programming apparatus be created for calculating these characteristics on line. A  similar 
programming product is being created now with the  support  of RFBR.  The first results of 
the working program, its adjustment, and  further development, are also considered in the 
article.
Keywords: Holter monitoring,  ECG, correlation dimension, Fractal analysis of temporary 
rows, non-linear dynamics of heart rate

1 Introduction

In 1996 the European Cardiological Society and the North American 
Electrophysiological Society gave recommendations on the clinical usage of the 
heart rate variability method (HRV) [12], and  it is presently being carried out  by 
different methods  (fig. 1).  Most of the HRV  investigations are based on the linear 
measurement of cardio-rhythm (standard  deviation of interval duration between 
sinusoidal contraction (SDNN), standard deviation of average values RR-intervals 
(SDANN), indicators of the autonomous regulation contour (RMSSD, pNN50), 
triangulation index, power values in different frequency ranges, low-high 
frequency spectral components, their ratio ((ULF, VLF, LF, HF, LF/HF) etc.) 
These indicators are now used in clinical practice. However, the interest of  
investigators  is attracted by non-linear mathematical methods, using, for example, 
postulates from  the theory of determinated chaos. So, in [2] the investigation was 
into the supposition that a non-linear component HRV might show periodical 
structure in a 24 hour period, which was partially proved.  There are contradictory 
data of the influence on non-linear components  of breathing.  The authors in [4] 
have not discovered reliable differences in forced and free breathing in the non-
linear component HRV.  Just the opposite  is stated in [3] concerning  the 
expressed non-linear component  HRV in forced breathing. In [7] it is shown that 
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Fig. 1. Modern methods of investigation and analysis of processing
methods based on the analyses of non-linear dynamics HRV can better discover 
patients with the risk of sudden death. In [6]  the  HRV changes are investigated in 
92 episodes of the paroxysmal  fibrillation of the auricle. The non-linear methods 
include such indicators as entropy approximation (ApEn). The authors conclude 
that the reduction of non-linear criteria reflects the changes  of the sympatho-vagus 
regulation  before the paroxysmal  fibrillation of the auricle. In [5] it is also noted 
that methods of HRV evaluation based on non-linear analysis are better than 
standard methods in discovering changes in patients before the beginning of the 
ventricle fibrillation [13].
However, non-linear HRV analysis demands the prolonged formation of a data 
base for building a restored attractor, the dimension trend evaluation of which 
might last for several hours, which is not acceptable in conditions of   urgent 
cardiology, and demands the transition from RR-intervals to complete ECG. This 
transition certainly makes the task more complicated, but at the same time 
enhances the reliability of entropy evaluation [8]. In [9] and [16] it is shown that   
there are currently no indicators satisfactorily describing the reactions of the 
cardio-vessel system to different external influences (physical uploads, stress,  etc). 
In [10], based on the complete ECG it is proved that the functioning of the heart of 
a healthy person is not regular.

2 The method of fractal analysis

The method of fractal analysis consists of the transition from the signal to the 
restored attractor for the numeric characteristics of which probable (fractal) 
dimensions are used, expressed by the equation dimensions of Renyi:

( )

1

0 0

ln ( )
lim lim lim[ ],

ln(1/ ) 1

M
q
i

q i
q q

m

p
I

D I
q



 






  
 





at q=0 this is a well known dimension of  Kolmogorov-Hausdorff:
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However, to characterize the attractor not only metric qualities are necessary, but 
also the probability of finding a   point on the attractor. Usually for this purpose 
informational dimension and related informational entropy is used, as well as 
correlation dimension and correlation entropy:
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For finding the characteristics of the attractor we need a definite number of points, 
that could be evaluated with the well-known equations of Eсkmann or Nerenberg:
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For giving the phase space,  the method of progressive differentiation is usually 
used or the method of Takens delay:
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The delay parameter in the last case is usually calculated as the first zero of the 
autocorrelation function, or as the first minimum of the function of mutual 
information:
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The methods of calculation of the correlation dimensions and correlation entropy 
are presented here:
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According to the well-known Takens theory the dimension of the phase space 
should be evaluated like this:

22 1N D 

3 Firmware complex

Unfortunately, the Holter monitor is a three-channel static device, allowing the 
processing of the signal only after the device has been removed. But our practical 
interest lies in predicting the changes of the fractal characteristics. That is why  our 
current software which is  presently being developed, though working  with the 
static records, still calculates the characteristics on-line, progressively shifting  the 
window width on the required number of points.
So currently the complex calculates on-line:
- the histogram of variability
- low and high frequency spectral components ULF, VLF, LF, HF
- autocorrelation function
- correlation dimensions
- correlation entropy
and also builds graphs of a two / three dimensional attractor with their successive 
updating. The interface of the complex is shown in fig. 2

Fig. 2. Interface of the firmware complex
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4 Results

According to the above-described method with the specially elaborated software,     
the correlation dimension is evaluated  every second  for the whole period of the 
cardiogram measurement. The adjustments of the program parameters allow the 
playback of the initial mass with any given speed. On the basis of the calculated 
data the dynamic trend is  built.
The results of the program work are shown here for patients with different 
diseases, such as  patients recovering from  stroke (fig .3), vegetative conditions 
(fig. 4), pneumonia ( fig. 5) and the most interesting - life-threatening sciatical risk  
(fig .6)

Fig. 3. Recovering after  stroke
In this graph  the significant change of the correlation dimension ( more than 1)  
is clearly seen.

Fig. 4. Vegetative condition
In  the vegetative condition  the changes are much smaller and predictable 
(approximately 0.5)
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Fig. 5. Pneumonia
In the severe pneumonia condition the trend changes of the correlation dimension 
reach approximately 2 during the day.  Finally, in the near-death state  (fibrillation 
of ventricles), for a period of time the trend stays permanent (fig .6).  However,

  
Fig. 6. Changing of cardio-rhythm with the risk of death.

further on,   sharp fluctuations start, followed by a rapid dropping down to zero       
( case of death). It is noted that this dropping down is observed for several minutes. 
However, it is  hoped that prediction can be made of  the dropping down of the 
trend due  to the sharp increase after a long period of calm-condition of the system.  
In this case an attempt will be made to reconstruct such a signal with the help of 
the non-linear system of differential equations with right sides as polynomials:
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And also finding the unknown coefficients, for example, with the method of   least 
squares.

5 Conclusion

Unfortunately, nowadays for the purpose of functional diagnosis of the body 
condition, the linear indicators used are taken from a patient's biomedical signals.  
The latest work in different aspects of  cardio-rhythm studies in normal condition 
and in pathology   shows that,  apart from the classical methods of  analysis in the
time and frequency field,  there is a recurring  tendency to explore the cardio-
rhythm from the point of view of  non-linear analysis. Various influences, 
including the neurohumoral mechanisms of higher vegetative centres,  cause the 
non-linear character of the cardio-rhythm changes, for the description  of which 
special methods are necessary (graphs of the attractor, correlation dimensions, 
entropy etc).     All these methods are of great interest for researchers; however, the 
practical application is not clear and as a result not limited.
However, it is necessary to emphasise the qualitative character of the changes in 
such indicators. The software currently elaborated here will significantly improve 
the efficiency of investigations made into the topic.
This work was done with the support of the RFBR (grant   09-08-01135-а)
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Abstract:  This paper presents the application of neuro-fuzzy techniques in 
forecasting a new technology in shopping. Neural networks have been used 
successfully to forecast time series due to the significant properties of treating non 
linear data with self learning capability. However, neural networks suffer from the 
difficulty of dealing with qualitative information and the “black box” syndrome that 
more or less limits their applications in practice. To overcome the drawbacks of 
neural networks, in this study we proposed a fuzzy neural network that is a class of 
adaptive networks and which is functionally equivalent to a fuzzy inference system. 
The results derived from the experiment based on the electronic sales indicate that 
the suggested fuzzy neural network could be an efficient system to forecast a new 
technology in shopping. Experimental results also show that the neuro-fuzzy 
approach outperforms the other two conventional models (AR and ARMA). 
 
Keywords: new technology forecasting, electronic shopping forecasting, neuro-fuzzy 

forecasting, ANFIS,  

1. Introduction 

Sales time series are very complex for identification and forecasting because of their 

volatile behavior.  If we consider that the use of the new technology to predict 

shopping method time series only have an interior relation, the future prices can be 

forecasted by using the following formula: 

),.....,(1 tktt yyfy −+ =      (1) 

where  1+ty  is the rate to be forecasted and kty − is the influence factor.  Traditional 

models that have been used to forecast sales time series are all based on the 
probability theory and statistical analysis with a certain number of distributions 
assumed in advance. In most cases these assumptions are unreasonable and non-
realistic. Moreover the linear structure of these models doesn’t guarantee the 
accuracy of forecasting. 
Recent studies have addressed the problem of sales time series forecasting by using 
different methods including artificial neural network and model based approaches 
due to the significant properties of handling non-linear data with self learning 
capabilities (Hornik, 1991; Jain, 1997;  Skapura, 1996). Neural networks have been 
accused by researches of being ‘black boxes’ whose degree  of input influence on the 
output of the model can not be known (Shapiro 2002, Pao, 1989). Fuzzy logic is an 
effective rule-based modeling in soft computing, that not only tolerates imprecise 
information, but also forms a framework of approximate reasoning. The 
disadvantage of fuzzy logic is the lack of self learning capability. The combination of 
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fuzzy logic and neural network can overcome the disadvantages of the above 
approaches. This study, is proposes the use of a hybrid intelligent system called 
ANFIS (the Adaptive Neuro Fuzzy Inference System) for forecasting a new shopping 
technology, called e-shopping turnover. ANFIS, combines both the learning 
capabilities of a neural network and reasoning capabilities of fuzzy logic in order to 
provide enhanced forecasting capabilities, as compared to using a single 
methodology alone. ANFIS has been used by many researchers to forecast various 
time series, (Jang et al., 1997, Atsalakis, 2009, Atsalakis et al., 2007, Atsalakis & 
Minoudaki, 2007, Atsalakis & Ucenic, 2006, Atsalakis, 2005, Ucenic & Atsalakis, 
2006).  
 
 

2. Model structure  
 

2.1 ANFIS architecture 
 
This paper considers the development of an e-shopping forecasting system based on 
the innovative neuro-fuzzy methodology of Jang (Jang, 1993), known as the 
Adaptive-Network-based Fuzzy Inference System (ANFIS), which was successfully 
employed to produce a control strategy for the classical inverted pendulum problem. 
With the ANFIS approach, implementation of the model design differs in form from 
the more traditional ANN in that it is not fully connected, and in that not all the 
weights or nodal parameters are modifiable. Essentially, the fuzzy rule base is 
encoded in a parallel fashion so that all the rules are activated simultaneously, so as 
to allow network training algorithms to be applied. As in Jang's original work, here a 
backpropagation algorithm is used to optimize the fuzzy sets of the premises in the 
ANFIS architecture, and a least squares procedure is applied to the linear coefficients 
in the consequent terms.  

Let X be a space of objects and x  be a generic element of X . A classical set XA ⊆  

is defined as a collection of elements or objects Xx∈  such that each x  can either 

belong or not belong to the set A . By defining a characteristic function for each 

element x in X , we can represent a classical set A by a set of ordered pairs )0,(x  or 

)1,(x  which indicates Ax∈  or Ax∉ , respectively. On the other hand, a fuzzy set 

expresses the degree to which an element belongs to a set. Hence the characteristic 
function of a fuzzy set is allowed to have values between 0 and 1, which denotes the 

degree of membership of an element in a given set. Thus, a fuzzy set A in X is 
defined as a set of ordered pairs: 

}))(,{( XxxxA A ∈= µ            (2) 

where )(xAµ  denotes the membership function (MF) for the fuzzy set A. 

The MF maps each element of X to a membership grade (or a value) between 0 and 

1. Usually X is referred to as the universe of discourse or simply the universe. The 
most widely used MF is the generalized bell MF (or the bell MF), which is specified 

by three parameters },,{ iii cba  and defined as follows (Loukas, 2001, Jang and 

Chuen-Tsai, 1995): 
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Parameter b is usually positive. A desired bell MF can be obtained by a proper 

selection of the parameter set },,{ iii cba . During the learning phase of ANFIS, these 

parameters are changing continuously in order to minimize the error function 
between the target output values and the calculated ones (Lee 1990a, 1990b). 
 
The proposed neuro fuzzy model of ANFIS is a multilayer neural network-based 
fuzzy system. Its topology is depicted in Figure 1, and the system has a total of five 
layers. In this connected structure, the input and output nodes represent the training 
values and the predicted values, respectively, and in the hidden layers, there are 
nodes functioning as membership functions (MFs) and rules. This architecture has 
the benefit that it eliminates the disadvantage of a normal feed forward multilayer 
network, whereby it is difficult for an observer to understand or modify the network. 
 

 
 

Figure 1: An illustration of the reasoning mechanism for a Sugeno-type model and 
the corresponding ANFIS architecture (Jang 1997) 
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For simplicity, it is assumed that the examined fuzzy inference system has two 
inputs, x and y , and one output. For a first-order Sugeno fuzzy model (Jang, 1997), a 

common rule set with two fuzzy if–then rules is defined as: 
 

Rule1:  If x is 1A and y is 1B then 1111 ryqxpf +⋅+⋅=         (4) 

Rule2: If x is 2A and y is 2B then 2222 ryqxpf +⋅+⋅=        (5) 

 
As seen from Figure1, different layers of ANFIS have different nodes. Each node in a 
layer is either fixed or adaptive (Jang 1993). Different layers with their associated 
nodes are described below: 
Layer 1: Every node i in this layer is a square node with a node function. 

oriforxO
iAi ,2,1)(,1 == µ     

,4,3)(
2,1 ==

−
iforyO

iBi µ  (6) 

where x - is the input to node i  and iA - is the linguistic label (small, large, etc.) 

associated with this node. In other words, iO ,1  is the membership function of a fuzzy 

set iA  and it specifies the degree to which the given input x satisfies the 

quantifier iA . Usually )(x
iA

µ  is designated as being bell-shaped with a maximum 

equal to 1 and minimum equal to 0, such as the generalized bell function depicted 
below:  

ii b

i

i

A

a

cx

x



















 −
+

=
2

1

1
)(µ

         (7) 
 

where iii cba ,,  is the parameter set. As the values of these parameters change, the 

bell-shaped functions vary accordingly, thus exhibiting various forms of 

membership function on linguistic label iA . Parameters in this layer are referred to as 

premise parameters. 
Layer 2: Every node in this layer is a circle node labelled ∏, which multiplies the 

incoming signal and sends the product out.  

.2,1),(*)(,2 === iyxwO BiAiii µµ         (8) 

 

Layer 3: Every node in this layer is a circle-fixed node labelled N. The i-th node 

calculates the ratio of the i-th rule’s firing strength to the sum of all rules' firing 

strengths:  

.2,1,
21

,3 =
+

== i
ww

w
wO i
ii            (9) 

 

For convenience, outputs of this layer are called normalized firing strengths.  

Layer 4: Every node i  in this layer is an adaptive square node with a node function 
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)( 1,4 iiiiii ryqxpwfwO +⋅+⋅=⋅=        (10) 

where: iw  is a normalized firing strength from layer 3 and { }iii rqp ,,  is the 

parameter set in this layer. Parameters in this layer are referred to as consequent 

parameters.  

Layer 5: The single node in this layer is a circle fixed node labelled ∑, that computes 

the overall output as the summation of all incoming signals:  

∑
∑

∑
⋅

=⋅==

i

i

i

ii

i

i

ii
w

fw

fwOoutputoverall ,5         (11) 

This architecture develops an adaptive network that is functionally equivalent to a 

two inputs fist-order Sugeno fuzzy model with four rules, where each input has two 

membership functions. The main advantage of this model is its transparency and 

efficiency.   

 
2.2 Learning Algorithm of ANFIS 

 
The learning algorithm for ANFIS is a hybrid algorithm, which is a combination of 
gradient descent and the least-squares method. More specifically, in the forward pass 
of the hybrid learning algorithm, node outputs go forward until layer 4 and the 
consequent parameters are identified by the least-squares method (Jang, 1993). In the 
backward pass, the error signals propagate backwards and the premise parameters 
are updated by gradient descent. Table 1 summarizes the activities in each pass. 
 

Table 1: Errors for one step ahead forecasting results 

 Forward pass Backward pass 

Premise 
parameters 

Fixed Gradient descent 

Consequent 
parameters 

Least-squares 
estimator 

Fixed 

Signals Node outputs Error signals 

 
 
The consequent parameters are optimized under the condition that the premise 
parameters are fixed. The main benefit of the hybrid approach is that it converges 
much faster since it reduces the search space dimensions of the original pure 
backpropagation method used in neural networks. The overall output can be 
expressed as a linear combination of the consequent parameters. The error measure 
to train the above-mentioned ANFIS is defined as follows (Jang, 1997): 

2

1

)ˆ(∑
=

−=
n

k

kk yyE            (12) 

where ky and kŷ are the kth desired and estimated output, respectively, and n is the 

total number of pairs (inputs–outputs) of data in the training set.  
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3. Experimental data used for training and testing the Neuro-fuzzy System  

 
The experimental data consisted of a monthly time series of electronic sales that took 
place in the USA from January 1992 until December 2009 (216 samples).  Figure 2 
depicts the first 172 samples used for training the model and the remaining 42 that 
were used to test the performance of the resulting model. The structure of ANFIS 
consists of two inputs and one output which means that the forecasting system is 
used to forecast the subsequent  month’s electronic sales based on the values of one 
month ago and two months ago. Each input has two generalized bell MFs. Figure 3 
depicts the initial forms of the MFs before the training and the final MFs after the 
training (fine-tuning). 
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Figure 2: Graphical representation of the electronically sales. 
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Figure 3: Illustration of MFs before and after the training. 
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Figure 4: A view of the rules 

 
The network used 4 rules and worked 800 epochs to converge with the optimal fuzzy 
inference  system. Figure 4 depicts the function of the rules. Table 2 describes the 
type and the values of the ANFIS parameters. 
 
 

Table 2: ANFIS parameter types and their values used for training 

ANFIS parameter type  Value 

MF type  Bell function 

Number of MFs  2 

Output MF  Linear 

Number of Nodes  21 

Number of linear parameters  12 

Number of nonlinear parameters  16 

Total number of parameters  28 

Number of training data pairs  170 

Number of evaluating data pairs  42 

Number of fuzzy rules  4 
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Figure 5: The control surface of the ANFIS e-shopping forecasting model 

 
Figure 5 illustrates a 3D representation of the control surface of the two inputs in 
relation to the output of the model. The smooth distribution of the surface, reconfirm 
the satisfactory performance results of the model.   
 
4. Performance of the model 
 
The size of the sample used for the evaluation phase for the period of June 2006 until 
December 2009 was 42. Figure 5 illustrates the results comparing the actual data with 
the forecasted values. The same data have been used to run an Autoregressive (AR) 
and Autoregressive Moving Average (ARMA) forecasting model. 
Table 3 depicts the error analysis according to some well known statistical errors: 
Mean square error (MSE), Root mean square error (RMSE), Mean absolute error 
(MAE) and Mean absolute percentage error (MAPE) (Makridakis, et al., 1983). ANFIS 
is superior in performance in comparison with the AR and ARMA models, based on 
the four errors (figures in bold) depicted below: 
  

Table 3: Errors for one month ahead forecasting results 

 ANFIS AR ARMA 

MSE 2.2267 4.1221 4.1450 

RMSE 149.22 203.02 203.59 

MAE 101.59 133.84 132.66 

MAPE 1.1140 1.5524 1.5301 

 
 
The forecasting performance of ANFIS is satisfactory in research and acceptable in 
practice as can be seen in the Figure 6. The square signs on the blue line depict the 
actual e-shopping monthly sales and the asterisks in the red line depict the 
forecasting e-shopping monthly sales. 
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Figure 6: Out of sample actual and ANFIS forecasted e-shopping sales 

 
 
5. Conclusion 
 
This paper investigated the modeling and forecasting method of a neuro-fuzzy 
network (ANFIS) to forecast monthly electronic sales. Based on the above results, the 
suggested neuro-fuzzy model could be an efficient system of forecasting new 
technology shopping methods such as electronic shopping. The following benefits 
arose from the use of ANFIS for forecasting electronic shopping: 
a) It is a general framework that combines the technologies of neural networks and 
fuzzy systems. 
b)  Both numerical and linguistic knowledge can be combined into a fuzzy rule base. 
c) The fuzzy rule base represents the knowledge of the network structure so that 
structure learning techniques can easily be accomplished. 
d)  Fuzzy membership functions can be tuned optimally by using learning methods. 
e) The architecture requirements are fewer and simpler compared to neural 
networks, which require extensive trails and errors for optimization of their 
architecture. 
f) ANFIS does not require extensive initializations through several random starts 
before training, as always occurs in neural networks.  
Other advantages of the two-phase neuro fuzzy hybrid technique in the ANFIS 
model also include its nonlinear ability, its capacity for fast learning from numerical 
and linguistic knowledge, and its adaptation capability. 
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Abstract: In cluster analysis regarding complex data bases, very often the question arises of 
how we should measure the similarity between statistical data units in a coherent way, if 
different types of variables are involved. In this paper we analyze and give a solution to the 
problem when interval and binary variables come together. We use a global generalized 
(three-way) affinity coefficient and compare a hierarchical clustering probabilistic approach 
to the empirical one. Application on an example issued from the literature of symbolic data 
analysis briefly illustrates how both coefficients work.  
Keywords: similarity coefficient, interval variables, binary variables, hierarchical clustering 
model, probability distribution function, three-way / symbolic data. 
 

1  Introduction 
 
In complex data bases, we are very often working with matrices where data units 
are described by a heterogeneous set of variables. Therefore the question arises of 
how we should measure the similarity between statistical data units in a coherent 
way, if different types of variables are involved. Usually partial similarity 
coefficients for each type of variables are computed, and then a convex linear 
combination of those similarities gives a global similarity between data units. Such 
procedure should be performed in a consistent way, combining comparable 
similarity coefficients in a valid / robust global similarity index. So far we have 
been using the so-called affinity coefficient - proposed by Matusita (1951), 
extended to cluster analysis framework e.g. in Bacelar-Nicolau (1988) - and 
generalized affinity coefficients for that purpose, respectively in two-way and in 
three–way or symbolic clustering contexts, by Bacelar-Nicolau e.g. in Bock and 
Diday (2000), pp160-165. 
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Here we apply the above procedure in the case where heterogeneous variables of 
two pertinent types, such as interval and binary variables, are simultaneously 
present. We use a global standardized generalized affinity coefficient and compare 

this probabilistic approach – e.g. proposed in Lerman (1972, 1981) and extended in 
Bacelar-Nicolau (1987, 1988) - to the empirical one. Application on an example 
issued from the literature of symbolic data analysis briefly illustrates how both 
coefficients work. 
 
2  Three-way Affinity Coefficient 
 
Let D be a set of statistical data units and let V be a set of p variables, as depicted 
in the previous section. The weighted generalized affinity coefficient 

)',( kka between a pair of data units k, k’ ∈ D ( k, k’=1,…,n), may be defined in a 

three-way context, as the weighted mean of local affinities between k and k’ over 
the j-th variable (j=1,…, p), as follows: 

( ) ∑ ⋅∑ ⋅∑ =⋅= =
⋅

=
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x
jkkaffkka 1
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1j
j ;',    )',(

l

llππ ,                  (1) 

where:  aff (k,k’;j) is the local affinity over the j-th variable, mj represents the 

number of modalities of  j-th variable; 
lkjx  is a positive real value (negative values 

may be treated with a convenient version of the affinity coefficient) whose 
meaning depends on the type of j-th variable or equivalently on the nature of j-th 
corresponding sub-table on the whole data matrix; and weights π j verify 0≤ π j ≤ 1, 

Σ π j = 1.  

Either the local affinities or the whole weighted generalized affinity coefficient, 
take values in the interval [0,1] and satisfy a set of proprieties which characterize 
affinity measurement as a robust similarity coefficient (e.g. Bacelar-Nicolau (2002) 
and Bacelar-Nicolau  et al (2009).     
 
3 Three-way Affinity Coefficient with Heterogeneous and 
Complex Variables  
 
Let V be a set of p heterogeneous variables, namely of binary and interval types. 
Let Yj’ represent a mj’ – dimensional binary vector and Yj’’ represent an interval 
variable, where j’ and j’’ belong to {1,…,p}.     
Thus the corresponding generalized columns or sub-tables into the whole data 
matrix have n rows, and the k-th row (k=1,… ,n) encloses: for Yj’ , an element 

{0,1}k 
mj’ 

of the power set  {0,1}
mj’, the whole binary sub-table being an element of 

{0,1}
n×mj’;  for Yj’’ , an interval Ikj’’  of the real axis.  
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The generalized global and local affinity coefficients in (1) still apply, the meaning 

of real values 
lkjx  depending on each type of variable (e.g. Nicolau et al (2007), 

and Bacelar-Nicolau et al (2009): 
 
  

- For an mj’ – dimensional binary vector Yj’  the local affinity ( )';', jkkaff  may be 

computed from the 2×2 contingency table associated to the pair ( )',kk  of rows over 

the binary vector Yj’ . Let sj’, tj’, uj’ and vj’ represent the cardinals of positive 

agreements (
l'kjx =

l'' jkx =1), negative agreements (
l'kjx =

l'' jkx =0), and 

disagreements (respectively 
l'kjx =1, 

l'' jkx =0 and 
l'kjx =0, 

l'' jkx =1), respectively. 

Then we have: ∑= =
'
1 ''''
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jkkjj xxs
l ll , ∑ −−= =

'
1 '''' )1)(1(jm
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l ll
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affinity becomes: ( )
'''

'';',
jkkj

j

mm

s
jkkaff = , where '''' jkjj mvs =+  and 

''' kjjj mus =+ , that is the well known Ochiai coefficient for binary data. 

 
- For an interval variable Yj’’ , associated to a generalized column  j’’ where each 

cell (k , j’’) contains an interval ''kjI  , (k =1,…,n) , a similar reasoning allows us to a 

local affinity which is a generalized Ochiai coefficient: instead of cardinal numbers 

we obtain convenient interval ranges. In fact, let ''jI  be the union of the intervals  

'''''' : kjjkj III ∪=  ( k =1,…,n) and let { }'''' ,...,1   : jj mI =l
l

 be a set of mj’’ 

elementary intervals, such that, for :,...,1  ;'  ,,....,1', '' nkm j =≠= llll  

l'''' jj II ∪= ;  0''''' =∩
ll jj II ;  

ll '''''' jjkj III =∩ ,  if  0'''' ≠∩
ljkj II , 

0'''' =∩
ljkj II , otherwise, where    symbolizes the interval range. 

Then, if we represent by 
l''kjx  the interval range 

ll '''''' jkjkj IIx ∩= , we will 

have: 
llll '''''kj''''' I    if    jjjkj IIIx =∩=  , 0'' =lkjx ,  otherwise; therefore 

''kj'kj' Ix =• ,   ''' jk'j'k' Ix =•    and    ∑ ∩==
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l ll . 
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Hence the local affinity between two intervals ( ) ( )'',',, ''''' jkkaffIIaff jkkj =  is 

also defined as in formula (1) above, after a suitable transformation of the original 

data matrix. Besides ( )  
 . 

,
k'j''kj''

k'j''kj''

k'j''kj''

II

II
IIaff

∩
= , for k, k’ =1,…,n, which is the 

generalized Ochiai coefficient for interval variables. 
 
 
 
4 Asymptotic Standardized Three-way Affinity Coefficient 
 
Prior knowledge on the data base may often be taken in account as statistical 
reference hypothesis R allowing us to compute standardized affinity values and/or 
the corresponding cumulative distribution function values. New similarity 
coefficients arise and as a result new semiprobabilistic or probabilistic clustering 
models, instead of empirical clustering models may be selected.  
In a three-way clustering probabilistic analysis, a permutational reference 
hypothesis R based on a well known limit theorem of Wald and Wolfowitz (other 
reference hypothesis have been used based, for instance, on the limit theorem of 
delta-method), very often holds. Then the random variable associated to 

( )jkkaff ;',  has asymptotic normal distribution (e.g. Bacelar-Nicolau (1988) and 

Bacelar-Nicolau et al (2009), whose asymptotic mean value and variance are as 
follows: 
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This leads us to a local asymptotic normal affinity coefficient whose realization 

( )jkkaffWW ;',  also satisfies the main properties of a similarity coefficient. Thus 

instead of using the basic generalized affinity coefficient )',( kka between data 

units k, k’ ∈ D ( k, k’=1,…,n), we may use: 
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where );',(/));',();',(();',( *** jkkjkkjkkaffjkkaff WWWWWW σµ−= . 

 

If reference hypothesis R≡WW  holds, using )',( kkaWW  instead of )',( kka   

allows us to deal with comparable similarity values issued from random variables 
with the same (asymptotic standard normal) distribution. The statistical procedure 
shows to be quite robust even in case of small samples.  
This approach also brings us to a third coefficient related to affinity measurement 
that is a probabilistic coefficient which may evaluate the significance of each 
affinity value – e.g. in Lerman (1972, 1981) and in Bacelar-Nicolau (1987, 1988) -. 
In the present work we will not use this probabilistic coefficient yet.  
 
 
5 Example/Case Study   
 
The methods have been applied to data bases related to health sciences, education 
and management areas, for instance in Nicolau et al (2007), Bacelar-Nicolau et al 
(2008),  Bacelar-Nicolau (2002), Sousa (2005). 
Here a small example issued from the literature of three–way and symbolic data 
analysis, found in Ichino and Yaguchi (1994) and Bock and Diday (2000) briefly 
illustrates how both three-way affinity coefficients work.  
The data set consists of 8 oils and fats (1-Linseed oil (LS), 2-Perilla oil (P), 3-

Cotton seed (CS), 4-Sesame oil (S), 5- Camellia (C), 6-Olive oil (O), 7-Beef Tallow 
(T), 8-Lard (L)) described by four interval variables and one nominal qualitative 
feature. The following table shows the original data base. 
 

Table 1. Data Matrix (Fats and Oils) 

 

Sample 

name 

Specific_gravity 

(g/cm3) 

Freezing point 

(º C) 

Iodine 

 value 

Saponification 

value 

Major Fatty 

Acids 

LS [0.930, 0.935] [-27,  -8] [170,  204] [118, 196] L, Ln, O, P, M 
P [0.930, 0.937] [- 5, - 4] [192, 208] [188, 197] L, Ln, O, P, S 
CS [0.916, 0.918] [-6,  -1] [99, 113] [189, 198] L, O, P, M, S 
S [0.920, 0.926] [-6,  -4] [104, 116] [187, 193] L, O, P, S, A 
C [0.916, 0.917] [-21, -15] [80, 82] [189, 193] L, O 
O [0.914, 0.919] [0, 6] [79, 90] [187, 196] L, O, P, S 
T [0.860, 0.870] [30, 38] [40, 48] [190, 199] O, P, M, S, C 
L [0.858, 0.864] [22, 32] [53, 77] [190, 202] L, O, P, M, S, Lu 

        L: Linoleic acid     Ln: Linolenic acid      O: Oleic acid      P: Palmitic acid     M: Myristic acid  

        S: Searic acid      A:  Arachic acid      C: Capric acid      Lu: Lauric acid 
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In order to apply either the empirical three-way affinity coefficient or the 
asymptotic standardized one, a transformed data matrix was computed. 
Each interval variable (generalized column) gave place to a sub-table with a 
suitable number of columns corresponding to a set of elementary intervals. For 
instance in case of the first interval variable, Specific_gravity (g/cm

3
), each of the 

13 columns of such sub-table contains the ranges of the intersection intervals 
between each of the 13 elementary intervals and each of the 8 intervals in the first 
generalized column of Table 1.  Similarly each of the other three interval variables 
gave three sub-tables of 13, 15 and 10 elementary intervals, respectively. The last 
generalized column of Table 1, describing the Major Fatty Acids, gave place to a 
binary sub-table of 9 columns.  
Several hierarchical agglomerative clustering models were used, based either on 
the empirical three-way affinity coefficient or on the asymptotic standardized one, 
with equal weights. The main clustering results were very similar for both 
coefficients although the levels the main clusters merge together are different in the 
two groups of dendrograms. Tables 2 and 3 represent the similarity matrices and 
Figures 1 and 2 show the dendrograms associated to each coefficient and to the 
Complete Linkage aggregation criterion. 

 

Table 2. Similarity Matrix (Fats and Oils):  three-way affinity coefficient 
 

 LS P CS S C O T L 
LS  1.000000        
P 0.492318  1.000000       
CS 0.212840 0.427221  1.000000      
S 0.175470 0.437504 0.534230  1.000000     
C 0.284173 0.259825 0.401246 0.289791  1.000000    
O 0.202101 0.356663 0.460931 0.342185 0.449477  1.000000   
T 0.165291 0.275556 0.337778 0.201650 0.163246 0.267497  1.000000  
L 0.185283 0.280774 0.336534 0.216770 0.202073 0.278769 0.467265  1.000000 

 

Table 3. Similarity Matrix (Fats and Oils):  Standardized three-way affinity 

coefficient 
 LS P CS S C O T L 
LS  1.000000        
P 1.054071  1.000000       
CS -0.177319 0.814400  1.000000      
S -0.312900 0.864528 1.227810  1.000000     
C 0.486189 0.392913 0.895965 0.516401  1.000000    
O -0.191838 0.556516 0.945541 0.524721 1.145654  1.000000   
T -0.390200 0.128798 0.435851 -0.232820 -0.066975 0.061236  1.000000  
L -0.347061 0.105382 0.422068 -0.217022 0.106450 0.081614 0.930447  1.000000 
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Fig. 1. Three-way affinity 

coefficient; Complete Linkage 
aggregation criterion 

Fig. 2. Standardized three-way 
affinity coefficient; Complete 
Linkage aggregation criterion 

 
 

 
The dendrograms give a good illustration for chemical properties of the fats and 
oils: it is known that both elements of each one of the sample pairs (LS, P), (CS, 
S), (C, O) have similar properties, given that LS and P are used for painting, CS 
and S for food, C and O for cosmetics and the pair (T, L) has animal origin. In 
addition cluster {CS, S, C, O} has been found in other statistical approaches as 
well, particularly in Ichino and Yaguchi (1994) and validity coefficients, not 
presented here, provide a helpful complement to the cluster analysis.  
 
6 Conclusions. Future Developments 
 
Both the empirical and the asymptotic standardized three-way (weighted 

generalized) affinity coefficients )',( kka  and )',( kkaWW support in a consistent 

way hierarchical cluster analysis models for statistical data units, when mixed and 

complex variable types are present in a database. Besides, )',( kkaWW  is often 

applied instead of )',( kka . Indeed, if V is a set of p independent heterogeneous 

variables, using )',( kkaWW  instead of )',( kka  means doing local 

standardization accordingly to the different variable types, which in this way all 
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become asymptotic standard normal variables as well as their convex linear 
combination. Future developments concern three-way cluster analysis based on a 
probabilistic coefficient as well as on empirical and semi-probabilistic clustering 
models.  
 
Acknowledgments: This research was partially supported by FCT/POCTI/ and 
POCTI/FEDER, in the scope of CEAUL Research Project on Applied Multivariate 
Data Analysis and Modelling. 
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Abstract. We investigate the problem of impulse control of a partially observed
diffusion process. We study the impulse control of Zakai type equations. The
associated value function is characterized as the only viscosity solution of the cor-
responding quasi-variational inequality. We show the optimal cost function for the
problem with incomplete information can be approximated by a sequence of value
functions of the previous type.
Keywords: impulse control, partially observed diffusion process, nonlinear filter-
ing, diffusion process, Hamilton Jacobi Bellman quasi-variational inequality, vis-
cosity solutions.

1 Introduction

The impulse control is double sequences

v = (θ1, θ2, ..., θj , ...; ζ1, ζ2, ..., ζj , ...; j ∈ IN∗)

where the θ′ns represent the successive instants of impulse, and the ζ ′ns are
the corresponding impulsions assumed to take their values in a compact set.
The applications are numerous, for instance in management (in a large sense:
firms, natural resource, informatic, production, stock...), economics, finance,
medicine... . From an analytic point of view, the study of such problems
leads to quasi-variational inequalities: we search a function v (v = v(x) or
v(x, t)), such that{

Av − f ≤ 0, v −Mv ≤ 0,
(Av − f)(v −Mv)) = 0 in O (orQ)) (1)

where A is a second order elliptic or parabolic differential operator, O is an
open of IRd and Q = O × ]0, T [. In the case of partial observations, the
proper strategies, called admissible controls, must depend on the observation
process in a nonanticipative way. The main known results establish the exis-
tence of optimal strategies ([1], [2] for Markov Chains; [7] for Feller-Markov
processes). Here our purpose is to characterize the value function associ-
ated to the impulse control problem. The initial problem is approximated
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by a sequence of optimal stopping-time problems. For such problems we
prove that the corresponding value functions are unique viscosity solution of
corresponding variational inequalities.

2 Impulse and continuous controls of a diffusion
process

2.1 Set-up

On a standard probability space (Ω,F, P̂ , Fs), are defined two independant
Brownian Motion W and Y respectively n and m dimensional. The impulse
controls v are the sets {θ1, θ2...; ζ1, ζ2...} where (θi)i∈IN∗ is a nondecreasing
sequence of stopping times with respect to (FY

s = σ(Yr; t ≤ r ≤ s)), (θi)i∈IN∗

converges to +∞ and (ζi)i∈IN∗ is a sequence of random vectors valued in a
compact subset of (IR+)d, adapted to FY

θi
.

ξo is a given d-dimensional random vector and for each strategy (α, v),
we inductively define a sequence of processes with jumps:

{
dX0(s) =

[
b(X0(s), αs)− h(X0(s))γ(X0(s), αs)

]
ds + σ(X0(s), αs)dWs + γ(X0(s), αs)dYs, s > t

X0(t) = ξ0

(2)
par


dXn

s = [b(Xn
s , αs)− h(Xn

s )γ(Xn
s , αs)] ds + σ(Xn

s , αs)dWs + γ(Xn
s , αs)dYs, θn < s ≤ T

Xn(θn) = Xn−1(θn) + ζn

Xn(s) = Xn−1(s), t ≤ s < θn

(3)

We set :

Xt,α,v(s) = lim
n→+∞

Xn(s) , s ≥ t , P̂ a.s.

Then the process (Xs)s≥t which is right continuous and has left limits,
satisfies the following stochastic differential equation:

dX(s) = [b(X(s), α(s))− h(X(s))γ(X(s), α(s))] ds + σ(X(s), α(s))dWs, t < s ≤ T

+γ(X(s), α(s))dYs +
∑+∞

i=1 ζi δ(s− θi) ds
X(t) = ξ0

(4)

where δ(t) is the Dirac measure. (Xs)s≥t is our state process observed
through the process (Y s). Introducing the following martingale process,

λs = exp[
∫ s

t

h(Xr) dYr −
1
2

∫ s

t

|h(Xr)|2 dr]

we define a new probability measure by

dPα,v |Fs
:= λsdP̂ |Fs

.
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Then the obervation process (Ys) satifies:{
dYs = h(Xs)ds + dBs

Yt = 0 .

Let also suppose:
(A1) ξ0 has a law of distribution µ, that admits a density x0∈ H0

ρ ∩
(L1(IRd))+.

We note that if β > d
2 then H0

ρ ⊂ L1(IRd).
(A2) l : IRd × U → IR , g : IRd → IR and k : X → IR are positive

measurable functions such that{
l(α)

ρ ∈ L2(IRd) uniformly with respect to α and g
ρ ∈ L2(IRd)

k(ζ) ≡ k1 > 0

We associate to the problem a cost defined on [0, T ]×H0
ρ
+ ×At,T ×Vt,T

by

J(t, x0, α, v) = Eα,v

[∫ T

t

l(Xs, αs)q(s)ds + g(XT )qT +
+∞∑
i=1

k(ζi)q(θi)χ{θi<T}

]
.

(5)
with

q(s) := exp(−λ(s− t)), ∀s ∈ [t, T ]. (6)

2.2 Notations

Let the terminal time T > 0 be fixed and let give us t ∈ [0, T ]. On the
standard probability space (Ω,F , (Fs)s≥t, P ) are defined
- α = (αs)t≤s≤T , the admissible control processes i.e (FY

s )-adapted processes
valued in U , compact subset of IRl. The set of admissible control processes
is denoted by At,T

- Vt,T denotes the set of impulse controls v.
- Wt,T := At,T × Vt,T , the set of admissible strategies.
- Md×n the space of (d× n)-matrix.

We introduce weighted Sobolev spaces.
(A0) ρ : IRd → IR is a positive real-valued function such that

ρ ∈ C2(IRd).

For instance we can choose weight functions ρ of the form:

ρβ(ξ) = (1 + |ξ|2IRd)β/2, β > 0. (7)

We define the weighted Sobolev space Hk
ρ (IRd) as the completion of C∞

c (IRd)
with respect to the weighted norm

x 7→ ‖x‖
Hk

ρ

:=
∑
|α|≤k

(∫
IRd

|∂α [ρ(ξ)x(ξ)]|2 dξ

)1/2

.
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2.3 Differential operators

We define the differential operators Aα and Sα =
(
S1

α, ...., Sm
α

)
by

Aαx(ξ) =
d∑

i,j=1

aij(ξ, α)∂ijx(ξ) +
d∑

i=1

bi(ξ, α)∂ix(ξ) for ξ ∈ Rd andα ∈ U,

(8)

Sk
αx(ξ) =

d∑
i=1

dik(ξ, α)∂ix(ξ)+ek(ξ, α)x(ξ) for ξ ∈ Rd , α ∈ U, and k ∈ {1, ..,m}.

(9)
with aij = 1

2 ((σσ′)ij + (γγ′)ij) , dik = −γik and ek = hk +
∑d

i=1 ∂iγik. We
can associate a formal adjoint process to it:

A?
αx(ξ) =

d∑
i,j=1

∂i(aij(ξ, α)∂jx(ξ))+
d∑

i=1

∂i(ci(ξ, α)x(ξ)) , for ξ ∈ Rd andα ∈ U

(10)
with ci := −bi +

∑d
j=1 ∂jaij .

When concerning with optimal control problems of partially observed
diffusion processes, the separated problem is introduced to retranscribe the
problem into a totally observable one. We then treat a SPDE called Zakai
equation. Here we study the last type equations in order to rely them after to
the original problem and characterize the value function associated to impulse
control problems of partially observable diffusions.

2.4 Filter

We introduce the normalized and unnormalized filters:{
Λα,v

s (f) = Ê[f(Xα,v(s))λs/FY
s ]

Πα,v
s (f) = Eα,v[f(Xα,v(s))/FY

s ]
.

We consider for every α and v given, the following one to one applications

φn : IRd → IRd and φ−1
n : IRd → IRd

ξ 7→ ξ + ζn η 7→ η − ζn

and we define recursively the processes{
dp0(s) = A∗αs

p0(s)ds +
∑m

k=1 Sk
αs

p0(s)dYs, t < s ≤ T
p0(t) = x0 dpn(s) = A∗αs

pn(s)ds +
∑m

k=1 Sk
αs

pn(s)dYs, θn < s ≤ T
pn(θn) = pn−1(θn) ◦ φ−1

n

pn(s) = pn−1(s), t ≤ s < θn

.
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We then set

pα,v(s) = lim
n→+∞

pα,v
n (s) , s ≥ t P̂ p.s. dans L2.

Thus

Proposition 1 The process (p(s)) is right continous and verifies

p(s) ∈ L2(Ω;C
[
(θn, θn+1) ;H0

ρ

]
), ∀n ∈ IN with θ0 = t,

p(s) ∈ L2
Y (t, T ;H1

ρ) ie Ê

∫ T

t

‖p(s)‖2X1
ds < +∞,

and Λα,v
s (f) = Ê[f(Xα,v(s))λs/FY

s ] =
∫

IRd f(ξ) pα,v
s (ξ)dξ.

The cost can be reformulated as a function of the density process:

J(t, x0, α, v) = Ê
[∫ T

t
(l(αs), p(s)) q(s)ds + (g, p(T ))qT +

∑+∞
i=1 k1(1, p(θi)) q(θi)χ{θi<T}

]
:= Ê

[∫ T
t

L1 (αs, p(s)) q(s)ds + G1(p(T ))qT +
∑+∞

i=1 K1(ζi, p(θi))q(θi)χ{θi<T}

]
with

L1(α, x) = (l(α), x)H = ( l(α)
ρ2 , x)H0

ρ

G1(x) = (g, x)H = ( g
ρ2 , x)H0

ρ

K1(ζ, x) = k1(1, x)
,∀x ∈ H0,+

ρ , ∀α ∈ U, ∀ζ ∈ X,

where (., .) denotes scalar product in corresponding spaces.
Our objective is then to characterize the minimal cost function (or value
function) defined as follows:

V1(t, x) = inf
(α,v)∈Wt,T

J(t, x, α, v).

In fact, in the separable problem the impulse cost function doesn’t satisfy
anymore the classical condition to be stricly positive that leads difficulties
for traiting directly the problem. To approximate the value function V1 we
then introduce a sequence of problems with impulse costs Kε > k1ε.

3 Impulse control of Zakai equations

3.1 Approximation

Let ε > 0 and (α, x, ζ) ∈ U ×H0
ρ ×H be given, we introduce

Kε(ζ, x) :=
{

k1(1, x) if (1, x)H > ε
k1ε if not

, k1 > 0

L(α, x) = (l(α), x+)
G(x) = (g, x+)
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If we consider the cost function

Jε(t, x, α, v) = Ê

[∫ T

t

L (αs, p(s)) q(s)ds + G(p(T ))qT +

+∞∑
i=1

Kε(ζi, p(θi))q(θi)χ{θi<T}

]

then it corresponds on H0
ρ
+ to

Ê

[∫ T

t

L1 (αs, p(s)) q(s)ds + G1(p(T ))qT + k1

+∞∑
i=1

(1, p(θi))q(θi)χ{θi<T}χ{(1,p(θi))>ε}

]
.

Theorem 2 We have

V ε(t, x) →ε↘0 V1(t, x) on H0
ρ
+.

V ε is characterized as the only viscosity solution of the following Hamilton Ja-
cobi Bellman quasi variational inequality. Indeed the Dynamic Programming
Principle leads formally to the Hamilton Jacobi Bellman Quasi Variational
Inequality whose Vε should be solution:
∀(t, x) ∈ [0, T [×H0

ρ

max
[
− ∂V

∂t
(t, x) −infα∈U {BαV (t, x) + L(α, x)− λV (t, x)} ; (V −MV )(t, x)] = 0,

V (T, x) = G(x),
(11)

where the operators Bα and M are respectively defined by

BαV (t, x) =
1
2

m∑
k=1

〈
D2V (t, x)Sk

αx , Sk
αx

〉
0

+ 〈A∗αx , DV (t, x)〉〈H−1
ρ ,H1

ρ〉 ,

and
MV (t, x) = inf

ζ∈X
{Kε(ζ, x) + V (t, Γ (ζ, x))} . (12)

3.2 Viscosity solutions

Definition 3 A function V ∈ C
(
[0, T ]×H0

ρ ; IR
)

is called viscosity sub-
solution (respectively super-solution) of the problem (11) if:

1) V (T ) ≤ G on H0
ρ (resp. V (T ) ≥ G) and

2) for every ϕ ∈ C1,2
(
(0, T )×H−1

ρ

)
, for all δ∈ C1(0, T ) such that

δ > 0 on [0, T ], then at every global maximal point (t, x) ∈ (0, T ) × H0
ρ of

V −
(
ϕ + δ

2 ‖x‖
2
0

)
(resp. at every global minimal point of V −

(
ϕ− δ

2 ‖x‖
2
0

)
),

we have:
x ∈ H1

ρ

and

max

[
−

∂ϕ

∂t
(t, x)−

δ
′
(t)

2
‖x‖2o − inf

α∈U

{
Bα(ϕ +

δ

2
‖.‖20)(t, x) + L(α, x)− λV (t, x)

}
; (V −MV )(t, x)

]
≤ 0

(13)
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(resp.

max

[
−

∂ϕ

∂t
(t, x) +

δ
′
(t)

2
‖x‖2o − inf

α∈U

{
Bα(ϕ−

δ

2
‖.‖20)(t, x) + L(α, x)− λV (t, x)

}
; (V −MV )(t, x)

]
≥ 0.

(14)

It is a viscosity solution of (11) if it is both a sub- and super-solution.

Remark 4 In the rest of the paper this problem is reduced to a sequence of
iterated stopping problems, that is useful for numerical applications.
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Abstract. We consider the issue of bandwidth selection in adaptive kernel based
hazard rate estimation under the local linear framework when the data are ran-
domly right censored. Specifically, the Akaike Information Criterion method is
extended from the density setting and evaluated numerically as a potential band-
width selector when a kernel hazard rate estimate uses a variable, according to
each data point, smoothing scheme. We conclude with Monte carlo simulations on
distributional datasets.
Keywords: Stochastic simulation, variable bandwidth, kernel, hazard rate, band-
width selection, local linear.

1 Introduction

This paper considers kernel based nonparametric estimation in presence of
random right censoring, of the hazard rate function which is formally defined
as

λ(x) = lim
dx→0+

P(x ≤ X < x + dx|x ≤ X)
dx

(1)

and expresses the probability that an item with continuous lifetime X > 0
will experience an event which is the primary interest of the study, in the
interval (x, x + dx) given that no such event occurred up to time x.

A summary of early studies on this topic, based on conventional kernel
methods, can be found in [7]. One of their main characteristics is that the
amount of smoothing applied to the estimate, controlled by a parameter
usually referred to as the bandwidth, remains constant across x. However,
when the distribution of the underlying data varies considerably within the
region of estimation it is desirable that bandwidth also changes appropriately.
An intuitive smoothing scheme, introduced first by [1] in the density setting
is to vary bandwidth inversely proportionally with the underlying curve since
in this case, less smoothing is applied when more structure is present and vice
versa. [1] and [10] established that optimal theoretical results are achieved
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when bandwidth is inversely proportional to the square root of the density. In
[5] and [14] it was shown that the method carries over its excellent theoretical
properties to the hazard setting. Moreover, in [5] it was shown that the finite
sample behavior of a variable bandwidth estimate parallels the simulation
results of [9] in density context which justified its use in case of complex
structures such as multimodal curves.

However, proper implementation of such a method involves a bandwidth
selector that estimates the correct amount of smoothing to be applied by
taking into account its variable form. The purpose of the present article is to
develop an automatic, data based bandwidth selector for an estimate which
combines the local linear and the square root law techniques under random
right censoring.

The rest of the article is organized as follows: In section 2 we formulate
the proposed estimate while in section 3 we propose a bandwidth selector for
the estimate in question and finally in section 4 we use distributional data to
examine the estimates performance in comparison with other estimates with
similar asymptotic properties. All proofs are deferred for the last section.

2 Local linear variable bandwidth hazard rate

Let T1, T2, . . . , TN be a sample of i.i.d. survival times censored on the right by
i.i.d. random variables U1, U2, . . . , UN , which are independent from the Ti’s.
Let fT be the common probability density and FT the distribution function
of the Ti’s. Denote by H the distribution function of the Ui’s. Typically
the randomly right censored observed data are denoted by the pairs (Xi, δi),
i = 1, 2, . . . , N with Xi = min{Ti, Ui} and δi = 1{Ti≤Ui} where 1{·} is the
indicator random variable of the event {·}. The distribution function of Xi’s
is 1− F = (1− FT )(1−H). By the definition of conditional probability the
hazard rate function (1) can be written as

λ(x) =
fT (x)

1− FT (x)
, FT (x) < 1,

on an interval [0, T ] of the real line, with T = sup {x : FT (x) < 1− ε} for a
small ε > 0. Partition the interval into n disjoint subintervals {Ij , j = 1 . . . n}
of equal length ∆ = T/n and denote with xj = (j − 1

2 )∆, j = 1 . . . n, the
center of the interval Ij . A natural estimate of the hazard rate is

cj =
dj

∆nj
, j = 1, 2, . . . , n

with

dj =
N∑

i=1

1{Xi∈Ij ,δi=1}, nj =
N∑

i=1

1{Xi>∆(j−1)}
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because cj is an empirical estimate of P(X ∈ (xj , xj + ∆)|X > xj), j =
1, 2, . . . , n which if ∆ is small should be close to λ(xj). The essence of the
local linear fitting approach is to model the scatterplot data (xj , cj) locally
by a weighted least squares simple linear regression model. See [3] for precise
formulation and justification. Using the square root law to control the size of
the local neighborhood, the local linear hazard rate estimate λ̂(x|h) is defined
as the estimated intercept β̂0 of the fitted line, obtained by solving

min
β0,β1

n∑

j=1

{cj − β0 − β1(xj − x)}2 λ1/2(xi)
h

K

(
xj − x

h
λ1/2(xj)

)
.

Here, K is a kernel function, used to assign weight to each point. Straight-
forward calculations give

λ̂(x|h) = h−1
n∑

j=1

Sn,1(x)(xj − x)− Sn,2(x)
S2

n,1(x)− Sn,0(x)Sn,2(x)
λ1/2(xj)K

(
xj − x

hλ−1/2(xj)

)
cj

(2)
with

Sn,l(x) =
n∑

j=1

λ1/2(xj)K
(

xj − x

h
λ1/2(xj)

)
(xj − x)l, l = 0, 1, 2.

Estimator λ̂(x|h), is typically called the ideal estimate and cannot be used
directly in practice as it depends on the true hazard rate function. Replacing
λ(xj) in (2) with another kernel estimate, usually referred to as the pilot, leads
to the practically useful adaptive version of λ̂(x|h), denoted by λ̂(x|h1, h2)
and defined by

λ̂(x|h1, h2) = h−1
2

n∑

j=1

Sn,1(x)(xj − x)− Sn,2(x)
S2

n,1(x)− Sn,0(x)Sn,2(x)

× λ̃1/2(xj |h1)K
(

xj − x

h2
λ̃1/2(xj |h1)

)
cj

where λ̃(x|h) has been studied in [3] and is given by

λ̃(x|h) =
T ∗n,1(x)S∗n,1(x)− T ∗n,0(x)S∗n,2(x)
S∗n,1(x)S∗n,1(x)− S∗n,0(x)S∗n,2(x)

where

T ∗n,l(x) =
n∑

j=1

cjK

(
xj − x

h

)
(xj − x)l, l = 0, 1

S∗n,l(x) =
n∑

j=1

K

(
xj − x

h

)
(xj − x)l, l = 0, 1, 2.
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3 Bandwidth selection

In implementing estimator λ̂(x|h1, h2) one needs bandwidth selection rules
for h1 and h2. Selection of the pilot bandwidth h1 has been studied in
detail in [3]. For this reason we focus here on selection of h2. The Akaike’s
Information Criterion (AIC) bandwidth selection method was introduced in
[12] and was also discussed for λ̃(x|h) in [3]. Working similarly and in analogy
with calculations yielding (2.5) in [12] and taking into account the binning
approximations of [20] yields

AIC(h2) = log {RSS}+
n + tr(S)

n− [tr(S) + 2]
(3)

with

RSS =
n∑

i=1

(
ci − λ̂(xi|h1, h2)

)2

and

tr(S) = K(0)
n∑

i=1

Sn,2(xi)
Sn,2(xi)Sn,0(xi)− S2

n,1(xi)
.

Minimization of (3) over h2, yields the suggested bandwidth to use in λ̂(x|h1, h2).
Minimization is done in the interval (0, X(N)), where X(N) denotes the largest
sample observation. As the optimization technique, one may use a nonlinear
minimization function subject to Box constrains. In the next section this
is implemented by using the function nlminb of S-plus. As pointed out in
[12] such an approach may not always return the true minimum, and for this
reason one may try to run the minimization function several times changing
the starting values. However this did not seem to be a problem in producing
the simulation results of section 4.

As analytical evaluation of the AIC bandwidth selector is not feasible, an
alternative way is to use another bandwidth selector as benchmark. Since
our assessment in the next section is based on the MISE criterion, use of a
plug-in rule is well suited as by definition such a selector is based on MISE
minimization. Provided that as N → +∞, Nh → 0, the MISE can be well
approximated by the AMISE which is defined as

AMISE
{

λ̂(x|h)
}

= h8µ2
4(u)R(g) + (Nh)−1R(K)

∫
λ

3
2 (x)

1− F (x)
dx

which is minimized by

h =


 1

8N

R(K)
µ2

4(u)

∫ λ
3
2 (x)

1−F (x) dx

R(g)




− 1
9

. (4)
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Now, (4) cannot be used in practice as it contains unknown quantities. More-
over, using kernel based estimates for R(g) is not advisable and the primary
reason at least for small to medium sized samples is that due to the many
derivatives involved in R(g) the resulting estimate will be highly unstable.
For this reason, potential use of (4) should be limited only when there is
strong confidence on a parametric model.

4 Numerical examples

In this section we use distributional data to asses the proposed bandwidth
selector and to exhibit the practical performance of the variable bandwidth
estimator.

This is achieved via MISE comparisons for five known distributions with
different hazard rate shapes over four different sample sizes and four different
levels of censoring. The distributions we consider and the intervals over which
the hazard rate is estimated are the standard Lognormal, (LN(0, 1), [0.01, 4]),
the Weibull with shape parameter 0.5 and scale parameter 0.8 (W(0.5, 0.8),
[0.01, 4]), the χ2

12 with 12 degrees of freedom estimated at [0.01, 20] and the
truncated to (0, +∞) normal mixtures 2

3N(4, 0.4)+1
3N(3, 0.2) and 0.6N(−3, 9)+

0.4N(10, 9) estimated at [2.4, 3.8] and [0.01, 12] respectively. The sample sizes
are 100,200,400 and 1000 observations and the amounts of censoring are 0%
(no censoring), 10%,20% and 30%. Denote with λ̂∗ the estimate for which
we evaluate the MISE and with λ the true hazard rate function. Then, in
all cases the MISE is approximated by averaging over 1000 iterations the
difference (λ̂∗ − λ)2, calculated across 100 equispaced grid points covering
the whole region of estimation. Simpson’s extended numerical integration
method is used to integrate the approximate mean square error. In all cases,
implementation of censoring and selection of ∆ is done as in section 4 of [3].

In assessing the proposed bandwidth selector and since the objective is
to study behavior of h as obtained by minimization of (3) we use the ‘ideal’
variable bandwidth estimate λ̂(x|h). As a benchmark we also use bandwidth
obtained by (4) with the unknown functionals calculated by use of the true
distribution. While this approach is not available in practice since it depends
on the true curve, it is still useful as it provides a lower bound on the error
and hence the maximum potential that can be achieved by the estimate and
the bandwidth rule proposed.

In tables 1 and 2 we present the results of this simulation study. An overall
conclusion, drawn by averaging the percentage differences of MISE’s on both
tables is that the AIC method is fairly close to the benchmark plug-in method
with the latter being approximately 30% more precise. We feel that this
difference is rather small given that the plug-in rule figures actually represent
a lower bound in MISE. Moreover, we feel that the MISE figures produced by
use of the AIC bandwidth are acceptable for hazard rate estimates given the
sample sizes and amounts of censoring considered. These two facts suggest
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Table 1. Approximate MISE’s of λ̂(x|h) using the plug in (hPI) and AIC (hAIC)
bandwidth selectors, estimating the hazard rate from the χ2

12, W(0.5, 0.8) and
LN(0, 1) distributions for various sample sizes (N) and amounts of censoring.

χ2
12 W(0.5, 0.8) LN(0, 1)

Cens N hPI hAIC hPI hAIC hPI hAIC

0%

100 1.2832 1.896 0.9143 1.351 0.6514 0.9625
200 0.9394 1.388 0.758 1.12 0.3385 0.5002
400 0.5929 0.876 0.6017 0.889 0.0257 0.0379
1000 0.3059 0.452 0.4534 0.67 0.0171 0.0253

10%

100 1.3942 2.06 1.0011 1.4792 0.7132 1.0538
200 1.0206 1.508 0.8299 1.2263 0.3707 0.5477
400 0.6443 0.952 0.6587 0.9733 0.0281 0.0415
1000 0.3303 0.488 0.4965 0.7336 0.0187 0.0277

20%

100 1.5052 2.224 1.0961 1.6195 0.7808 1.1537
200 1.1018 1.628 0.9087 1.3426 0.4058 0.5996
400 0.6957 1.028 0.7212 1.0657 0.0307 0.0454
1000 0.3573 0.528 0.5436 0.8032 0.0205 0.0303

30%

100 1.6156 2.3872 1.2 1.7731 0.8549 1.2632
200 1.4756 2.1804 0.9948 1.4699 0.4443 0.6565
400 0.7452 1.1012 0.7896 1.1667 0.0336 0.0497
1000 0.3836 0.5668 0.5952 0.8794 0.0225 0.0332

appropriateness of the AIC method for bandwidth selection at least for the
distributions considered here.
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Abstract. Let us consider the classical conditionally linear Gaussian model, also
called Jump-Markov State-Space (JMSS) model, described by the equations :

xn+1 = Fn+1(rn+1)xn + vn, (1)
yn = Hn(rn)xn + wn, (2)

in which {rn} denote a discrete Markov Chain with known transition probabili-
ties, {vn}, {wn}, x0 are Gaussian vectors independent, mutually independent and
independent of r1,..., rN .

The Bayesian fixed-lag smoothing problem we address here consists in comput-
ing efficiently fixed-lag state estimates E[xn|y1:n+T ] and E[rn|y1:n+T ], where T is
a fixed positive integer. Let us start from the following factorization :

E[xn|y1:n+T ] =
∑
rn

E[xn|rn, y1:n+T ]p(rn|y1:n+T ) (3)

The first term in the sum can be computed by a Kalman smoother, however the
exact computation of the second term requires an exponential computational cost,
and one needs to use suboptimal solutions. In Doucet et al.(IEEE Trans. On Sig-
nal Processing, 2001), a particle smoother gives an approximation p̂(rn|y1:n+T ) =∑N
i=1 w

i
nδrin(rn). However, to maintain a diversity in the particles and avoid the

problem of sample depletion, one has to include at each time a Monte Carlo Markov
Chain (MCMC) step, which is computationaly intensive.

In this paper we propose an alternative fixed-lag smoothing algorithm based
on a different way to approximate p(rn|y1:n+T ). More precisely, let us assume that
(r1:N , y1:N ) is a Partially Pairwise Markov Chain (PPMC), whose joint distribution
satisfies :

p(r1:N , y1:N ) = p(r1, y1)
N−1∏
n=1

p(rn+1, yn+1|rn, y1:n) (4)

The interests of this assumption are multiple. First it takes into accounts long mem-
ory observations; next it allows the exact computation of the densities p(rn|y1:n+T )
by a forward-backward procedure. Finally the parameters of the PPMC which is
the closest to the true model (r1:N , y1:N ) are estimated by an Iterative Conditional
Estimation (ICE) method.

To sum up, rather than using a Particle Smoother for approximating p(rn|y1:n+T ),
we approximate the stochastic model wich describes the relation between r1:N and
y1:N , but we compute p(rn|y1:n+T ) exactly.
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Abstract: The possibility of application of neural networks for the prediction of both stock 
and exchange rate returns was investigated. First, the capability of neural networks to reveal 
specific underlying process was studied using different simulated time series. Second, actual 
weekly returns from Czech financial markets were analyzed and predicted. Particularly, the 
problems connected with capturing of outliers and structural breaks were discussed. The 
predictive power of neural networks was investigated both as a function of network 
architecture and the length of training set. 
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1  Introductory Remarks to Neural Networks 
 

Artificial neural networks (ANN) are now frequently used in many modelling and 
forecasting peoblems, mainly thanks to the possibility of the use of computer 
intensive methods. Recently, they have been increasingly applied in financial time 
series analysis as well, see e.g. Franses and van Dijk (2000), McNelis (2005). The 
main advantage of this tool is the ability to approximate almost any nonlinear 
function arbitrarily close. Particularly in financial time series with complex 
nonlinear dynamical relationships, the ANN can provide a better fit compared with 
parametric nonlinear models. On the other hand, usually it is difficult to interpret 
the meaning of parameters and ANN are often treated as “black box” models 
constructed for the pattern recognition and prediction. Further, excellent in-sample 
fit does not guarantee satisfactory out-of-sample forecasting. 
Generally, the ANN is supposed to consist of several layers. The input layer is 
formed by individual inputs (explanatory variables). These inputs are multiplied by 
connection strengths called weights in statistical terminology. Further, there is one 
or more hidden layers, each consisting of certain number of neurons. In the hidden 
layer, the linear combinations of inputs are created and transformed by the 
activation functions. Finally, the output is obtained as a weighted mean of these 
transformed values. Usually, this kind of ANN is referred to as multilayered feed 
forward network and we restrict ourselves to the models with one or two hidden 
layers. It is useful to realize, information flows only in one direction here, from 
inputs to output. In time series problems, variables are measured over a time 
interval and we suppose to exist relationships among variables at successive times. 
In this case, our objective is to predict future values of a variable at a given time 
either from the same or other variables at earlier times. We restrict here to the case, 
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when single numeric variable is observed and its next values are predicted using 
number of lagged values.  
The mathematical representation of the feedforward network with one hidden layer 
and logsigmoid activation function is given in McNellis (2005): 

( ), ,0 , , , , 0 , ,
1 1 1

, 1/ 1 exp ,
I K I

k t k k i i t k t k t t k k t i i t
i k i

n w w x N n Y N x
= = =

 = + = + − = γ + γ + β ∑ ∑ ∑  

The first equation describes the creation of linear combination of input variables, 
whereas the second one expresses the transform by logsigmoid activation function. 
The third equation explains that output value can be obtained either from neurons 
or from inputs directly. Clearly, having no hidden layer, the model reduces to 
purely linear one.  
 
2  Predictions with Simulated Data 
 
First, the various ANN types were trained and applied to three kinds of simulated 
time series. The main aim was to investigate prediction ability with respect to the 
length of time series (250 or 500), the number of lagged explanatory values (10 or 
20) and the number of hidden layers (one or two). In each case, 10 last values were 
used for prediction, so either 240 or 490 values were left as training data. To 
quantify the prediction power, the following goodness-of-fit measures were 
computed: Mean Prediction Error (MPE), Mean Deviation of Prediction Error 
(MDPE) and Mean Absolute Prediction Error (MAPE): 
 

( )
1 1 1 1

1 1 1 1
, ,

h h h h

n j n j n j n j n j
j j j j

MPE y Y e MDPE e e MAPE e
h h h h+ + + + +

= = = =

= − = = − =∑ ∑ ∑ ∑  

 

In all formulas, n denotes the number of training data and h the prediction length. 
Further, the following structural notation will be used:  time series length – number 
of lagged values – number of neurons in the first hidden layer - – number of 
neurons in the second hidden layer. For example, the notation 250-10-03-01 
specifies 250 data in time series, 10 lagged explanatory values and three  (resp. 
one) neurons in the first (resp. second) hidden layer. All computations were 
performed with the use of STATISTICA software, version 7. 
Simulation 1: Deterministic Chaos. Even simple nonlinear deterministic systems 
can under certain conditions pass to chaotic states due to extremely sensitivity both 
to initial conditions and control parameters (see e.g. Hilborn (2001)). As an 
example, consider discrete time system described by logistic difference equation 
 

( )1 4 1t t ty y y+ = − . 
 

Clearly, the values from the interval <0,1> will be mapped again into this interval. 
As for modelling, it is obvious from the following table, longer time series 
provided better results. On the other hand, the number of lagged values and hidden 
layers were of minor importance here.  
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Network Type MPE MDPE 
 

MAPE 
 

500-20-07-00 -0.048 0.100 0.080 
500-20-10-08 -0.013 0.220 0.217 
500-10-02-00 -0.139 0.203 0.188 
500-10-02-02 -0.079 0.121 0.111 
250-20-04-00 -0.042 0.325 0.325 
250-20-10-10 +0.065 0.252 0.251 
250-10-05-00 -0.066 0.295 0.305 
250-10-05-04 -0.082 0.234 0.246 

Tab.1. Results of ANN Modelling: Deterministic Chaos 
Simulation 2: Bilinear Process. The simplest diagonal form of this process can 
be, according to Tsay (2002), written as: 

( )2
1 1 , 0, , 1t t t t ty y u u u N− −= α + ≈ σ λ = ασ <  

On contrary to the previous case, there is no preferred model.  

Network Type MPE MDPE 
 

MAPE 
 

500-20-01-00 0.740 1.326 1.431 
500-20-02-01 0.428 1.282 1.337 
500-10-04-00 0.716 1.257 1.328 
500-10-07-02 0.619 1.291 1.346 
250-20-01-00 0.746 1.324 1.479 
250-20-01-01 0.501 1.348 1.457 
250-10-04-00 0.456 1.265 1.320 
250-10-05-05 0.409 1.273 1.277 

Tab.2. Results of ANN Modelling: Bilinear Process 
Simulation 3: Kesten Process. This process is a natural generalization of classical 
AR(1) process discussed in Sornette (2000): 

( ) ( )2
1 0, ,t t t ty y u u N R a b−= α + ≈ σ α ≈ , 

where R denotes regular distribution. Again, MDPE and MAPE exhibit relatively 
slow variations and the best results are achieved with 250-10-03-00 model. 

Type MPE MDPE 
 

MAPE 
 

500-20-03-00 0.511 1.211 1.144 
500-20-06-05 0.551 1.279 1.205 
500-10-02-00 0.441 1.062 1.022 
500-10-03-02 0.363 1.077 1.005 
250-20-01-00 0.314 1.243 1.191 
250-20-04-03 0.728 1.402 1.337 
250-10-03-00 0.215 0.937 0.887 
250-10-01-01 0.595 1.131 1.131 

Tab.3. Results of ANN Modelling: Kesten Process 
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3  Predictions with Financial Data 
 
The main aim was the testing of ANN predictive power in financial applications. 
We employed weekly logarithnic stock returns (companies CEZ, KB, TEL, UNIP) 
and weekly exchange rate returns (CZK/EUR, CZK/GBP, CZK/CHF, CZK/USD) 
during 2005-2008, i.e. 200 weekly values for each time series. In all cases, 25 
preceeding values were used and 12 values were left for prediction testing. Further, 
both linear models and neural networks with one and two hidden layers were 
applied. Graphical presentation of results achieved is on the following figures: 
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Fig.1. CEZ returns: actual values (circles) versus predictions (triangles). 
Left: original values   Right: Cumulative values   Model: 200-25-05-00 
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Fig.2. KB returns: actual values (circles) versus predictions (triangles). 
Left: original values   Right: Cumulative values   Model: 200-25-12-10 
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Fig.3. TEL returns: actual values (circles) versus predictions (triangles). 
Left: original values   Right: Cumulative values   Model: 200-25-12-06 
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Fig.4. UNIP returns: actual values (circles) versus predictions (triangles). 
Left: original values   Right: Cumulative values   Model: 200-25-03-04 
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Fig.5. CZK/EUR  returns: actual values (circles) versus predictions (triangles). 

Left: original values   Right: Cumulative values   Model: 200-25-06-00 
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Fig.6. CZK/GBP  returns: actual values (circles) versus predictions (triangles). 
Left: original values   Right: Cumulative values   Model: 200-25-06-00 
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Fig.7. CZK/CHF  returns: actual values (circles) versus predictions (triangles). 
Left: original values   Right: Cumulative values   Model: 200-25-12-06 
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Fig.8. CZK/USD  returns: actual values (circles) versus predictions (triangles). 

Left: original values   Right: Cumulative values   Model: 200-25-05-00 
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Stock 

 
Model Type MPE MDPE MAPE 

CEZ Linear  -1.550 1.227 1.910 

 One Layer 200-25-05-00 -0.704 0.869 1.054 

 Two Layers 200-25-06-02 -1.565 1.281 2.075 

      

KB Linear  -2.197 3.211 3.460 

 One Layer 200-25-04-00 -1.833 2.964 3.138 

 Two Layers 200-25-12-10 -1.368 2.356 2.672 

      

TEL Linear  +0.906 1.322 1.296 

 One Layer 200-25-01-00 +0.527 1.572 1.538 

 Two Layers 200-25-12-06 +0.342 0.865 0.868 

      

UNIP Linear  -2.611 1.892 3.044 

 One Layer 200-25-02-00 -0.153 2.897 2.943 

 Two Layers 200-25-03-04 +0.028 2.597 2.592 

Tab.4. Results of ANN Modelling: Stock Returns 
 

Stock 
 

Model Type MPE MDPE MAPE 

CZK/EUR Linear  +1.087 0.823 1.121 

 One Layer 200-25-06-00 +0.610 0.753 0.786 

 Two Layers 200-25-02-01 +1.273 0.830 1.290 

      

CZK/GBP Linear  +0.730 2.389 2.059 

 One Layer 200-25-06-00 +0.870 2.237 1.787 

 Two Layers 200-25-04-02 +1.090 2.343 1.801 

      

CZK/CHF Linear  +1.537 0.959 1.537 

 One Layer 200-25-08-00 +0.152 1.293 1.247 

 Two Layers 200-25-12-06 +0.623 1.021 1.048 

      

CZK/USD Linear  +0.913 1.104 1.519 

 One Layer 200-25-05-00 +0.896 1.236 1.044 

 Two Layers 200-25-03-04 -0.642 1.253 1.395 

 

Tab.5. Results of ANN Modelling: Exchange Rate Returns 
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4  Conclusions 
 
 

The first group of findings is related to artificial data. The best results were 
obtained for deterministic chaotic process, because there is relatively simple 
relation between neighbouring values. Second, the process itself is bounded 
between zero and one and the notion of outliers is meaningless here. On the other 
hand, the results for both bilinear and Kesten processes are markedly worse due to 
ability to create sudden random excursions. Further, the results seem to be similar 
for the lengths of time series used (500 and 250), number of lagged values (20 and 
10) and number of hidden layers (two and one). 
As for stock returns, different kinds of individual behaviour were revealed. Both 
for CEZ and TEL, there has been good agreement between real data and 
predictions till 7th week and some deviations occured after this time. On the other 
hand, predictions of UNIP returns balanced out with respect to their sign, so that 
corresponding mean predicted error was very small. The worst results were 
observed in the case of KB returns, where both actual values and predictions 
exhibited negative signs up to 6th week, but absolute values of predictions were 
systematically lower. In most cases, neural networks with two hidden layers turned 
out to be the best alternative. 
Exchange rate returns exhibited similar behaviour, but there were strongly 
manifested outliers. In all cases, 11th and 12th actual values were strong positive 
outliers with markedly worse predictions. Thus, the corresponding deviations 
occurred, but the general agreement between actual values and predictions has 
been observed till 10th week for CZK/USD and CZK/EUR returns, whereas 
CZK/CHF ones exhibit some kind of sign compensation. Further, the signs of 
actual values and predictions in 11th and 12th weeks were the same for CZK/EUR 
and CZK/GBP returns and opposite for CZK/USD ones. In most cases, neural 
networks with one hidden layer proved to be sufficient. 
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Abstract 

 

The aim of the present research is to evaluate the impact of non-normality on the power of the 

randomization test for difference between the means of two independent groups. In literature, many 

studies such as we can see in Micceri, 1989; Mosteller & Tukey, 1968; Stigler, 1977; Wilcox, 

1995a, 1995b; suggest that non-normality is common in research data sets. To manipulate non-

normality, we used the set of 15 distributions used in Marron and Wand (1992)’s simulation study. 

These distributions, which have been used in quite a few subsequent studies, can all be written as 

mixtures of Gaussian distributions. They include distributions that are essentially normal with 

heavy tails and some outliers (‘mild non-normality’) and others with a more extreme non-normality, 

namely multi-modal distributions (‘extreme non-normality’). We evaluated the power of the 

randomization test, and also the power of the Student-t test, as a comparison standard, with data 

simulated from the 15 Marron-Wand distributions for seven values of effect size and three sample 

sizes (n1 = n2 = 8, n1 = n2 = 16, n1 = n2 = 32). For each condition, we generated 20 000 samples, and 

for each one the power of randomization tests was estimated using 1 000 permutations. We set the 

value of Type I error probability at 0.05. The results show that, in terms of power, the two tests are 

similar, with a slight advantage for the randomization test over the Student-t test. When we compare 

the non-normal distributions with the Gaussian, we observe some gains in power in the case of 

‘mild non-normality’ distributions and decreases in power in the case of ‘extreme non-normality’ 

distributions. These differences in power are inversely related with sample size. 
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1. Introduction 

 

Randomization tests are significance tests based on the random assignment of experimental 

units to treatments in order to test hypotheses about treatment effects. Thus the validity of these 

tests is based on a random-assignment model, while the validity of classical tests, e.g. Student-t test, 

is based on a random-sampling model. 

In experimental research, hardly ever do we have random samples, so randomization tests 

allow us to drop the assumption of random sampling from a specified population, the most 

implausible assumption of typical experimental research. 

The randomization idea appears with Fisher (1935), but it was Pitman (1937a, 1937b, 1938) 

who first presents a type of significance tests, “which may be applied to samples from any 

population”, based on random assignment alone. These tests were further developed by Kempthorne 

(1952, 1955), Hinkelmann and Kempthorne (1994), Edgington (1964, 1966, 1969a, 1969b, 1995) 

and Edgington and Onghena (2007). 

With advent of computers and the increase in the speed of computations, the interest in these 

tests has shifted from theoretical considerations - the validation of classical methods - to practical 

applicability. Even with moderate sample sizes, there may be so many data permutations that it 

would not be feasible to generate them all. Contributions from Dwass (1957) and Chung and Fraser 

(1958) provided the possibility to use only a subset of all possible data permutations, thus rendering 

practical this computer intensive technique. Manly (1997) and Edgington and Onghena (2007) 

present some research applications illustrating the use of this technique. 

When analysing data from an experiment, where the experimental units are randomly 

assigned to treatments, if we use a test statistic, like t or F, the distinction between a randomization 

and a classical test is the way to calculate the significance. In the case of a randomization test, the 

significance is calculated by a procedure in which the data are repeatedly permuted, and the 

significance thus obtained is exact, conditional on the data. With this procedure, the researcher can 

calculate the significance of any statistical test, even of one whose sampling distribution has not yet 

been analytically derived. Thus, to analyse the data, the researcher is free to choose the test that is 

most likely to be sensitive to the type of treatment effect that is expected, Branco et al (2010). 

When the assumptions for using classical tests are met, the classical and randomization tests 

are equivalent in terms of statistical power. 
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The concept of statistical power was developed by Neyman and Pearson. In a series of 

papers (Neyman & Pearson, 1928a, 1928b, 1933), these authors stated that the choice of a test must 

take in consideration not only the hypothesis but also the alternatives against which it is being 

tested. They introduced the distinction between errors of the first and second kind. Power, the 

complement of an error of the second kind, is the probability of rejecting a false null hypothesis. 

Although the Neyman-Pearson theory of statistical inference is mainstream in the social and 

behavioural sciences (see, e.g., Hays, 1994; Marascuilo & Serlin, 1988; Winer, Brown, & Michels, 

1991), power analyses were neglected and we must credit Cohen (1962) for introducing the notion 

of statistical power to behavioural scientists. In his handbook on power, Cohen (1969, updated in 

1988), the author allowed researchers, when planning an experiment, to determine the sample size 

needed to detected a given population effect size, taking in account the two types of errors. 

As stated above, the classical and randomization tests are equivalent in terms of power, 

when the assumptions for using classical tests are met. But, in empirical research, it is well known 

that seldom the data are well behaved, and frequently present a non-normal shape. 

 Indeed, Micceri (1989) and Stigler (1977) have shown that many data sets collected in 

empirical research usually have non-normality. Mosteller and Tukey (1968), Bradley (1977) and 

Wilcox (1995a, 1995b) reached similar conclusions. However the data analyzed by Stigler and by 

Micceri suggest different types of non-normality: while Stigler’s data are approximately normal, 

with heavy tails and some outliers, the data described by Micceri present a more extreme non-

normality with distributions not only asymmetric but multimodal. 

 The data collected in empirical research can come from many different distributions and we 

can not cover all possibilities. In this study we used the set of 15 distributions used by Marron and 

Wand (1992) in their simulation study, which were later used in many others, which are mixtures of 

normal. These 15 distributions include some distributions of the type described by Stigler, but most 

of them have extreme non-normality, as the ones analyzed by Micceri. 

 In Table 1 we list the 15 Marron-Wand distributions that can be written as mixtures of 

Gaussians. For each distribution, we show the parameters of the Gaussian distributions that 

constitute them, together with their weighting. 

 

Table 1 The 15 Marron-Wand distributions 

 

Distr ibut ion Mean Variance Weight ing 

1 .  Gaussian  0  1  1  

2 .  Skewed -0 .3  1 .4400000 0.2  
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Distr ibut ion Mean Variance Weight ing 

 0 .3  

 1 .0  

0 .6400000 

0.4444444 

0.2  

0 .6  

3 .  S trong Skewed  0 .000000 

-1 .000000 

-1 .666667 

-2 .111111 

-2 .407407 

-2 .604938 

-2 .736626 

-2 .824417 

1.000000000 

0.444444444 

0.197530864 

0.087791495 

0.039018442 

0.017341530 

0.007707347 

0.003425487 

0.125 

0.125 

0.125 

0.125 

0.125 

0.125 

0.125 

0.125 

4.  Kurto t ic  

  

 0  

 0  

1 .00 

0 .01 

0 .6666667 

0.3333333 

5.  Out l ier   0  

 0  

1 .00 

0 .01 

0 .1  

0 .9  

6 .  Bimodal  -1  

 1  

0 .4444444 

0.4444444 

0.5  

0 .5  

7 .  Separa ted Bimodal  

  

-1 .5  

 1 .5  

0 .25 

0 .25 

0 .5  

0 .5  

8 .  Asymmettr ic  

Bimodal  

 0 .0  

 1 .5  

1 .0000000 

0.1111111 

0.75 

0 .25 

9 .  Trimodal  

 

-1 .2  

 1 .2  

 0 .0  

0 .3600 

0.3600 

0.0625 

0.45 

0 .45 

0 .10 

10.  Claw 

 

 0 .0  

-1 .0  

-0 .5  

 0 .0  

 0 .5  

 1 .0  

1 .00 

0 .01 

0 .01 

0 .01 

0 .01 

0 .01 

0 .5  

0 .1  

0 .1  

0 .1  

0 .1  

0 .1  

11.  Double Claw 

 

-1 .0  

 1 .0  

-1 .5  

-1 .0  

-0 .5  

 0 .0  

 0 .5  

 1 .0  

 1 .5  

0 .4444444 

0.4444444 

0.0001000 

0.0001000 

0.0001000 

0.0001000 

0.0001000 

0.0001000 

0.0001000 

0.490000000 

0.490000000 

0.002857143 

0.002857143 

0.002857143 

0.002857143 

0.002857143 

0.002857143 

0.002857143 

12.  Asymmetr ic  Claw 

  

 

 0 .0  

-1 .5  

-0 .5  

 0 .5  

 1 .5  

 2 .5  

1 .000000 

0.160000 

0.040000 

0.010000 

0.002500 

0.000625 

0.50000000 

0.25806452 

0.12903226 

0.06451613 

0.03225806 

0.01612903 

13.  Asymmetr ic  

Double  Claw          

-1 .0  

 1 .0  

-1 .5  

-1 .0  

-0 .5  

 0 .5  

 1 .0  

 1 .5  

0 .4444444 

0.4444444 

0.0001000 

0.0001000 

0.0001000 

0.0049000 

0.0049000 

0.0049000 

0.460000000 

0.460000000 

0.003333333 

0.003333333 

0.003333333 

0.023333333 

0.023333333 

0.023333333 

14.  Smooth Comb 

  

 

-1 .4761905 

 0 .8095238 

 1 .9523810 

 2 .5238095 

 2 .8095238 

 2 .9523810 

0.2579994961 

0.0644998740 

0.0161249685 

0.0040312421 

0.0010078105 

0.0002519526 

0.50793651 

0.25396825 

0.12698413 

0.06349206 

0.03174603 

0.01587302 
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Distr ibut ion Mean Variance Weight ing 

15.  Discrete  Comb 

 

-2 .1428571 

-0 .4285714 

 1 .2857143 

 2 .2857143 

 2 .5714286 

 2 .8571429 

0.081632653 

0.081632653 

0.081632653 

0.002267574 

0.002267574 

0.002267574 

0.28571429 

0.28571429 

0.28571429 

0.04761905 

0.04761905 

0.04761905 

 

In order to illustrate the shape of these distributions, we present in Figure 1 graphics of the 

respective densities. 
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Figure 1 The 15 Marron-Wand densities  

 

 The aim of the present research is to evaluate the impact of nonnormality on the power of 

the randomization test for difference between the means of two independent groups. 
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2. Method 

We evaluated the power of randomization tests and the Student t test when comparing two 

independent balanced groups by manipulating the following three variables: 

- Sample sizes, with three levels: n1 = n2 = 8, n1 = n2 = 16 and n1 = n2 = 32; 

- Effect size, with 7: -0.8, -0.5, -0.2, 0.0, 0.2, 0.5, 0.8; 

- Population distribution, with 15 levels: the Marron-Wand distributions, mixtures of normal, as 

described in Table 1. 

Regarding the size of groups, we use groups of 8, 16 and 32 elements since these values 

correspond respectively to samples as small, medium and large in experimental studies in 

social and behavioural sciences. 

 The values of effect size were chosen taking into account Cohen’s guidelines (1962, 1988). 

This author stated that values of 0.2, 0.5 and 0.8 correspond to “small”, “medium” and “large” 

effects in the social sciences research, particularly in psychology. These conventional values 

received empirical support by Lipsey (1990) in a study incorporating the results of 102 meta-

analysis summarizing the results of 6700 individual studies in the field of behavioural sciences. 

 To simulate data from these distributions, we write programs in R (R Development Core 

Team, 2008), using the package 'nor1mix' (Mächler, 2007). For each distribution we simulated 20 

000 samples and for each of these samples, we generated 999 random combinations to estimate the 

significance of the randomization tests. 

 Values for the number of samples and the number of resamples have been chosen taking into 

account the recommendations of Oden (1991), Westfall & Young (1993) and Zhang & Boos (2000). 

Power was evaluated for two-tailed tests for α = 0.05. We calculated the power of a test as the 

proportion of samples in which the probability value associated with the test statistic was equal to or 

less than the value of α. 

 In what regards randomization tests, with sample sizes n1 = n2 = 8, the total number of 

combinations is 12 870; this number rises to 601 080 390 in the case of sample sizes n1 = n2 = 16, 

and 1.83262 x 10
18

, when sample sizes are n1 = n2 = 32. Since we used, to estimate the significance 

of the randomization test, a reference set of 1000 combinations (one observed, plus 999 randomly 

generated), we have construct 99% confidence intervals for each power value. When comparing the 

power of randomization tests with the power of Student t test, we use the information provided by 

these confidence intervals. 
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3. Results 

 

 First we present the power of randomization tests for the Gaussian distribution, then we 

compare their power in the case of the Marron-Wand 02-14 distributions with their power in the 

case of Gaussian distribution and, finally, we compare the power of randomization tests with the 

power of Student t test. 

 

3.1. Power of randomization tests (Gaussian distribution) 

 

 The power of randomization in the case of Gaussian distribution is presented in Table 2. As 

expected, the power increases with sample size, but is generally low, only exceeding the value 0.80 

in the case of samples with 32 elements per group and a “large” effect size. 

 

Table 2 Gaussian distribution: Power of the randomization tests 

Effect Size n1 = n2 = 8 n1 = n2 = 16 n1 = n2 = 32 

-0.80 0.315 0.590 0.880 

-0.50 0.153 0.275 0.501 

-0.20 0.065 0.087 0.128 

0.00 0.049 0.050 0.049 

0.20 0.065 0.083 0.121 

0.50 0.153 0.277 0.506 

0.80 0.325 0.587 0.880 

 

 

3.2.  Influence of non-normality on the power of randomization tests  

 To present the results, we will distinguish two groups of Marron-Wand distributions: The 

first group includes the 02-05 distributions, similar to those analyzed by Stigler ('mild' non-

normality), the second group comprises the 06-15 distributions, analogous of those described by 

Micceri ('extreme' non-normality). 
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3.2.1. ‘Mild non-normality’ 

 

 In Table 3 we present the difference between the power of randomization tests for the first 

group of Marron-Wand distributions (MW02-05) and its power for the Gaussian distribution. These 

four distributions are all unimodal, unlike the other distributions that have two or more modes. 

 

Table 3 Difference in power between the ‘mild’ non-normal 

distributions and the Gaussian 

 

Sample size Effect Size MW02 MW03 MW04 MW05 

 -0.80 0.029 0.051 0.034 0.326 

 -0.50 0.012 0.035 0.023 0.341 

 -0.20 0.002 0.010 0.007 0.098 

n1 = n2 = 8 0.00 0.003 0.000 0.003 0.001 

 0.20 0.005 0.009 0.005 0.093 

 0.50 0.013 0.039 0.023 0.339 

 0.80 0.021 0.045 0.034 0.319 

 -0.80 0.010 0.013 0.008 0.120 

 -0.50 0.015 0.018 0.016 0.217 

 -0.20 0.000 0.001 0.003 0.105 

n1 = n2 = 16 0.00 0.001 0.000 0.000 -0.001 

 0.20 0.004 0.010 0.003 0.106 

 0.50 0.015 0.025 0.020 0.218 

 0.80 0.019 0.022 0.016 0.114 

 -0.80 0.001 -0.004 -0.001 -0.013 

 -0.50 0.006 0.010 0.004 0.099 

 -0.20 0.002 -0.004 0.000 0.074 

n1 = n2 = 32 0.00 0.001 -0.001 0.001 0.001 

 0.20 0.004 0.005 0.003 0.079 

 0.50 0.006 0.009 0.004 0.097 

 0.80 0.001 -0.001 -0.002 -0.011 

 

We can see that for these distributions, the differences are generally positive, indicating gains in 

power. Excluding the MW05 distribution, the differences vary between -0.004 and 0.051. But in the 

case of the MW05 distribution, strongly kurtotic, there are appreciable gains in power (with a 

maximum of 0.341). We also note that, for all these distributions, gains in power are inversely 

related to samples size. 

 

3.2.1. ‘Extreme non-normality’ 
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 We present in Table 4 the difference between the power of randomization tests for the 

second group of Marron-Wand distributions (MW06-15) and its power for the normal distribution. 

These ten distributions are all multimodal and have a more extreme non-normality. 

 

 

 

Table 4 Difference in power between the ‘extreme’ non-normal distributions and the Gaussian 

 

Sample size Effect Size MW06 MW07 MW08 MW09 MW10 MW11 MW12 MW13 MW14 MW15 

 -0.80 -0.016 -0.033 -0.010 -0.024 0.000 -0.018 -0.005 -0.021 -0.029 -0.029 

 -0.50 -0.012 -0.016 -0.006 -0.011 0.003 -0.008 -0.004 -0.012 -0.013 -0.011 

 -0.20 -0.002 0.000 0.000 0.000 -0.002 0.001 0.000 -0.002 0.000 -0.002 

n1 = n2 = 8 0.00 0.001 0.002 0.002 0.000 0.004 0.002 -0.004 0.000 0.001 0.001 

 0.20 -0.003 -0.001 0.001 -0.003 -0.001 0.000 0.000 -0.003 -0.003 -0.002 

 0.50 -0.008 -0.015 -0.007 -0.015 -0.002 -0.005 -0.003 -0.012 -0.013 -0.013 

 0.80 -0.029 -0.046 -0.011 -0.029 -0.008 -0.024 -0.008 -0.027 -0.031 -0.037 

 -0.80 -0.017 -0.018 -0.009 -0.009 0.001 -0.004 0.002 -0.009 -0.005 -0.016 

 -0.50 -0.007 -0.014 0.001 -0.010 -0.001 -0.011 -0.005 -0.008 -0.009 -0.009 

 -0.20 -0.004 -0.005 0.000 -0.003 -0.002 -0.006 -0.002 -0.003 -0.002 -0.005 

n1 = n2 = 16 0.00 0.000 0.000 0.001 0.004 -0.001 0.000 0.002 0.002 0.001 -0.001 

 0.20 0.002 0.001 0.001 0.003 0.006 -0.001 0.001 -0.003 0.001 0.001 

 0.50 -0.011 -0.018 -0.002 -0.010 0.004 -0.012 -0.005 -0.008 -0.014 -0.010 

 0.80 -0.004 -0.010 -0.007 -0.008 0.001 -0.004 -0.001 -0.003 -0.011 0.000 

 -0.80 0.002 0.004 0.000 0.005 0.002 0.004 0.002 0.002 0.000 0.001 

 -0.50 -0.004 -0.009 -0.007 -0.014 0.000 -0.006 -0.008 -0.001 -0.009 -0.007 

 -0.20 -0.008 -0.009 0.000 -0.007 -0.007 -0.005 -0.006 -0.010 -0.008 -0.005 

n1 = n2 = 32 0.00 0.000 0.000 0.003 0.003 0.000 0.000 -0.002 0.003 0.000 0.001 

 0.20 0.002 0.000 0.001 -0.002 0.002 0.001 0.002 0.001 -0.002 -0.002 

 0.50 -0.010 -0.012 -0.003 -0.002 -0.003 -0.011 -0.003 -0.011 -0.006 -0.008 

 0.80 0.001 0.003 0.002 0.003 0.001 0.006 0.004 0.003 0.001 0.008 

 

 

 Here, the differences are generally negative, implying loss of power. But the biggest loss 

does not exceed 0.046 and there is an inverse relationship between losses and samples size: for 

samples with 16 elements, the maximum loss is 0.018, and it is 0.014 for samples with 32 elements. 

 

3.3.  Comparison of the power of randomization tests and Student  t  

 

 The randomization and Student t tests showed, in general, similar power, with a slight 

advantage for the former. The differences are, on the whole, very small and tend to decline with 

increasing sample sizes. If we do not consider the MW05 distribution, differences in power vary 

between -0.009 and 0.013. However, in the case of the MW05 distribution, the differences are all 
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positive and, as shown in Table 5, for n1 = n2 = 8 they are all statistically significant and for n1 = n2 

= 16 they are significant in the interval -0.02 to 0.02.  

 

 

 

 

 

 

Table 5 Diference between the power of randomization tests 

 and t  de Student toMarron-Wand 05 (‘Outlier’) distribution. 

 

Effect Size n1 = n2 = 8 n1 = n2 = 16 n1 = n2 = 32 

-0.80 0.050 0.025 0.009 

-0.50 0.098 0.040 0.021 

-0.20 0.065 0.056 0.022 

0.00 0.028 0.023 0.013 

0.20 0.061 0.057 0.024 

0.50 0.102 0.036 0.020 

0.80 0.053 0.025 0.010 

Note :  Signicant  di ferences are  represented in bold.  

 

 

We can observe that for this distribution, Marron-Wand 05 ('Outlier'), the Student t test is too 

conservative, since for an 0.00 effect size the power achieved, respectively for samples with 8, 16 

and 32 elements per group, is 0.021, 0.027 and 0.037, whereas the corresponding values for the 

randomization test are 0.049, 0.049 and 0.050. 

4. Conclusions 

 

 In this study we evaluated the power of randomization tests for comparing two independent 

balanced samples for non-normal distributions. The effect on the power of these tests is different for 

the two types of non-normality we have considered: mild and extreme non-normality. 

 For the Marron-Wand 02-05 distributions, similar to those described by Stigler (normal with 

heavy tails and some outliers), all unimodal, there is an increase in power relative to the Gaussian 

distribution. In the case of one of these distributions (MW05), the increase is rather large. 

 Regarding the Marron-Wand 06-15 distributions, similar to those analyzed by Micceri, with 

extreme non-normality, with multiple modes, there is a decrease in power, although generally a 

small one. 

 These differences in power are inversely related to samples size. 
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 Concerning the comparison of the randomization test with the Student's t test, it was found 

that, in general, they have similar power, with some advantage to the former. This advantage is only 

significant in the case of one of the simulated distributions, MW05, strongly kurtotic, with outliers, 

and reduces with increasing sample size. 

 These results suggest that if an investigator, when planning an experiment, chooses his 

samples size in function of a given population effect size and a given power, assuming a normal 

distribution, the power of his randomization test will not be diminished by more than 0.05, if his 

data come from a non-normal distribution. 

 However, it is important to note that our results were obtained with balanced groups and 

with the same distribution. They can not therefore be generalized to situations where the groups are 

not balanced or have different distributions or are heteroscedastic. 
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Abstract: Loddon Mallee Integrated Cancer Service (LMICS) is responsible for planning 

the delivery of cancer services in the Loddon Mallee Region of Victoria, Australia. 

Forecasting the incidence of cancer in the region plays a key role in strategic planning for 

these services. In this paper, we describe the context of our work, present a review of the 

literature on forecasting the incidence of cancer, discuss contemporary approaches to the 

problem especially functional data analysis, describe our experience with the models at 

LMICS, and list special issues associated with applying these models in regional Australia. 

The extensive bibliography illustrates the world-wide interest in this forecasting problem. 

Keywords: Stochastic models, Functional data analysis, Poisson regression, Strategic 

planning, Health care 

 

1  Introduction 
 

Cancer is a major cause of death in Australia. Governments need to predict the 

resources required to deal with the disease, and to evaluate anti-cancer programs. 

For this reason, “[c]ancer, except for basal cell and squamous cell carcinoma of the 

skin, is a notifiable disease in all states and territories of Australia” (AIHW 

(2008a), p. 1). Thus, forecasting plays a key role in the fight against cancer. 

 

We will need to define some terms and concepts. 

 

In any year, the incidence of cancer is the number of new cases that have been 

diagnosed in that year. In any year, and for any specific age-group, the age-specific 

incidence is the number of new cases that have been diagnosed in that year for that 

particular age group. 

 

The incidence rate is the incidence per 100,000 head of population. The age-

specific incidence rate is the age-specific incidence per 100,000 head of population 

in the associated age group. 
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The prevalence of cancer may be defined as the number of people living in the 

region who have been diagnosed with cancer during the last 5 years. One might 

also call this 5-year prevalence (AIHW (2008b)). 

 

The state of Victoria in Australia has developed a plan to guide the prevention of 

cancer and care for cancer patients in the state. One of the key principles of the 

plan is that “patients should be treated as close to home as possible whilst 

maintaining quality and safety of care” (DHS (2009), p. 13). 

 

Loddon Mallee Integrated Cancer Service plays an important role in implementing 

the state-wide plan in the Loddon Mallee Region (LMR) in Victoria. LMR covers 

an area of 56,956 sq. km., which is about 25% of the state of Victoria, and has a 

population of a little more than 300,000, which is about 6% of the state’s 

population. The region is large in area and sparsely populated. These factors 

underpin the challenges associated with treating patients close to home in LMR. 

 

The following two examples illustrate that forecasting the incidence of cancer is an 

essential part of strategic planning for the delivery of cancer services in LMR. 

 

Positron emission tomography (PET) is an imaging technique that is useful in 

estimating the stage to which cancer has developed in a patient. PET scanners are 

expensive and, at present, there is no PET scanner in the region. To develop a 

business case for a PET scanner, it is necessary to estimate the demand for PET 

scans which involves forecasting the incidence of cancer in the region. These 

estimates can be included in applications for funding for the scanner. 

 

The cancer journey can span many years. Providing service for cancer patients and 

their carers is not limited to providing care for patients who have been diagnosed 

with cancer during the current year (those counted in the incidence data). In 

planning services for supportive care, one needs to estimate the prevalence of 

cancer by using the incidence of cancer and the probability of survival for a given 

number of years (Pisani (2002)). Thus, forecasting the incidence of cancer is part 

of forecasting the prevalence of cancer and, hence, contributes to strategic planning 

for supportive care in the region. 

 

This paper deals with forecasting the incidence of cancer in LMR. We assess the 

research literature on the subject in light of our experience in dealing with practical 

problems. We emphasise concepts and issues rather than numerical results. 

 

2  Review of the Literature 
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Governments around the world are interested in forecasting the incidence (or 

incidence rates) of cancer so that they can plan accordingly. This has led to the 

publication of case studies from many countries such as Australia (AIHW 2005), 

Bulgaria (Hristova et al. (1997)), China (Yang et al. (2005)), Japan (Fujimoto et al. 

(1988)), New Zealand (New Zealand Ministry of Health (2002)), Finland and other 

Nordic countries (Dyba (2000), Møller et al. (2002, 2003), Teppo et al. (1974)), 

Scotland (Scottish Executive Health Department (2004)), USA (Tiwari et al. 

(2004), Pickle et al. (2007)), Wales (White et al. (2006)). The collection of papers 

in Magnus (1982) further illustrates this level of international interest. 

 

An important general lesson one may draw from this international literature is that 

the appropriate model for forecasting the incidence of cancer may vary with 

geographic location, and the site of the cancer. For example, Møller et al. (2002) 

found that the appropriate model for Iceland was different from the models used in 

other Nordic countries. Fujimoto et al. (1988) used different models for different 

types of cancer in the same geographic location. We cannot assume that a model 

that works for Australia will also work for LMR, or that a model that works for 

breast cancer will work for lung cancer. 

 

Which explanatory variables should be used in a model? Unfortunately, the 

aetiology of many cancers is not well enough understood to form part of a model. 

Even when causes may be known (eg smoking and lung cancer), to forecast the 

incidence of cancer using this link brings new complications into the model. 

However, it has been noted often (eg Barber et al. (2009)) that the age-distribution 

of the population is a very important factor in describing the incidence of cancer, 

even though age does not cause cancer. Because the demographic profile is 

reasonably predictable, researchers have tended not to look further for explanatory 

variables beyond time and the demographic profile of the region. 

 

Frost (1939) is an early paper that discusses “the cohort effect” in the variation of 

vital rates. He explains his ideas with graphical methods applied to data on deaths 

from tuberculosis in Massachusetts between 1870 and 1930. The same general idea 

has been applied to modelling incidence and mortality rates for cancer (Clayton 

and Schifflers (1987a, 1987b). Day and Charnay (1982) present an overview of this 

approach in the context of cancer. 

 

3  Contemporary Approaches 
 

Since incidence data are count data, it is not surprising that Poisson regression 

models have played a role in forecasting the incidence of cancer (Hakulinen and 

Dyba (1994), Dyba (2000)). 
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Functional data analysis (FDA) has its mathematical roots in the study of random 

functions, and is now applied in a wide range of areas (Ramsay and Silverman 

(2002, 2005)). Erbas et al. (2007) have applied FDA to forecasting mortality rates 

of breast cancer in Australia; the same principles apply to forecasting incidence 

rates; see also Hyndman and Ullah (2005). FDA methods are facilitated by recent 

developments in R (R Development Core Team (2008), Ramsay et al. (2009)). The 

Australian Institute of Health and Welfare used FDA in a recent report on 

forecasting the incidence of cancer; the report also contains a brief overview of 

statistical methods for projecting the incidence of cancer (AIHW (2005)). 

 

Any forecasting exercise should have a clear aim that stems from the context of the 

problem. This will assist in defining the response variable, identifying explanatory 

variables, choosing the model and its assumptions, and assessing the accuracy 

required. This can be illustrated by the PET scanner issue. 

 

To assess the need for a PET scanner in the region, we aim to forecast the 

incidence rather than the incidence rate. Because we are not comparing our region 

to other regions, we do not need to forecast the standardised incidence rate (Estève 

et al. (1994, Chapter 2)). Since a PET scan is used soon after the patient is 

diagnosed with cancer, one would be interested in forecasting incidence rather than 

prevalence. 

 

Thus, in this example, the response variable is the incidence of all cancers in a year 

(X), the explanatory variable is time (t, year), the model used is simple linear 

regression (X = a+bt+ε). The model fits well (R
2
=0.93, p = 2.3e-15) and leads to 

useful forecasts with prediction intervals of a reasonable size. See Figure 1. 

Residual analysis shows that there is some structure left in the residuals that 

warrants further investigation. 
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Figure 1: Incidence of all cancers in LMR, 1982-2006 

 

Several brave authors have written articles on whether predictions of the incidence 

of cancer really work (Hakulinen et al. (1986), Dyba and Hakulinen (2008)). It is 

too early for us to judge the accuracy of our own forecasts using this simple model.  

 

If the aim is to assess the demand for a PET scanner in the region, then the width 

of the prediction interval must be appropriate for that purpose. Yet again we see 

that a clear purpose is essential to the modelling. 

 

4  Regional Issues 
 

There are issues concerning the data, some of which arise from the regional 

context. First, for privacy reasons, if the incidence is less than 5 then LMICS is not 

provided with the incidence data. This will occur in a region such as LMR for 

specific cancers, or for specific sub-regions of LMR. Second, when the incidence 

is small, the incidence series can be quite volatile thus limiting the value of 

forecasts. Third, the most recent data available may be two or more years old; this 

is the cost of striving to produce incidence data that are very accurate. Fourth, 

LMICS has available data on age-specific incidence rates for only 11 years. This 

makes it difficult to use age-period-cohort models. Finally, to obtain better 

estimates of the prevalence of cancer, it would be very helpful for LMICS to have 

more local data on survival rates in addition to the statewide data reported in 

English et al. (2007). 

 

5  Conclusions and further work 
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The main conclusion is that stochastic models and data analysis are essential tools 

in planning for services for cancer patients and their carers. This is a contribution 

of mathematics and statistics to an important problem in public health. 

 

The research literature comes from the experience of researchers in many different 

countries. The most appropriate model may depend on the geographic location of 

the region, and the type of cancer being studied. 

 

Our experience illustrates that one must have a clear view of the purpose of the 

forecasting problem in order to build the model. Data at a regional level may not be 

as extensive as that at a national level; the challenge is to make the best use of 

available data. And simple models can work well. 

 

There are many questions for us to resolve in this area.  

 

The continuing problem facing us is to decide which models work best for 

forecasting the incidence of cancer in LMR. Comparisons of competing methods 

have been made by Dyba and Hakulinen (2000). 

 

“The prediction should always be accompanied by a prediction interval, a measure 

of its precision, in order to be properly used in the decisive process” Dyba (2000). 

Usually researchers use 95% or 90% prediction intervals, Erbas et al. (2007) use 

80% prediction intervals. Landon and Singpurwalla (2008) present a method for 

choosing the coverage probability for prediction intervals based on decision theory. 

Can the ideas of Landon and Singpurwalla be used in the context of forecasting the 

incidence of cancer? 

 

It is always precarious to make long term predictions in health or technology. 

Predicting the incidence of cancer falls in both areas. 
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Abstract. Dynamic programming technique is applied to find optimal strategy
for dynamical XL reinsurance. More precisely, we consider a risk process modelled
by compound Poisson process and excess of loss reinsurance, defined by retention
level and limit. We find optimal survival probability as a solution of corresponding
Hamilton-Jacobi-Bellman (HJB) equation and show the existence of optimal rein-
surance strategy. Numerical examples in case of exponentially, log-normally and
Pareto distributed claims are provided.
Keywords: Survival probability, Excess of loss reinsurance, Hamilton-Jacobi-Bellman
equation, Dynamic programming.

1 Introduction

We consider an insurance company that has a possibility to choose and buy
dynamically an excess of loss reinsurance. In this situation our goal is to de-
rive the optimal reinsurance strategy that maximizes the survival probability
of the cedent. The corresponding problem for XL contract without limiting
level has been solved by Hipp and Vogt, 2003 [3].

We model risk process Rt of the cedent by a Lundberg process with claim
arrival intensity λ and absolutely continuous claim size distribution F . Let
Ti be the occurrence time of the i-th claim, Nt the number of claims in
time interval (0, t] and Wi the amount of the i-th claim. Assume that c is
the premium intensity of the insurer which contains positive safety loading,
i.e. c > λE[Wi]. The reinsurer uses the expected value principle with safety
loading θ > 0 for premium calculation. We also assume that (1+θ)λE[Wi] >
c, because otherwise the cedent could reinsure his total portfolio and at the
same time collect positive premium.

According to XL contract claim W is divided into the cedent’s pay-
ment min{b, W}+ max{0,W −M − b} and the reinsurer’s payment min{M,
max{0,W − b}}. In this paper parameters of excess of loss reinsurance con-
tract, i.e. the retention level b and the limiting level b + M are supposed to
be chosen dynamically. Thus we consider predictable strategies Zt = (bt,Mt)
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and the insurer adjusts retention bt and limit bt +Mt at any time t ≥ 0 using
claim history available before t. We will show that optimal strategy exists
and its components are given as bt = b(RZ

t−), Mt = M(RZ
t−), where b(s)

and M(s) are measurable functions and RZ
t is the risk process under strategy

Zt. Let ρ = λ(1 + θ), then

RZ
t = s + ct− ρ

t∫
0

E min{Mx,max(0,W − bx)}dx

−
Nt∑
i=1

(min{Wi, bTi}+ max{0,Wi − bTi −MTi}), (1)

where s is the initial surplus.
Our goal is to maximize survival probability. Assume that τZ is the ruin

time of the cedent using strategy Zt, it is given by

τZ := inf{t ≥ 0 : RZ
t < 0}.

Then the survival probability of the insurer using strategy Zt with initial
surplus s is

δZ(s) = P{τZ = ∞|R0 = s} (2)

and we will calculate the function δ(s) = sup
Z
{δZ(s)} to find an optimal

strategy Z∗ where supremum is attained.

2 Hamilton-Jacobi-Bellman equation

From the definition of δ(s) we conclude that for arbitrary ε > 0 there exists
a strategy Z̃t with δZ̃(s) > δ(s)− ε. Next, for some small h > 0, we consider
a strategy

Zh
t = (bh

t ,Mh
t ) =

{
(b, M), t ∈ [0, h ∧ T1],
Z̃t−h∧T1(Rh∧T1), t > h ∧ T1.

Then using the formula of total probability and given above inequality for
δZ̃(s) we obtain that

δ(s) ≥ δZ̃(s) = P{τZ̃ = ∞|T1 > h}P{T1 > h}+P{τZ̃ = ∞|T1 ≤ h}P{T1 ≤ h}

which is bounded from below by

δ(s+KZh)e−λh+

h∫
0

E[δ(s+KZt−min{W,M}−max{0,W−b−M})]λe−λtdt−ε,
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where KZ = c − ρE min{M,max{0,W − b}}. Then, assuming that δ(s) is
differentiable, as in [3] or [6] we obtain HJB equation for optimal survival
probability δ(s):

sup
b,M

{KZδ′(s)− λδ(s) + λE[δ(s−min{W, b} −max{0,W − b−M})]} = 0,

where supremum is taken over all b > 0 and M ≥ 0 for which the following
inequality holds

c > ρE min{M,max(0,W − b)}, (3)

because otherwise the insurer has a negative net premium income. Moreover,
since we are looking for a nondecreasing solution δ(s) we can rewrite the above
equation as

δ′(s) = inf
b,M

λ
δ(s)− E[δ(s−min{W, b} −max{0,W − b−M})]

c− ρE min{M,max{0,W − b}}
. (4)

3 Existence of the solution

In this section we prove the existence of the solution of (4). Moreover, we
obtain equations for optimal (b, M), i.e. points at which infimum in (4) is
attained.

Theorem 1. There exists an increasing solution V (s) of equation (4), which
is continuous on [0,+∞) and continuously differentiable on (0,+∞); more-
over, V (s) = 0 for s < 0 and V (s) → 1 as s →∞.

Proof. We obtain the solution V (s) using successive approximations.
We define a sequence of functions Vn(s) as V0(s) = δ0(s) (i.e. the survival
probability without reinsurance) and

V ′
n+1(s) = inf

(b,M)

{
λ

Vn(s)− E[Vn(s−min{W, b} −max{0,W − b−M})]
c− ρE min{M,max(0,W − b)}

}
(5)

for n = 0, 1, 2, · · · .
Using induction, we show that V ′

n+1(s) ≤ V ′
n(s). (The similar approach

is utilized in ‘[3]). Then applying induction it is also easy to prove that
Vn(s) = 0 for s < 0.

We demonstrate now that for s > 0 infimum in (5) is positive. Firstly,
assume that function U(s) is continious for s ≥ 0, continuously differentiable
for s > 0 and U(s) = 0 for s < 0. Next define function H(b, M) via

H(b, M) = λ
U(s)− E[U(s−min{W, b} −max{0,W − b−M})]

c− ρE min{M,max(0,W − b)}

Using Lagrange approach we prove the following
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Lemma 1. Infimum of the function H(b, M) over all b > 0,M ≥ 0, that
satisfy (3), is attained at one of the following points (b, M)

(i) at point b = ∞,M = 0, and equals

λ

c
(U(s)− E[U(s−W )];

(ii) at b = 0,M = M∗, where M∗ is solution of the following equation:

H(0,M) = λ

E[U ′(s + M −W )]−
M∫
0

U ′(s + M − x)dF (x)

ρ(1− F (M))

and equals H(0,M∗);
(iii) at b = b∗ ≤ s,M = M∗, where (b∗,M∗) satisfies the following system

H(b, M) = λρ−1U ′(s− b)

H(b, M) = λρ−1
E[U ′(s+M−W )]−

b+M∫
0

U ′(s+M−x)dF (x)

(1−F (b+M))

and equals H(b∗,M∗) = λρ−1U ′(s− b∗).

Now, applying Lemma 1 to function U(s) = Vn(s) one could obtain by
induction that V ′

n(s) > 0 for s > 0. So, V ′
n(s) is a decreasing sequence of

continuous functions, and since V ′
n(s) > 0 the sequence V ′

n(s) converges to
a function υ(s). Using approach similar to that in [3] or [6] we prove the

continuity of υ(s). Finally, defining V (s) = 1 −
∞∫
s

υ(u)du, we have V (s)

satisfying the following equation

V ′(s) = inf
b,M

λ
V (s)− E[V (s−min{W, b} −max{0,W − b−M})]

c− ρE min{M,max{0,W − b}}

4 Existence of the optimal strategy

In previous section we have proved existence of the solution of (4). In this
section we show that the strategy Z∗t = (b∗t ,M

∗
t ) derived from the minimizer

(b∗(s),M∗(s)) in (4) maximizes the survival probability. More precisely, we
prove the following result

Theorem 2. There exists a measurable function Z∗(s) = (b∗(s),M∗(s))
such that the infimum in the Hamilton-Jacobi-Bellman equation (4) is at-
tained at (b, M) = Z∗(s) for s ≥ 0. This function defines an optimal rein-
surance strategy Z∗t , i.e. δZ∗(s) ≥ δZ(s) for any other predictable strategy
Zt.
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Proof. The existence of the function Z∗(s) is implied by general results for
Bellman’s equations (see, e.g., [7]).

Let V ∗(s) be the increasing solution of (4) constructed in the previous
section; then from Theorem 1 we have 0 ≤ V ∗(s) ≤ 1, V ∗(s) = 0 for s < 0
and lim

s→∞
V ∗(s) = 1. Put by definition δ∗(s) = V ∗(s).

We have to establish that the strategy Z∗t = (b∗t ,M
∗
t ) = Z∗(Rt−)

= (b∗(Rt−),M∗(Rt−)) defined by measurable function Z∗(s) = (b∗(s),M∗(s))
is such that δ∗(s) = δZ∗(s) and for any predictable strategy Zt we have
δZ∗(s) ≥ δZ(s). We define R∗(t) and R(t) as the risk processes of the insur-
ance company with reinsurance strategies Z∗t and Zt respectively. Let τ∗ and
τ be the corresponding ruin times. Let X∗(t) and X(t) be the corresponding
stopped processes. Define W ∗(t) and W (t) via

W ∗(t) = δ∗(X∗(t)) = δ∗(Rt∧τ∗), W (t) = δ∗(X(t)) = δ∗(Rt∧τ ).

Then, as in [5], we obtain the following formula for E[Wt] (and the similar
formula for E[W ∗(t)])

E[Wt] = V (s) + E

 t∫
0

V ′(Xy)(c− ρE min{M,max(0,W − by)})dy



+λE

t∫
0

[V (Xy −min{W, by} −max{0,W − by −My})− V (Xy)]dy (6)

From the HJB equation (4) we conclude that under any strategy Zt = (bt,Mt)

δ∗′(XZ(s))(c− ρE min{Ms,max{0,W − bs}})− λδ∗(XZ(s))

+λE[δ∗(XZ(s)−min{W, bs} −max{0,W − bs −Ms})] ≤ 0

with equality under the strategy Z∗t . Using this inequality we obtain from
(6) that E[δZ(XZ(t))] ≤ δ∗(s) with equality for Z∗t . Finally, letting t → 0 we
have δ∗(s) = δZ∗(s) and δZ∗(s) ≥ δZ(s) for any strategy Zt.

5 Numerical examples

5.1 Exponentially distributed claims

At first, we assume that claims have exponential distribution with mean m.
Even in this simple case one has to compute solution of the HJB equation
(4) using approximation method and calculate functions Vn(s), as defined in
Theorem 1. For the first step (i.e. for V0(s) = δ0(s) the survival probability
without reinsurance) we have the following formula (see [4]):

δ0(s) = 1− λm

c
exp

{
−

(
m− λ

c

)
s

}
.
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Fig. 1. The survival probabilities

Fig. 2. Optimal strategy for exponential distribution

We use the following values of parameters: c = 1.5, ρ = 1.6, λ = 1 and
m = 1. We start with V (0) = δ0(0) and then norm V (s) dividing it by V (s0),
where s0 is considerably high. Figure 1 shows that survival probability of a
company using optimal XL strategy (i.e. the solution V (s) of equation (4))
is considerably larger than survival probability without reinsurance (lower
graph). Figure 2 provides the optimal strategy Z∗(s) = (b∗(s),M∗(s)) for
values s ∈ [0, 10]. For small s the optimal strategy is (∞, 0), i.e. the insurer
keeps the whole risk. From s ≈ 0.3 to s ≈ 2.2 we have b∗(s) ≈ s and at
the same time the width of reinsured layer decreases. Then for s > 2.2 the
optimal reinsurance parameters are nearly constant b ≈ 0.9 and M ≈ 0.1.

5.2 Log-Normally distributed claims

Now consider claims having log-normal distribution with density

f(x) =
1√

2πσ2x
exp

(
− (lnx− µ)2

2σ2

)
.

152



New Approach to Dynamic XL Reinsurance 7

Fig. 3. Optimal strategy for log-normal distribution

To compute optimal strategy in this case we choose λ = 1, c = 4, ρ = 4.5 and
distribution parameters µ = 1, σ = 0.5. In case of log-normally distributed
claim severities we have δ0(0) = 1 − c−1 exp(µ + σ2/2). Figure 3 depicts
the optimal retention level b∗(s) and layer width M∗(s) for s ∈ [0, 5]. One
could see that in this case M∗(s) is not constant and grows from s ≈ 0.51.
Also, minimal value of M , i.e. minimal reinsured layer, is attained at s ≈ 0.6.

5.3 Pareto distributed claims

Fig. 4. Optimal strategy for Pareto distribution

Finally, we consider Pareto distributed claims, i.e. claims with probability
density function

f(x) =
αθα

(x + θ)α+1
, x > 0.
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In this example we use distribution parameters θ = 1 and α = 2. As in case
of exponentially distributed claims we choose λ = 1, c = 1.5 and ρ = 1.7. For
Pareto distributed claims we have δ0(0) = 1− c−1(α− 1)−1. Figure 4 shows
the optimal strategy (b∗(s),M∗(s)) in the described case. Contrary to the
first example, in this case there is no s for which b∗(s) = s, i.e. we always
have to choose b∗(s) < s. Also, the optimal retention b∗(s) and layer width
M∗(s) do not tend to be constants, but increase and decrease approximately
in the same intervals.

6 Conclusion

In this paper we discussed the problem of optimal XL reinsurance in a dy-
namic setting. We not only proved the existence of the optimal strategy,
maximizing the survival probability, but we provided equations for optimal
parameters b and M (see Lemma 1). Also we computed optimal strategy for
different claim types.

Acknowledgement. The research is partially supported by RFBR grant
10-01-00266a.

References

1. Bremaud, P. Point Processes and Queues: Martingale Dynamics, Springer–
Verlag, Berlin (1981).

2. Grandell, J. Aspects of Risk Theory, Springer (1991).
3. Hipp C., and Vogt M. “Optimal dynamic XL reinsurance”, ASTIN Bulletin 33,

193–207 (2003).
4. Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. Stochastic Processes for

Insurance and Finance, Wiley Series in Probability and Statistics (1998).
5. Schäl M. “On piecewise deterministic Markov control processes: Control of

jumps and of risk processes in insurance”, Insurance: Mathematics and Eco-
nomics 22, 75–91 (1998).

6. Schmidli, H. “Optimal Proportional Reinsurance Policies in a Dynamic Setting”,
Research Report 403, Dept. Theor. Statis, Arhus University (2000).

7. Yushkevich, A.A. “Bellman inequalities in Markov decision deterministic drift
processes”, Stochastics 23, 25–77(1987).

154



Discrete Time Models with Dividends and
Reinsurance

Ekaterina V. Bulinskaya1 and Daria A. Yartseva2

1 Department of Mathematics and Mechanics
Moscow State University, Russia
(e-mail: ebulinsk@mech.math.msu.su)

2 Department of Mathematics and Mechanics
Moscow State University, Russia
(e-mail: yartseva@gmail.com)

Abstract. We consider two discrete time models of insurance company capital. In
the first one it is supposed that the company uses the barrier strategy of dividend
payment and quota share reinsurance. Equations describing average costs and
average time until ruin are established. The properties of these equations solutions
are studied. The method of finding upper and lower bounds is proposed. The second
model deals with non-proportional reinsurance. We find the strategy minimizing
average payment for bank loan taken if the company cannot pay indemnity.
Keywords: Upper and lower bounds, Continuous claims distribution, Optimal
reinsurance.

1 Introduction

The optimal reinsurance and optimal dividends problems were considered
by many authors. The study of optimal dividends problem goes back to de
Finetti [1]. The case of compound Poisson claims process was investigated
by Dickson and Waters [2], Gerber et al. [3]. Beveridge et al. [4] suggested
that reinsurance may increase net income of shareholders and studied this
problem numerically. For classical risk model with possibility of reinsurance
Schmidli [5] proved that there exists an optimal reinsurance strategy minimiz-
ing the ruin probability. Pechlivanides [6] considered a discrete-time model
and found optimal reinsurance and dividend strategies in some special cases.
Below we tackle two discrete-time models incorporating reinsurance with or
without dividend payment.

2 The first model

Consider the following model. Let p be premiums collected during one year
and x the initial capital of insurance company. By ξi denote the claims
amount paid to policy holders during the ith year, i ≥ 1. Assume ξi to be
i.i.d. positive random variables with probability density function pξ. Let d
denote the dividend barrier.

155



2 E. Bulinskaya and D. Yartseva

The company uses the quota share reinsurance with quota equal to tq(x),
0 ≤ tq(x) ≤ 1−ε. Reinsurance safety loading is θ (0 ≤ θ ≤ 1), the commission
rate is tc (0 ≤ tc ≤ 1), the discount rate is β.

Let Si be the capital of the company at the end of the ith year, i ≥ 0,
S0 = x. The following formula determines Si for i ≥ 1:

Si = min[Si−1 + p(1− tq(Si−1)) + ptq(Si−1)(tc − θ)− ξi(1− tq(Si−1)), d].

The ruin time is τx = min{n : Sn < 0}. The discounted costs are βτx |Sτx |,
average discounted costs are l(x) = Eβτx |Sτx

|, average time until ruin is
T (x) = Eτx.

We assume that pξ(x) ∈ C[0,∞), tq(x) ∈ C[0, d].

2.1 Main equations

By using the law of total probability we get the following equations for l(x).
If d ≥ x ≥ d− p(1− tq(x))− ptq(x)(tc − θ), then

l(x) = βl(d)
∫ f1(x)

0

pξ(y)dy

+ β

∫ f2(x)

f1(x)

l(x+ p(1− tq(x)) + ptq(x)(tc − θ)− y(1− tq(x)))pξ(y)dy

+ β

∫ +∞

f2(x)

(y(1− tq(x))− (x+ p(1− tq(x)) + ptq(x)(tc − θ)))pξ(y)dy.

If d− p(1− tq(x))− ptq(x)(tc − θ) ≥ x ≥ 0, then

l(x) = β

∫ f2(x)

0

l(x+ p(1− tq(x)(1− tc + θ))− y(1− tq(x)))pξ(y)dy

+ β

∫ +∞

f2(x)

(y(1− tq(x))− (x+ p(1− tq(x)) + ptq(x)(tc − θ)))pξ(y)dy,

where

f1(x) =
x+ p(1− tq(x)) + ptq(x)(tc − θ)− d

1− tq(x)
, (1)

f2(x) =
x+ p(1− tq(x)) + ptq(x)(tc − θ)

1− tq(x)
. (2)
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2.2 Existence of solution

Average costs satisfy the equation l(x) = Al(x) with the mapping A :
C[0, d] → C[0, d] given by

Ag(x) = βg(d)
∫ f1(x)

0

pξ(y)dy + β

∫ f2(x)

f1(x)

g(h(x, y))pξ(y)dy + f3(x),

here f1(x), f2(x), f3(x) are continuous functions, and h(x, y) decreases from
d to 0 while y increases from f1(x) to f2(x).

Consider the space C[0, d] with metrics

ρ(g1(x), g2(x)) = max
0≤y≤d

|g1(y)− g2(y)|.

Theorem 1. A is a contracting mapping.

Proof. We prove that ρ(Ag1(x), Ag2(x)) ≤ βρ(g1(x), g2(x)) for any functions
g1(x), g2(x) ∈ C[0, d] using the following relations

ρ(Ag1(x), Ag2(x)) = max
0≤z≤d

|(g1(d)− g2(d))β
∫ f1(z)

0

pξ(y)dy

+ β

∫ f2(z)

f1(z)

(g1(h(z, y))− g2(h(z, y)))pξ(y)dy|

≤ max
0≤z≤d

|g1(z)− g2(z)||β
∫ f1(z)

0

pξ(y)dy + β

∫ f2(z)

f1(z)

pξ(y)dy|

≤ β max
0≤z≤d

|g1(z)− g2(z)| = βρ(g1(x), g2(x)).

Thus we get that the equation for l(x) has a unique solution.

Theorem 2. Let A be a contracting mapping C[0, d] → C[0, d] and
ρ(Ag1(x), Ag2(x)) ≤ βρ(g1(x), g2(x)), where 0 < β < 1. A has the form
Ag(x) =

∫ d

0
K(x, y)g(y)dy, where K(x, y) ≥ 0 for any x and y.

If a function φ(x) ∈ C[0, d] satisfies inequality φ(x) ≥ Aφ(x), x ∈ [0, d],
then φ(x) ≥ 0, x ∈ [0, d].

Proof. Suppose the statement: φ(x) ≥ 0 for any x ∈ [0, d], is false. Let I be
a set such that φ(x) < 0, x ∈ I, and φ(c) = min0≤x≤d φ(x), φ(c) < 0.

According to our assumptions φ(c) ≥ Aφ(c) =
∫ d

0
K(c, y)φ(y)dy. Thus,

1)
∫ d

0
K(c, y)φ(y)dy =

∫
[0,d]\I K(c, y)φ(y)dy +

∫
I
K(c, y)φ(y)dy ≥∫

I
K(c, y)φ(y)dy, since

∫
[0,d]\I K(c, y)φ(y)dy ≥ 0.

2)
∫

I
K(c, y)φ(y)dy = −

∫
I
K(c, y)|φ(y)|dy, since φ(y) < 0 for y ∈ I.

3)
∫

I
K(c, y)|φ(y)|dy ≤ |φ(c)|

∫
I
K(c, y)dy we get from definition of φ(c).
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4) Put gi(x) = i, i = 1, 2, then Agi(x) = i
∫ d

0
K(x, y)dy. As A is a

contracting mapping ρ(Ag1(x), Ag2(x)) ≤ βρ(g1(x), g2(x)) = β and
max0≤x≤d

∫ d

0
K(x, y)dy ≤ β. It follows immediately that

∫
I
K(c, y)dy ≤∫ d

0
K(c, y)dy ≤ β.
Combining 1), 2), 3) and 4) we obtain φ(c) ≥ βφ(c), hence φ(c) ≥ 0. This

contradiction ends the proof.

Theorem 3. Let assumptions of Theorem 2 be fulfilled. If l(x) is a solution
of equation l(x) = Al(x)+h(x) and ψ(x) satisfies inequality ψ(x) ≥ Aψ(x)+
h(x), then ψ(x) ≥ l(x).

Proof. It is obvious that ψ(x)− l(x) ≥ A(ψ(x)− l(x)). Using Theorem 2 we
get that ψ(x)− l(x) ≥ 0.

2.3 Lower bounds for solution

Suppose that g(x) satisfies the equation g(x) = Bg(x) + f3(x), where

Bg(x) = βg(d)
∫ f1(x)

0

pξ(y)dy + β

∫ f2(x)

f1(x)

g(h(x, y))pξ(y)dy, 0 ≤ x ≤ d,

with f3(x) not identically zero, f1(x) and f2(x) having the form (1) and (2)
respectively.

Then there exists a non-negative φ(x) 6≡ 0 such that φ(x) ≤ Bφ(x)+f3(x).
In fact, put

φ(d) = c1 =
f3(d)

1− β
∫ f1(d)

0
pξ(y)dy

(3)

and

φ(x) = βc1

∫ f1(x)

0

pξ(y)dy + f3(x), 0 ≤ x < d. (4)

It can be easily shown that φ(x) ≤ Bφ(x) + f3(x) for x ∈ [0, d], φ(x) ∈
C[0, d] and φ(x) 6≡ 0. It follows from Theorem 3 that φ(x) ≤ g(x). Thus we
get a lower bound for l(x).

l(x) ≥ β
f3(d)

1− β
∫ f1(d)

0
pξ(y)dy

∫ f1(x)

0

pξ(y)dy + f3(x),

where

f3(x) =
∫ ∞

f2(x)

(y(1− tq(x))− (x+ p(1− tq(x) + ptq(x)(tc − θ))pξ(y)dy.
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2.4 Average time until ruin

Average time until ruin T (x) satisfies the following equations.
If d ≥ x ≥ d− p(1− tq(x))− ptq(x)(tc − θ), then

T (x) =1 + T (d)
∫ f1(x)

0

pξ(y)dy

+
∫ f2(x)

f1(x)

T (x+ p(1− tq(x)) + ptq(x)(tc − θ)− y(1− tq(x)))pξ(y)dy.

If d− p(1− tq(x))− ptq(x)(tc − θ) ≥ x ≥ 0, then

T (x) = 1 +
∫ f2(x)

0

T (x+ p(1− tq(x)(1− tc + θ))− y(1− tq(x)))pξ(y)dy.

Similar to Theorem 1, it can be proved that these equations have a unique
solution if

∫ d
ε +p+p(tc−θ) 1−ε

ε

0
pξ(y)dy < 1.

We obtain lower bounds of T (x) by substituting β = 1 and f3(x) ≡ 1
into (3) and (4). The result is the inequality

T (x) ≥ 1

1−
∫ f1(d)

0
pξ(y)dy

,

where f1(x) has the form (1).
Using the results of Theorem 2 we get upper and lower bounds for T (x).

Theorem 4. Suppose tq(x) ≡ tq. Average time until ruin satisfies the fol-
lowing inequalities

T (x) ≥
(

1− Fξ

(
p(1− tq) + ptq(tc − θ)

1− tq

))−1

and

T (x) ≤
(

1− Fξ

(
d+ p(1− tq) + ptq(tc − θ)

1− tq

))−1

.

In some cases it is possible to find the explicit form of T (x) and establish
the optimal reinsurance strategy maximizing the average time until ruin.

Theorem 5. Let ξi be uniformly distributed on [0, c] and parameters satisfy
d− p(tc − θ) ≤ 0 and c > dε−1 + p+ p(tc − θ)(1− ε)ε−1. If tq(x) ≡ tq then

T (d) =
(

1− 1
c(1− tq)

(p(1− tq) + ptq(tc − θ) +
d2

2
+ d− d2

c(1− tq)2
)
)−1
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and

T (x) = T (d)
(

1− d− x

c(1− tq)

)
.

Optimal reinsurance strategy t∗q = 1− ε.

3 The second model

Suppose the insurance company uses non-proportional reinsurance. Let x be
the initial capital of the insurance company and p premiums collected during
one year. Assume b to be the retention level and ρ the load factor of the
reinsurance company. Let ξi be the claims paid to policy holders during the
ith year, i ≥ 1. Assume ξi to have probability density function pξ(x) and
F̄ξ(x) =

∫∞
x
pξ(y)dy.

By a(x, b) denote the capital of the company before the claims arrival,
then

a(x, b) = x+ p− ρE(ξ − b)+,

where f(x)+ = max(0, f(x)).
The company pays η = min(ξ, b) to policy holders. If the capital is not

enough to satisfy the claims, a bank loan is taken with interest rate r. Let
gn(x, b) be the average total payment for the bank loan during n years. We
want to minimize gn(x, b) thus finding the optimal b. By definition put

un(x) = min
b>0

gn(x, b),

g1(x, b) = rE(η − a(x, b))+,

and

gn(x, b) = g1(x, b) + hn−1(x, b)

= g1(x, b) +
∫ b

0

un−1(a(x, b)− y)pξ(y)dy + un−1(a(x, b)− b)F̄ξ(b).

3.1 One step

We start with finding u1(x).
Firstly, if a(x, b) ≥ b, then g1(x, b) = 0. Put m(b) = b + ρ

∫∞
b
F̄ξ(y)dy,

then a(x, b)− b = x+ p−m(b). The derivative of m(b) is m′(b) = 1−ρF̄ξ(b),
and the plot of m(b) is depicted in Figure 1, where F̄ξ(b∗) = ρ−1.

It can be seen that if x ≥ x∗ = m(b∗) − p, then g1(x, b) = 0, for b ∈
[b1(x), b2(x)], m(bi(x)) = x+ p, i = 1, 2. Hence u1(x) = 0, if x ≥ x∗.

Secondly, if x < x∗, then the partial derivative of g1(x, b) with respect to
b has the form
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Fig. 1. Plot of m(b)

∂g1
∂b

= rF̄ξ(b)− rF̄ξ(a(x, b))
∂a

∂b
= rF̄ξ(b)(1− ρF̄ξ(a(x, b))) = rF̄ξ(b)G1(x, b).

The function G1(x, b) is less than zero, if a(x, b) < b∗, and greater than
zero if a(x, b) > b∗. So, if x ≥ x̂ = b∗−p, then b1(x) given by a(x, b1(x)) = b∗

provides the minimum of g1(x, b). If x < x̂, then b = ∞ is optimal.
Combining all the results, we get the following

Theorem 6. Optimal reinsurance strategy b̂(x) and minimum average pay-
ment to the bank are

If x ≥ x∗, then b̂(x) = b∗ and u1(x) = 0.

If x∗ > x ≥ x̂, then b̂(x) = b1(x) and u1(x) = r
∫ b1(x)

b∗
F̄ξ(y)dy.

If x̂ ≥ x ≥ −p, then b̂(x) = ∞ and u1(x) = r
∫∞

x+p
F̄ξ(y)dy.

If −p > x, then b̂(x) = ∞ and u1(x) = r(Eξ − x− p).

The plot of b̂(x) is depicted in Figure 2.

3.2 Some comments on the case n ≥ 2

It can be shown that optimal reinsurance strategy satisfies equation

rG1(x, b) +Hn−1(x, b) = 0, (5)

where

Hn−1(x, b) = ρ

∫ b

0

u′n−1(a(x, b)− y)pξ(y)dy + (ρF̄ξ(b)− 1)u′n−1(a(x, b)− b).
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Fig. 2. Plot of b̂(x)

For n = 2 it can be proved that r ∂G1(x,b)
∂b +∂H1(x,b)

∂b ≥ 0, hence equation (5)
has a solution. Moreover, this solution is unique and greater than b∗ for some
x. If it is not unique, it could be chosen to be equal to b∗.

For any n ≥ 2 it easily follows by induction that optimal b is equal to b∗

for x ≥ nx∗.
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Abstract: The paper outlines the general control problem of a complex hydraulic circuit, 
either fixed or mobile, where a variable flow pump must meet the demand of a finite number 
of hydraulic variable loads. They may comprise hydraulic cylinders (motors) moving a load 
along a reference trajectory, primary lubricating (steady) flows, secondary flows. The pump 
flow is distributed to motor volumes through solenoid-driven proportional valves. Cylinder 
reference flow must meet motor load reference rate, whereas load resistance and inertial 
forces impose cylinder pressure. Proportional valves ensure flow to cylinders by regulating 
their apertures, thus performing a low-level (local) control task. Higher level task must 
ensure a sufficient pressure drop from pump output volume and supply line to cylinder 
volumes, in presence of variable cylinder pressure range and rate. Pressure rates may be 
rather high because of sudden load resistance. Moreover, cylinders and secondary flows 
must be ranked within the maximum available pump flow. Pressure range is limited by relief 
valves, not treated here. Essential dynamics of the main hydraulic elements common to 
cylinders and variable flow pumps are recalled, first; they are simplified through smooth 
singular perturbation in view of the control embedded model. Then hierarchical control 
problem is formulated and solved within the Embedded Model Control architecture. 
Simulated results refer to the higher-level task. 
Keywords: Hydraulics, hierarchical control, modeling, variable-flow pumps, proportional 
valves 

1 Introduction 
The paper outlines the general control problem of hydraulic circuits, either fixed or 
mobile, where a variable-flow pump must meet the demand of a finite number of 
hydraulic variable loads (Jelali and Kroll, 2003, Manring, 2005). They may 
comprise hydraulic cylinders (motors) moving a load along a reference trajectory, 
primary lubricating (quasi-steady) flows, secondary arbitrary flows imposed by 
operators. The pump flow is distributed to motor volumes through solenoid-driven, 
proportional valves. Cylinder reference flow must meet load reference rate, 
whereas load resistance and inertial forces impose cylinder pressure. Proportional 
valves ensure flow to cylinders by regulating their apertures: the latter must be 
meant as a lower-level (local) control task. A similar regulation occurs in axial-
piston pumps (Kugi, 2001, Manring, 2005), where an actuating cylinder regulates 
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the tilt of a disk and the volume of the rotating cylinders carrying fluid from tank to 
line. The actuating cylinder, either single or in pair, has a single volume where 
input and output flows are regulated by a solenoid-driven valve. Besides local flow 
regulation, a higher-level control must be implemented to ensure a sufficient 
pressure drop from the the pump output volume to cylinder volumes, in presence of 
a variable cylinder pressure range (typically 25 MPa) and rate. Pressure rates may 
be rather high, around 100 MPa/s in mobile circuits, because of sudden load 
resistance. Moreover, cylinders and secondary flows must be ranked within the 
maximum available pump flow. Pressure control becomes essential in mobile 
hydraulics to reduce power losses to a minimum (Kim and Cho, 1991, Erkkila, 
1999), which is obtained by forcing pump output pressure to track the largest 
pressure as demanded by loads (load-sensing control).  
This paper aims to provide a unified lumped-parameter model of the whole circuit 
in terms of state equations. A model of this kind, called fine, may be used for 
simulation. Then in view of the control design, a simplified model is obtained 
through ‘smooth singular perturbations’, which departs from the traditional method 
of Kokotovic, Khalil and O’Reilly (1986) by making explicit the control time unit. 
The simplified model according to the Embedded Model Control (EMC) 
architecture in Canuto (2007) is implemented as the core of the control unit, and 
must be written in discrete-time. Here continuous-time is adopted for simplicity’s 
sake. Control design starts by constructing the state and command reference 
(reference generator in the EMC), which enlightens the hierarchical nature of the 
hydraulic circuit control, where flow control is lower-level and local (each 
cylinder, the pump), whereas the pressure control is higher-level and global (load-
sensing in the literature). Because of a single pump command, it shown that pump 
flow and pressure control can be designed as a single control algorithm, taking 
advantage of the embedded model. Control law and noise estimator (Canuto 2007, 
2008 and 2010) are restricted to pump flow regulation and pressure control, 
assuming some cylinder flow control exists and provides the necessary 
measurements to higher-level control. Interesting to say, pump flow and pressure 
control may be designed as a single control unit because of the single pump 
command channel (the valve solenoid driving the actuating cylinder). The paper 
terminates with simulated results from a fine simulator of the load-sensing pressure 
control: the adopted axial-piston pump already includes a mechanical feedback 
ensuring flow regulation. Analytical results and design are given without proof. 
What is left outside the paper is the stability proof in presence of parametric 
uncertainty and neglected dynamics (Canuto, 2007 and 2008). Simulated results 
are provided in presence of uncertainty. 

2 Hydraulic elements and dynamics 
Hydraulic circuits are essentially made of a single hydraulic pump, a line 
distributing the pressurized fluid, a parallel of hydraulic loads which may be either 
passive (lubrication) or active, like hydraulic motors (cylinders) (see Fig. 1). Here 
axial-piston pumps and cylinders are considered, made of two variables volumes 
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(Jelali and Kroll, 2001, Manring, 2005). For the cylinders, they are here referred to 
as positive and negative, depending on the common sign of the piston rate and 
valve stroke when they receive fluid flow. In pumps, a single (negative) actuating 
cylinder is assumed, whereas the output volume is added to the supply line. From 
pump to load volumes, pressure should decrease to allow fluid flow. Flow to load 
volumes must be regulated to meet load requirements. Pump, line and loads are 
protected against overpressure by relief valves. Overpressure is caused by sudden 
volume restrictions to be avoided by flow and pressure regulation.  

( )I t

( )1Q t
( )lP t

( )1I t

( )kI t

( )1P t

( )kQ t

( )kP t

( )1x t

( )kx t

( )1r t

( )kr t

( )x t

( )xsa t

 
Fig. 1. Higher-level block-diagram of a hierarchical hydraulic control system. 

2.1 Cylinder and pump dynamics  
The essential storage element in pumps and cylinders is a fluid volume at pressure 

0pP ≥  [MPa] (with respect to the tank pressure set to zero) having fixed section 
area pA , mean length 0L  and variable displacement x . The volume state equation, 
in terms of acceleration ( ) /p p pa A P t m=  and neglecting temperature effects, 
follows from the continuity equation (Jelali and Kroll, 2001, Manring, 2005) 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

2
0

2
0 max

, , , / ,  0

,  , / ,  

p p p p L p n p p p

p p p p

a t t x Q t xA Q P P t A a a

L L x t x A t mL x x x

Ω

Ω β

= − − =

= + = ≤
, (1) 

where pQ  is the commanded flow positive if entering the volume, LQ  is the 
leakage flow, 0nP ≥  is the pressure of the negative volume, and ( )2

p xΩ  is the 
angular acceleration defined by geometry, fluid properties and load mass m . 
Subscripts p  and n  refer to positive and negative x . A similar equation holds for 
the negative volume, upon definition of the acceleration ( ) /n n na A P t m= , of the 
flow nQ  which is now positive when discharging, and sign changes in x  and x , 
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as shown in Fig. 2, where subscript k  denotes a specific cylinder. Equation (1) 
must be completed with the load dynamics 

 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

2
0

,  0

, , , ,  0p n p n i d u

x t v t x x

v t P P x t f t P P v t a t a t a t v vΩ

= =

= − − + − + =
, (2) 

where 2 /K mΩ =  [rad/s2] is the angular acceleration imposed by elastic (spring, 
fluid) reactions, f  [rad/s] accounts for (viscous) friction, ua  account for load 
accelerations [m/s2], and in axial-piston pumps for a bias. End-stroke dynamics is 
neglected. In axial-piston pumps a centrifugal acceleration ( )2 /k m xωω  adds 
(Manring, 2005, Kugi, 2001), which depends on the pump rate ω , and is such to 
reduce 2Ω  until sign changes at higher rates. Here 2 2 / 0k mωΩ ω− >  is assumed 
in the range max0 ω ω≤ ≤ . The commanded flows pQ  is regulated through a 
proportional valve, leading to 

 
( ) ( )

( ) ( )
, ,  0

0 ,  0
p p p

p l p p p

Q s P s P

P s P P P s P

μ ρ Δ Δ

Δ Δ

= ≥

≥ = − < =
, (3) 

where ( ),sμ ρ  is monotonic in the valve stroke s , depends on fluid density ρ , 
and ( )0, 0μ ρ = . lP  is the line pressure to be defined below. Changing the sign of 
s  and μ  in (3), and subscripts from p  to n , yields nQ . Generic intake flow 

0Q ≥ , intake pressure P  and section area A  are defined by 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

0 0 ,  0 0

0 0 ,  0 0

0 ,  0

p n

p n

p n

Q s Q s Q s Q s

P s P s P s P s

A s A A s A

≥ = ≥ < = − <

≥ = ≥ < = <

≥ = < =

. (4) 

Knowing ( )sgn s , equation (3) may be inverted for the valve stroke s . 

∫ ∫ ∫
( )kf ⋅

( )kv t

( )2
kΩ ⋅

∫

( )pka t

( )nka t

( )uka t

( )LkQ ⋅

2
pkΩ

2
nkΩ

∫ ∫
( )skf ⋅

( )skv t

( )2
skΩ ⋅

( )ks t
skb

( )kI t ( )kx t
( )pkQ ⋅

( )nkQ ⋅

( )lP t

− −
−

−

−

−

−

pkA

nkA

( )kQ t
( )k kQ s

( )k kP s
( )kP t

−

 
Fig. 2. Block-diagram of the k-th cylinder dynamics. 

Valve dynamics, neglecting solenoid dynamics, is 2nd order and holds 

 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

2
0

,  0

, ,  0
s

s s c s s s s s s

s t v t s s

v t P s t a t f t P v t b I t v vΩ δ

= =

= − − − + − =
, (5) 

where 2
sΩ  and sf  have the same meaning as 2Ω  and f  in (2), /s s sb mφ=  

depends on the solenoid force constant sφ  and on the spool mass sm , whereas  the 
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acceleration ( ) ( ) /xs xs sa t K x t m=  accounts, in some pumps, for a mechanical link 
between actuating cylinder and valve spool (Acuña-Bravo et al., 2009). Finally sδ  
accounts for a delay in the solenoid current loop. In that case a similar reaction, 
proportional to s , must enter (2) as shown in Fig. 3. The -thk  cylinder dynamics, 
is drawn as a block-diagram in Fig. 2.  
2.2 Pump and line dynamics and control goal 
The volume equation (1) must be rewritten for a ‘fixed’ fluid volume (line) 
connecting pump to loads 

 ( ) ( )
( ) ( ) ( ) ( )( ) ( )01

, , , ,  0
,

n
l l k k l k l l lk

l l

t
P t Q t Q s P P Q t P P P

V t P
β

=
= − − =∑ , (6) 

where 0lQ ≥  is the flow provided by a variable-flow pump, kQ  is the -thk  intake 
flow in (4), 0Q  is a flow not regulated by a valve, and kP  is the generic intake 
pressure in (4). The line volume lV  may vary because of pressure and load 
configuration. 
In axial-piston pumps (Manring, 2005, Kugi, 2001) x  in (1) is the stroke of the 
actuating cylinder which is proportional to the pump flow through  

 
( ) ( ) ( ) ( )

( ) ( )
,

1,  0,  0,  0
l l a aQ t K x l s Q s P

l s s l s s

ω Δ= −

= < = ≥
, (7) 

where the flow gain lK  depends on the prime motor angular rate ω .The flow aQ  
in (7) is the intake/discharge flow of the actuating cylinder, it corresponds to nQ , 
and is supplied by the pump flow. Subscript a  replaces n . Pump and line 
dynamics, made by (1), (2), (3), (5) and (6) are drawn in Fig. 3.  
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Fig. 3. Block-diagram of pump and line dynamics. 

Lumped-parameter dynamics of an hydraulic system with variable-flow pump, 
supply line and n  valve-driven cylinders is made by ( )6 1n +  state equations, 
having neglected solenoid and end-stroke dynamics.  
The main, lower-level, control objective is that each cylinder stroke kx  tracks a 
reference profile kr , either set by operators or part-programs. Lower and higher-
level objectives concern the pump which must provide loads with the right flow lQ  
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(lower-level) at the right pressure lP  (higher-level). How they are interconnected 
(see Fig. 1) is better appreciated pursuing model simplification. 

3 Model simplification and control hierarchy 
3.1 Model simplification 
Simplification is afforded through singular perturbation method of Kokotovic, 
Khalil and O’Reilly (1986), but modified to account for control unit time T  
(smooth singular perturbation, Acuña-Bravo et al., 2009) and assuming dynamics 
is averaged during this time. Briefly, the T -average equation of a 1st order 
dynamics with time constant τ , writes  

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
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/ 2 / 2
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x t x t T x t T
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+

−

= − + ≅

= + − −

= ∫

, (8) 

having denoted the singular perturbation with / 1Tε τ= < , and assuming xΔ  is 
bounded. Then, neglecting xε Δ , (8) may be solved for x . The following result 
follows. 
Result 1. Considering (1), (2), (5) and (6), and defining the singular perturbations 
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ε τ β

−− − −= = = =

= =
, (9) 

the following 1st order simplified dynamics applies to each cylinder k  
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where underlying as in (8) has been dropped. The physical meaning of the first 
four singular perturbations in (9) corresponds to fluid incompressibility and to high 
stiffness of elastic connection if coupled with small masses. The fifth perturbation 
is more complex and requires the definition of a reference flow lQ  and pressure 

lP , to be done below, as they provide the time constant lτ . Equation (6) and (7) 
lead to the flow balance 
 ( ) ( ) ( ) ( ) ( )01

, , ,n
l k k k l a ak

K x Q s P Q t P l s Q s Pω Δ Δ
=

= + +∑ . (11) 

Finally applying (10) to pump yields 
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, (12) 

where 1lγ < .  
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As Fig. 1 and Fig. 4 shows, equations (10) and (12) define 1n +  parallel 1st order 
dynamics, which are driven by solenoid currents kI  and I , leakages LQ  and LkQ , 
and load accelerations uka . Flows, which are intermediate variables in (10) and 
(12), are related through (11). Since the latter is parameterized by lP , the latter 
may be solved from (11). Actually, two alternative treatments may be pursued. 
1) Reference control employs (11) to derive the reference pump flow and stroke, 

given a reference lP . 
2) Control law renounces to approximation (11), thus treating lP  as the line 

volume state variable (see dashed blocks in Fig. 4) which must be forced to 
track the reference lP . 
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Fig. 4. Block-diagram of the simplified model with pump/line control.. 

Pressure drops in the flow equations add a nonlinear feedback to each 1st order 
dynamics.  
3.2 Reference generator and hierarchy 
It is now possible to solve the simplified model (10), (11) and (12) for the lower-
level control objective, i.e. cylinder and pump flow, in the form of a reference 
generator, neglecting unknown disturbance like leakage LQ  and unknown 
components of uka  and 0Q , as well as parameter uncertainty. The latter 
accommodation is a task of the control law. Reference variables are underlined. 
Result 2. Reference cylinder stroke kr  is tracked by 1n +  1st order nonlinear  
feedback laws which satisfy valve and pump flow constraints, and are 
parameterized by pressure drops aPΔ  and kPΔ , as follows 
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where 0,  0kh h> >  are stabilizing tracking gains.  
Equation (13) provides valve stroke and currents (Kemmetmuller, Fuchshumer and 
Kugi, 2010), as follows 
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where pressure drops derive from (10) and (12). Pump stroke x  derives from (11). 
The bound to the reference pump stroke r  in (13) may require iteration to 
reallocate cylinder rates according to 
 ( ) ( ) ( )0 max1

n
k k k a lk

x A s Q l s x A r K ω
=

+ + ≤∑ , (15) 

and to the current bounds in (14).  
Equation (14) may be solved for valve strokes, only if the line pressure lP  ensures 
feasible (positive) pressure drop in (10) and (12), i.e.  
 ( )( )max max ,l k k aP P P> , (16) 

which is the higher-level control objective. Bias (spring) force 0uma >  ensures 
0aPΔ >  in (12) as 0s ≥ . The higher-level objective imposes lP  to track the 

reference  
 ( )( )max max ,l k k aP P P PΔ= + , (17) 

where PΔ  is a pressure drop to be designed. Design follows from line dynamics 
(6) –singular perturbation lε  in (9) is now abandoned- fixing the slew rates of the 
pump and load flows, namely ,maxlQ  and maxQ , where 

 ( ) ( ) ,max
,max max max2

a s
l

s a

K Q b
Q K x I

A
ω

ω
Ω

= = . (18) 

Alternative to PΔ , the pressure control BW PfΔ  may be designed, by giving 
pressure and flows in (6) an harmonic profile with 2 fω π= : it results  

 
( ) ,max max2

,min 2
a

l P

P Q Q
V fΔ

βΔ
π

≥ − . (19) 

Assuming, as a worst-case, zero pump flow and  
 3 2 3

,max max ,min0,  0.002 m /s ,  0.001 m ,  4 MPal lQ Q V PΔ= = = ≤ , (20) 
a minimum BW 3 HzPfΔ ≥  results, together with ( ) 12 20 msT fπ −<< ≅ . 
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4 Hierarchical control through a single pump/line control law 
Here we shall restrict to pump flow (lower-level) and line pressure (higher-level) 
control, assuming to know solenoid currents skI  and the load-sensing pressure   
 ( ) ( )( ) ( )maxp k py t P t v t= + , (21) 

from cylinder control. In (21) pv  denotes  the measurement error. Load-sensing 
pressure has been used in the reference generator to build the line pressure 
reference (17). Further measures provide pump stroke and line pressure as follows 

 
( ) ( ) ( )
( ) ( ) ( )
l l ly t P t e t

y t x t e t

= +

= +
. (22) 

They are corrupted by the model errors le  and e , which include measurement 
errors and the effects of the dynamics (valve, load) that has been neglected during 
simplification. 
Singular perturbations in (9) apply to valve and actuating volume dynamics, i.e. 
 1 12 ms,  0.5 mss s a aT Tε Ω ε Ω− −= ≤ = ≤ . (23) 
The latter inequalities together with (19) constrain T  to stay within 
 2 ms 20 msT< < . (24) 
Pump hierarchical control (flow and pressure) is driven by two measures and a 
single command; it can be solved as a single control law as flow and pressure are 
state variables with their own reference. According to EMC, equations (12) and (6) 
are rewritten separating known and unknown disturbance, as follows  
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, (25) 

where underline means either reference or nominal values. Unknown disturbance is 
the sum of a state d  and of a wide-band noise w  (discrete-time white noise), 
arbitrary and unpredictable. The latter are the only channels wherethrough 
updating the embedded model as in Canuto, Massotti and Molano (2010). The state 
components are such to load itself with parametric uncertainty within the BW of 
the noise estimator, thus avoiding, with some limitations, adaptive control 
complexity and delays (Canuto, 2008). As such, they must satisfy stochastic 
equations as follows 

 
( ) ( )
( ) ( )

l dl

d

d t w t

d t w t

=

=
, (26) 

where ,  dl lw w  are further ‘white noises’. The ensemble (25) and (26) is the 
embedded model, which is actually implemented as a discrete-time equation and is 
observable from the measurements (22).  
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Control law follows by forcing the controllable state variables x  (proportional to 
pump flow) and lP  (the line pressure) to track references in (13) and (14), and by 
adding disturbance rejection. The latter is not immediate here as known and 
unknown flows in (25) are not co-located with the current command (see Canuto, 
2007). Applying Davison-Francis matrix equation (see Canuto, 2007) to (25) and 
(26), the control law results 
 ( ) ( ) ( ) ( ) ( )( )/ /x l l l l l l aI t I t k x x d d b k P P d t b= + − + − − − − . (27) 

Feedback gains ensuring stable tracking are xk  and lk , and are fixed by stable 
closed-loop eigenvalue { }0 1,c c cp pΛ = − −  through 
 1 0 1 0,  l c c x c ck p p k p p= + = . (28) 
At the limit 3 Hzcf ≅  imposed by PfΔ , 40 rad/slk ≅ , 2400 rad/sxk ≅ . Note all 
other gains in (27) are model-based. Control law (27) and gains (28) ensure model-
based stability. 
When as in Acuña-Bravo et al. (2009), pump is endowed with a mechanical 
feedback, from pump stroke to valve as in Fig. 3 (dashed lines), in (22) only 
pressure measurement is available. Thus, only pressure control is implemented but 
keeping the same embedded model as in (25) and (26). The only difference regards 
pump dynamics in (25) that must have a nonzero pole imposed by mechanical link. 

5 Pump and line noise estimator  
State variables in (27) are provided by the embedded model, which must be driven 
by the same command to the plant and by noise realization. Noise realization must 
be kept as the control unit cornerstone as it allows the embedded model to causally 
include model uncertainty, both disturbance and parametric discrepancies. The key 
instrument is the noise estimator, based on Kalman filter innovation, but extended 
to any noise layout (Canuto, Massotti and Molano, 2010), not necessarily forcing 
all the state variables of the embedded model. Here the noise layout strictly follows 
the Kalman scheme, directly forcing all state variables, but disturbance dynamics 
(26) and noise estimator need to be modified according to measurement size and 
location.  
Consider first measurements as in (22) and Fig. 4: in that case the embedded model 
is observable and the noise estimator is multivariate. Following Canuto, Massotti 
and Molano (2010), each model error must feed the least number of noise 
components (decoupling), and specifically the closest ones, as follows 
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= = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (29) 

As a consequence, gain equations decompose into a pair of 2nd order polynomials 
with their coefficients being fixed by the closed-loop eigenvalues.  
When in (22) only the line pressure is available, the disturbance states in (26) 
become unobservable. Recovery is pursued by changing dynamics as follows 
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( ) ( ) ( )
( ) ( )

l l dl
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d t w t

= − +

=
, (30) 

with a caveat that observability now depends on 0lp ≠ . Noise estimator is driven 
by the sole pressure model error: 
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. (31) 

Gains derive from the coefficients ,  0,...,3mkc k =  of  the 4th order polynomial 
imposed by the four closed-loop eigenvalues { }0 3,...,m m mp pΛ = − − . 
Closed-loop eigenvalues are designed to guarantee closed-loop stability versus 
parametric uncertainty and neglected dynamics, a subject left outside of the paper 
(see Canuto 2007, Ospina and Canuto 2008). It results into the BW mf  reported in 
Table 1. 

6 Simulated results 
The following results derive from simulated runs, based on a fine plant model and 
plant-estimated parameters. A single cylinder is simulated and the valve pressure 
drop kPΔ  is assumed to be kept constant by a local compensator (Erkkila, 1999). A 
variable lubricating flow 0Q  around a mean value is added, together with an 
arbitrary flow imposed by operators. Pump stroke is assumed to be regulated by a 
mechanical link. The main data are listed in Table 1. 
Table 1. Main plant and control data 
No. Type Symbol Unit Value Comments 
0 Line volume lV  dm3 0.25  ±10% 
1 Load pressure slew 

rate  
maxP  MPa/s 130   

2 Load flow slew rate maxQ  dm3/s2 2 ±10% uncertain 
3 Cylinder control delay maxδ  ms 50  
4 Line pressure drop PΔ  MPa 2 Adds to valve 

pressure drop 
5 Lubricating flow 0Q  dm3/s 0.13 ±10% 
6 Peak pump flow ,maxlQ  dm3/s 2 @ 200 rad/sω ≅  
7 Pump current range I  A 0.4 1.2÷  useful range 
8 Current delay ,maxsδ  ms 5  
9 Pump flow slew rate ,maxlQ  dm3/s2 5 ±10% uncertain 
10 Control time unit  T  ms 5 see (24) 
11 Control law BW cf  Hz 2  see below (28)  
12 Noise estimator BW mf  Hz 10 see below (31) 

Control law BW in Table 1 has been fixed at 2 Hz, as dictated by the pump pole of 
the mechanical feedback which is around 10 rad/s (Acuña-Bravo et al., 2009). The 
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pump flow BW is not enlarged, but pump flow dynamics is exploited beyond 2 Hz 
to track quick, but small demands.  
Worst-case simulated results are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8. Fig. 5 
shows the pump solenoid current I , in digital units (10 bit range). The low 
constant profile at the extremes is the lubricating flow (< 100 bits); at 5 s the pump 
starts supplying a cylinder flow (500 bits), and at 9 s an arbitrary flow demand 
(300 bits) occurs. Small oscillations close to 7 s and 17 s correspond to a sudden 
raise and decrease of the reference pressure as in Fig. 7. 
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Fig. 5. Pump solenoid current. 

Fig. 6 shows the pressure error l lP P−  between line pressure reference and 
measurement. Due to a rather small line volume (0.25 dm3), the error overshoots 
the 2 MPa target when either the cylinder flows settles (because of cylinder flow 
uncertainty and delay) or the load pressure suddenly raise or decrease. Overshoots 
are acceptable as far as the pressure remains below the relief limit of 25 MPa. 
Undershoots force one-way valves to impede flow reversal, thus saturating 
dynamics and degrading performance.  
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Fig. 6. Pressure drop corresponding to Fig. 7. 
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Fig. 7 shows reference (dashed) and measured line pressures, in absence of the 
arbitrary flow occurring in Fig. 5 from 9 to 17 s. Only neglected dynamics has 
been simulated, i.e. pump dynamics and solenoid delay. The same sharp pressure 
errors occur under the same circumstances; they may be weakened either by 
increasing the reference pressure above 2 MPa or by enlarging the line volume. 
Control law BW cf  fixed at 2 Hz cannot be widened, as it is bounded, in the 
present case, by pump flow mechanical loop.  
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Fig. 7. Reference and measured line pressure. 

Fig. 8 shows control robustness with respect to neglected dynamics and parametric 
uncertainty (robustness proof is provided in the paper). Uncertainty has been 
simulated through parameter discrepancy as listed in Table 1. Oscillations 
occurring when the cylinder flow demand ends are mainly due to line volume 
uncertainty. They are attenuated by further narrowing control law BW 2 Hzcf <  
as shown in the same Fig. 8. 
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Fig. 8. Reference and measured line pressure under worst-case conditions. 
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Conclusions and acknowledgments 
A state equation model has been developed for a generic hydraulic circuit 
including variable-flow pump, line and loads. The model is then simplified through 
smooth singular perturbations so as to provide the embedded model for control 
design and implementation. The latter is augmented with unknown disturbance 
dynamics to recover parametric uncertainty and neglected disturbance. Control law 
is not adaptive. Embedded model allows to derive reference generator, control law 
and noise estimator, the essential parts of the Embedded Model Control. Control 
hierarchy is discussed and it is shown that it reduces to a single control unit driving 
the pump solenoid current, and sensible to load pressure. Simulated results give a 
posteriori demonstration of control robustness, not proven in the paper. Study and 
simulated results were in part supported by Centro Ricerche FIAT, Turin, Italy.  
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Abstract: This paper is devoted to the investigation of the problems of selecting distribution 

law for time-to-event data obtained by accelerated life testing. The problems of parametric 

model verification based on testing goodness-of-fit to a specified distribution law by 
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statistical properties of model parameters estimators have been investigated depending on 
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considered. 
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1  Introduction 
 

There are many problems of longevity and aging data in different areas such as 

medicine, survival analysis, reliability studies, econometrics, etc. This is so-called 

time-to-event data. In medicine this event may be time of death, time of changes in 

some bio-chemical indices or time of remission after some treatment. In 

engineering this event may be time of failure for some interesting device or 

technical system. 

Let the nonnegative random variable T  denote the time-to-event or failure time of 

an individual. The probability of an item surviving up to time τ  is given by the 

survival function: 

( ) Pr( ) 1 ( )S T Fτ = > τ = − τ ,                                            (1) 

where ( )F τ  is cumulative distribution function of random variable T . 

In survival analysis an individual’s survival depends on some characteristics or 

conditions of the experiment. Usually these characteristics are coded as the so-

called covariates, which could be time-dependent.  
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It is often necessary to obtain reliability results from experiment more quickly then 

it possible with data obtained under normal conditions. In these cases experimenter 

may use Accelerated Failure Time Models. In AFT-models time-to-event data are 

obtained under some accelerated stress conditions, which shorten the life of test 

items. For example, covariate ( )x ⋅  is accelerated with respect to a covariate ( )y ⋅ , 

if: 

( ) ( )
( ) ( ),  for 0

x y
S t S t t⋅ ⋅≤ ≥ .                                            (2) 

 The aim of such testing is to estimate survival function of an individual in normal 

conditions basing on data obtained in Accelerated Life Testing. 

 

2 AFT-model 
 

Consider two plans of experiment [1]: 

1. Individuals are divided into k  groups and tested under accelerated constant over 

time stresses 
1
,...,

k
x x . Therefore 

i
n  items are tested under 

i
x  stress condition, 

where 1,...,i k= . 

2. Individuals are tested under step stress condition ( )x t : 

1 0 1

2 1 2

1

,  

,  
( )

...

,  
k k k

x t t t

x t t t
x t

x t t t−

< ≤
 < ≤

= 

 < ≤

.                                                (3) 

In addition plan of experiment may be the combination of these two plans. 

Under the AFT-model survival function 
( )

( )
x

S t⋅  is determined by baseline survival 

function 
0
( , )S t θ  and positive function [ ]r ⋅ : 

( ) 0

0

( ) ,
[ ( )]

t

x

ds
S t S

r x s
⋅

 
= θ 

 
∫ .                                             (4) 

Stress function [ ]r ⋅  is usually parameterized in one of following ways: 

1. Log-linear model: 0 1( )
x

r x e
β +β= ; 

2. Power rule model: 0 1 ln( )
( )

x
r x e

β +β= ; 

3. Arrhenius model: 
1

0
( ) xr x e

ββ +
= ; 

4. Model for vector stress: 0 1 1 ...
( ) m mx x

r x e
β +β + +β= . 

For parametric AFT-models it is supposed that baseline survival function 
0
( , )S t θ  

belongs to some parametric family of distributions. For example: exponential 

model, Weibull model, Gamma model, power generalized Weibull model, inverse 

Gaussian model and so forth. 
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In survival analysis and reliability studies, time-to-event data are usually right 

censored. That means a time-to-event T  is observed only if 
C

T T≤ , where 
C

T  is a 

censoring time. 

There are various types of right censoring schemes [3]: 

1. Type I censoring: all items are tested until a pre-specified censoring time 
C

T ; 

2. Type II censoring: only k n<  first failure times are observed, and for remained 

subjects censoring time is 
C k

T T= , where 
k

T  is failure time of k -th item; 

3. Type III censoring (random censoring): there are failure times 
1
,...,

n
T T  and the 

censoring times 
1
,...,

n
C C  are independent positive random variables. 

Let denote 
i

T  and 
i

C  the failure and censoring times of i -th item respectively. Set 

( )min ,
i i i

X T C= .                                                 (5) 

Usually right censored data are presented as: 

1 1
( , ),..., ( , )

n n
X Xδ δ ,                                               (6)  

where { }1 ,  1,...,
i i

i T C
i n≤δ = =  is an indicator of the event. 

Estimates of parameters of AFT-models are found with maximum likelihood 

method, where likelihood function is: 

1

1

( ) ( ) ( ),  1,...,i i

n

n i i

i

L f X S X i n
δ −δ

=

Τ = ⋅ =∏ .                           (7) 

If plan of experiment is determined by (3) than survival function of item which 

failed under ix  stress is [1]: 

1

0

1

( )
( , ) ( , )

i

i
j ji

i jx
j

t tt t
S t S

r x r x

−

=

− −
= + 

β β 
∑ .                                 (8) 

It is often difficult to choose the distribution law for baseline survival function 

0
( , )S t θ  because usually there is no prior information about lifetime distribution. 

After estimation of model parameters one should test goodness-of-fit of obtained 

model to the sample of observations. So, testing goodness-of-fit is an essential part 

of statistical analysis. One approach to testing goodness-of-fit with parametric 

AFT-model is based on residuals which in case of fixed covariates can be 

calculated as following: 

ˆ[ ( ), ]

i

i i

t
z

r x
=

⋅ β
.    (9) 

If the model (4) is appropriate the sample of residuals 
1
,...,

n
z z  belongs to the 

distribution 
0

ˆ( , )F t θ , which is standardized by the scale parameter. The hypothesis 

about goodness-of-fit of the sample of residuals to 
0

ˆ( , )F t θ  can be tested with the 
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classical Kolmogorov-Smirnov, Cramer-von Mises-Smirnov, Anderson-Darling 

tests. The Kolmogorov test statistic 

0
ˆsup ( ) ( , )

n n
t

D F t F t
<∞

= − θ ,                                    (10) 

the Cramer-von Mises-Smirnov test statistic 

( )2
2

0 0
ˆ ˆˆ ( ) ( , ) ( , )n nW n F t F t dF t

∞

−∞

= − θ θ∫                         (11) 

and the Anderson –Darling test statistic 

( )2
2 0

0

0 0

ˆ( , )ˆˆ ( ) ( , )
ˆ ˆ( , )(1 ( , ))

n n

dF t
A n F t F t

F t F t

∞

−∞

θ
= − θ

θ − θ∫ .               (12) 

It should be noted that we have a composite hypothesis, for which test statistic 

distributions 
0

( )G S H  are affected by a number of factors: the form of assuming 

lifetime distribution 
0
( , )F t θ , the type and the number of estimated parameters, the 

method of parameter estimation and other factors.  

In [5], [6] the approximations of statistic distribution models and the tables of 

percentage points were obtained for testing composite hypotheses by the 

Kolmogorov-Smirnov, Cramer-von Mises-Smirnov, Anderson-Darling tests using 

the maximum likelihood estimates of unknown parameters. The set of distribution 

families relative to which one can test composite goodness-of-fit hypotheses using 

the constructed approximations contains 21 distribution laws including the 

exponential, Rayleigh, Maxwell, Weibull, log-normal distributions and others. In 

this paper we have investigated statistic distributions in testing goodness-of-fit of 

samples of residuals (9) to the distribution 
0

ˆ( , )F t θ . 

It has been shown that test statistic distributions 
0

( )G S H  don’t depend on the 

stress function [ ]r ⋅  in case of uncensored time-to-event data. So for testing 

goodness-of-fit with parametric AFT-model by residuals (9) one can use 

approximations of 
0

( )G S H obtained in [5], [6]. Or approximate p-values can be 

obtained by simulation. 

In case of censored data approximate p-values in testing goodness-of-fit can be 

obtained by simulation only if there is sufficient knowledge of the censoring 

process. It is quite possible if we have type I or type II censored data, but in case of 

random censoring process which often occurs in survival analysis there is a 

problem of ambiguity in simulating censored observations because the distribution 

of censoring times is unknown. In case of independent random censoring we can 

neglect censored observations if the censoring degree is not large. 

 

3 Example: Veteran’s Administration Lung Cancer Trial 
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Let consider lung cancer survival data for patients (data were given in [7]) assigned 

to one of two chemotherapy treatments (Standard and Test). The data include 

observations of 137 patients and 9 observations from the sample are censored. In 

addition to treatment (trt) several factors are given: (PS) – Performance status 

(Karnofsky score); (Age) – Age of patient; (Diag) – the number of months from 

diagnosis of cancer to entry into the study; Cell-type of the tumor: squamous, 

small, adeno and large. 

The stress function is determined as: 

0 1 2 3

4 5

6 7

( , ) exp{ ( ) ( ) ( )

( ) ( )

( ) ( )}

r x PS age diag

I cell type squamous I cell type small

I cell type adeno I trt Test

β = β +β +β +β +

β − = +β − = +

β − = +β =

.          (13) 

These data were widely discussed in [2], [4], but there only the Weibull 

parameterization of 
0
( , )S t θ was taken. Let consider the problem of choosing 

distribution law for baseline survival function 
0
( , )S t θ  for lung cancer data. For 

this purpose we have developed the software system which enables  

• to compute MLEs for parameters of AFT-model for a wide range of lifetime 

distribution laws,  

• to obtain samples of residuals for AFT-model, 

• to test goodness-of-fit by Kolmogorov-Smirnov, Cramer-von Mises-Smirnov 

and Anderson-Darling tests, 

• to simulate distributions of MLEs for model parameters and test statistic 

distributions, 

• to estimate precise confidence intervals for parameters and survival functions. 

In table 1 the distribution laws considered as possible parameterization of 
0
( , )S t θ  

are presented. 

 

Table 1 – Lifetime distributions 

Exponential 0 ( ) exp
( , )

t
S t

r x

 
= − 

β 
 

Weibull 0 ( , ) exp
( , )

t
S t

r x

θ   
θ = −  β   

 

Power Generalized Weibull 

0 1

1

0
( , ) exp 1 1

( , )

t
S t

r x

θ θ    
θ = − +   β     

 

Gamma 0

1
( , ) 1 , 1

( , )

t
S t

r x

 
θ = − Γ θ+ θ β 
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Inverse Gaussian 

0
( , ) 1 1

( , )

2
exp 1

( , ) ( , )

t
S t

t r x

t

r x t r x

  θ
θ = −Φ − −   β  

    θ θ
Φ − +     β β    

 

  

In table 2 statistic values and achieved significance levels (p-values) in goodness-

of-fit testing by samples of residuals are given. When testing goodness-of-fit with 

the exponential and Weibull distribution laws we have used the approximations of 

statistic distributions obtained in [5], [6]. As to the Gamma, PGW and Inverse 

Gaussian distributions p-values have been obtained by simulations. Analysis of 

residuals has been considered for the sample of 128 complete observations without 

9 censored observations. 

As it is seen from the table 2 the Power Generalized Weibull AFT-model fits to 

data better than other considered distribution laws.  

Table 2. Statistic values and significance levels for goodness-of-fit tests 

 

 

Kolmogorov 

test 

Cramer- 

von Mises- 

Smirnov test 

Anderson- 

Darling test 

0
( , )F t θ  

n
S  { }

n
P S S>  

n
S  { }

n
P S S>  

n
S  { }

n
P S S>  

Exponential 0.887 0.197 0.169 0.108 1.149 0.079 

Weibull 0.685 0.315 0.109 0.077 0.729 0.059 

PGWD 0.632 0.304 0.056 0.259 0.330 0.325 

Gamma 0.679 0.379 0.092 0.167 0.584 0.146 

IGD 1.137 0.019 0.262 0.009 1.334 0.010 

 

The empirical distribution function of residuals for Generalized Weibull AFT-

model and corresponding standardized by the scale PGW cumulative distribution 

function are presented in figure 1. 
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Figure 1. The empirical distribution by sample of residuals for PGW-model 

 

In table 3 there are MLEs of Generalized Weibull AFT-model parameters obtained 

by the sample of 137 observations including 9 censored observations. 

 

Table 3. MLEs for Power Generalized Weibull AFT-model 

Parameter MLE Parameter MLE 

0
β  1.4061 5

β (Small) -0.6108 

1
β (PS) 0.0348 6

β (Adeno) -0.7555 

2
β (Age) 0.0081 7

β (Trt) -0.1318 

3
β (Diag) -0.0019 0

θ  1.7090 

4
β (Squamous) 0.0942 1

θ  2.8298 

Consider reduced model with only PS covariate included. Let compare Weibull 

and Power Generalized Weibull AFT-models for lung cancer survival data. In table 

4 the results of parameter estimation and testing goodness-of-fit with these two 

models are given. And figure 2 illustrates the difference between these two models 

for values of Performance Status equal to 20, 50 and 80. 

 

Table 4. Comparison of Weibull and PGW reduced models for lung cancer data. 

Weibull PGW 
 Weibull PGW Test 

n
S  { }

n
P S S>  

n
S  { }

n
P S S>  

0
β  2.556 1.076 Kolmogorov 1.238 0.001 0.722 0.207 

1
β  0.036 0.039 

Cramer- 

von Mises- 
0.321 0.0 0.096 0.053 
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Smirnov 

0
θ  

1
θ  

0.976 
1.697, 

3.142 

Anderson- 

Darling 
1.741 0.0 0.506 0.351 

 

 
Figure 2. Survival functions for various PS values 

 

As it is seen from the table 4 the Generalized Weibull AFT-model fits to the 

reduced data much better than the Weibull AFT-model, and one can see the 

difference between these two models from the figure 2. 

 

3  Conclusions 
 

We have briefly discussed the problem of the choice of parametric AFT-model. By 

means of computer simulation technique and developed software system we have 

investigated omnibus statistics distributions for testing goodness-of-fit with AFT-

model basing on residuals. It has been shown that in case of complete samples it is 

possible to use the approximations of statistic distributions given in [5], [6] or to 

obtain p-values by simulation for data without covariates. In case of random 

censored samples which often occur in survival analysis there is a problem of 

ambiguity in simulating censored observations because the distribution of 

censoring times is unknown.  

In this paper we considered the example of Veteran’s Administration Lung Cancer 

Trial which include 128 complete lifetimes and 9 random censored observations. 

Various parameterizations of the baseline survival function for the AFT-model 
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have been compared for these data. Goodness-of-fit testing has been carried out by 

sample of only complete observations. It is reasoned with the problem of 

estimating distribution law for censored observations which are related with 

covariate values. Further investigations of this area would be useful. 
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Abstract: This paper deals with the problem of resource management and allocation in 
home automation systems. In many situations, the global, concurrent demand of resources, 
like electricity and gas, by home appliances may exceed actual availability and this originate 
conflicts, whose solution requires the use of suitable control strategies. Here, we summarize 
and discuss different control strategies, which have been proposed by the authors in recent 
papers. Performances are compared with respect to generic scenarios and advantages and 
drawbacks of each one are briefly discussed. 
Keywords: Home automation, Resource management, Optimization 

 
1 Introduction 
A home automation or domotic system consists of a set of appliances and devices 
for home management which can be viewed as individual agents acting in a 
common environment and sharing common resources (see [3, 14] and the 
references therein). In home installation, resources availability is limited and 
concurrent use may cause conflicts that degrade the performances of single 
appliances with respect to the user expectations and that increase costs or time for 
accomplishing individual tasks.  
The general strategy to solve this conflict consists in determining an order of 
priority of each agent with respect the others in accessing a given resource when 
the available amount cannot satisfy the global actual demand. A collateral effect of 
this solution is a loss of efficiency in terms of delays in executing the assigned 
task, occurring when an agent must yield and wait until the resource is free. The 
resulting situation is handled by considering also time as a system’s resource that, 
although not limited in principle, has to be saved ([5]). 
From a general point of view, this give rise to an optimization problem that, 
roughly, consists in allocating resources, respecting constraints and limitations, 
while minimizing the time required for completing all the tasks in a generic 
scenario. A paradigmatic framework in which the above problem can be formally 
stated and analyzed has been developed in a previous series of papers [3, 4, 7], 
using the theoretic approach of Multi Agent System Theory (see e.g. [9, 10, 17] for 
general aspects). Multi Agent System theory has been applied to the study and 
characterization of domotic environments by several authors. Examples are 
provided in [8, 12, 16].  
In the Multi Agent approach we consider, appliances are described by suitable 
agents, which act in an abstract environment, and their behavior is modeled as a 
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sequence of transitions from state to state, which occur according to specific rules 
only if a specific amount of a given resource (to be consumed in the new state) is 
available. Availability of resources is therefore influenced by the agents’ behavior 
and, in turn, it determines the possibility of state transitions which evolve towards 
the completion of the tasks. Resource management on the basis of priority indices 
can be implemented, essentially, by means of two different kinds of control 
architectures: a centralized one, in which a single controller monitors availability 
of resources and allocates them, or a distributed one, in which each agent regulates 
its own behavior (see [1, 15]). The basic information that is needed in both cases is 
a measure of the actual electric load that, in real domestic installations, can be 
evaluated by dedicated devices. 
Performances of the system in terms of execution time and other indices for a 
given scenario can be described by suitable objective functions and the resulting 
optimization problem can be dealt with by different methods, according to the 
chosen control architecture. 
In this paper, we recall and discuss the basic aspects of three of different control 
strategies (two of which have already been presented in a previous series of papers 
[3-7, 15, 18]) that solve the resource management and allocation problem. The first 
and the second ones refer to the case of centralized control architecture and they 
are based, respectively, on linear programming and on game theoretic methods ([2, 
11]). The third one (see [15]) refers to the case of distributed control architecture 
and it makes use of off-line optimization by means of genetic algorithms. The three 
control strategies exhibit very different characteristics and their comparison, 
together with the evaluation of performances in similar conditions, is useful for 
understanding the potential of one choice with respect to the other.  
 
2 The Electricity Management Problem 
Typically, one of the resources whose management in home automation systems is 
more critical is electricity. This is due to the fact that, in general, electricity is the 
most expensive resource appliances can use and, because of the problems 
connected to its large scale production, providers adopt policies that contrast 
excessive consumption. A policy of that kind specifies a (set of) threshold(s) for 
the consumption. When consumption surpasses a threshold, the system enters a 
condition called overload and persistence of the overload for a time longer than a 
fixed duration causes the cost of the resource to increase largely or the resource to 
be cut off. The last situation is particularly penalizing, since it originates a black-
out of the system and manual intervention is required to restore the supply.  
In typical Italian home installation, the overall threshold, generally at 3kW, defines 
an overload that can persist for a short Limit Time Tlim (between1 120s and 240s) 
before the cost of the resource increases largely and, after some time, it is finally 
cut off.  

                                                 
1 These values may change slightly, depending on the provider and on the model of 
the meter. The interval we consider refers to the GEM employed by the provider 
ENEL in the majority of its installations. 
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Implementing a control strategy to avoid or reduce overloads, performances of the 
controlled system can be evaluated in terms of occurrence of overloads and of 
delay in accomplishing tasks. This must be done with respect to a given scenario S, 
which specifies the number, kind and scheduling, over a period of time, of the 
tasks that the user asks the system to perform. For example, a one-day scenario S 
may include activation of the dishwasher, of the electric oven, of the washing 
machine, and so on, at given times and for given specific tasks. 
Concerning the role of delays in defining performance indices, we consider, for 
each task the system can accomplish, a Nominal Time Tnom, equal to the duration 
of the task in case the required resources are available, and we compare it with the 
time actually occurred in given scenario, which will be denoted by Tex, when 
control is active. The relative delay referred to each scheduled task i, i=1,…, n,  in 
the scenario S is defined by  

nom

nomex
i T

TT −
=∆   (1) 

and the average, overall relative delay, denoted by 
�

S, is defined as the averaged, 
weighted sum of the relative delays concerning each task in S, namely 

n
i ii

S
∑ ∆γ

=∆    (2) 

The weights γ i’s in the above formula describe the importance the user assigns to 
each task and their choice forces the performance index to fit the user’s 
preferences. Other indices can be defined in similar way and they can be 
straightforwardly included in our approach. A second important performance index 
is the number of overloads OLS which occur in executing the tasks scheduled in a 
given scenario S. Overloads need to be taken into account, because in general they 
stress the system and may cause the cost of the resource to increase. Overall 
performance indices can be defined by combining the two defined above as we will 
do in Section 4. 
 
3 Centralized Control Architecture 
In the case of centralized control architecture, we consider two possible control 
strategies to allocate resources. We assume that the home automation system 
includes an agent which plays the role of supervisor and allocates the resource. The 
supervisor monitors each plug by measuring the consumption of electricity at each 
one of them and it has computational capabilities that will be indirectly specified in 
the following. As soon as agent Ai, i =1,…, N, is turned on, load at the dedicated 
plug takes a positive value Pi and this, together with the switching time Ti, is 
assumed to represent, for the supervisor, the current demand, indicated by (Pi,Ti) of 
the agent Ai. The supervisor knows the value of the threshold and, to allocate the 
resource when the global demand exceeds the availability, it can disconnect any 
one of the plugs. In case of disconnection, the supervisor is able to measure the 
duration Di of the time interval in which the plug and, therefore, the associated 
agent Ai remained disconnected.  
When agents turn on, the supervisor evaluates the global electric load and, if it 
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does not exceed the threshold, it remains inactive. Alternatively, before the Limit 
Time Tlim expires and black out occurs, the supervisor decides how to allocate the 
resource and it acts by disconnecting some of the plugs to lower the load. The first 
strategy we consider is based on game theoretic methods and it has been described 
in [18]. Conceptually, it uses the solution of a cooperative game in a Cournot 
Oligopoly ([2]).  
Let us denote by P the available amount of resource, corresponding to the 
threshold, and by Pi (Pi >0) the resource required by agent Ai, i = 1,…,N, starting 
from time Ti, i=1,…,N. Assuming that an overload occur at some time To, the 
supervisor computes the values (X1

*,…, XN
*) that maximize the payoff functions 

)CXP(X ii iii ∑ −−=π , i = 1,…,N, where Ci denotes a weigh associated to the 

current demand (Pi,Ti) of the agent Ai. (X1
*,…, XN

*), is a Nash-Cournot 
equilibrium point that determines the best allocation, with respect to the payoff 
functions, of the available resource among all agents. Since such allocation will not 
be directly applicable (because, first of all, the supervisor is only capable of a 
discrete on-off action on each plug, not of exerting a continuous regulation, and, 
moreover, because it would be useless, also if it was possible, to supply to an agent 
less or more power than required), the supervisor finds one which is close to it, in a 
suitable sense, by determining a subset J of indices in {1, 2, …,N} in such a way 
that the characteristic function  

( ) 








 −
−
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∑

∑
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Ji i21
Ji

2
i

*
i

Ji i       (3) 

is maximized. Then, it cuts off power to the agents Ai for which i∉J, closing the 
first phase of the decisional process.  
The weights Ci used in the evaluation of the payoff functions depend, in particular, 
on the time elapsed from the switching instant Ti and the present time T, that is (T - 
Ti), and on the duration Di of the time interval in which, possibly, the agent Ai 
remained disconnected, starting from Ti. More precisely, Ci is defined by the 
following expression: 










−
−=

)TT(

D
1

N

P
C

i

i
i      (4) 

The agents Ai, i∈J, chosen in the first phase of the decisional process form a 
winning coalition that hold temporary. After a fixed waiting time, which is a 
parameter of the control action, in a second phase, the supervisor evaluates again 
the payoff functions, using updated values of the weights Ci, and, depending on the 
results, it computes a new winning coalition, that may coincide with the previous 
one or not.  
In the above scheme, the supervisor works in real time, optimizing the allocation of 
the available resource on the basis of the information it has at each instant. It is 
possible to structure the system in such a way that the supervisor is not given the 
possibility to disconnect specific plugs, that is specific agents (e.g. for safety 
reasons or simply for user’s convenience). When the supervisor detects a demand 
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from one of such agents, it simply reduces the threshold, in its computation, by a 
corresponding value. 
The second control strategy we consider is a simpler one that formalizes the 
resource allocation problem as a Knapsack Problem and uses linear programming 
to solve it (see e.g. [11]). As done before, let us denote by P the available amount 
of resource, corresponding to the threshold, and by Pi (Pi >0) the resource currently 
required by agent Ai, i = 1,…,N. Moreover, for each agent Ai, let Ci denote a 
weight associated to the current demand Pi. Assuming that an overload occur at 
some time To, the supervisor solves the problem described by  

 maximize ∑
N

1=i
ii CX subject to ∑ ≤

N

1=i
ii PPX , with either Xi = 0 or Xi = 1. 

After finding the solution (X1
* ,…, XN

*), the supervisor disconnect the agents Ai for 
which Xi = 0. The problem is NP-hard, but, given the limited number of agents in 
realistic situations, it has a feasible size and it can be solved in relatively short time 
by branch and bound. The weights Ci can be assigned in two ways: either as a 
function of the current state of the agent and of the preferences of the end user 
(dynamic weights), or by choosing constant values (static weights). In the second 
case, taking equal weights, the strategy maximize the number of agents which 
share the resource, cutting off those which have greater demand. To make possible 
the use of dynamic weights, we must assume the possibility for the supervisor to 
know the individual status of each agent, by exchanging information on a 
communication network. 
It is clear that both the above described strategies avoid black outs by limiting the 
time during which the system is in an overload condition. On the other hand, by 
denying resource to some of the agents, they cause the performance index ∆S to 
take a positive value. Minimization of such value and, consequently, improvement 
of performances depend, in the case of the second strategy, on the choice of the 
weights Ci. Similarly, in the case of the first strategy, one can influence ∆S by 
modifying the characteristic function ν(J) in (3) or the way in which the Ci are 
defined in (4).  
 
4 Distributed Control Architecture 
We assume, in the case of distributed control architecture, that the home 
automation system does not include any supervisor, but only a device, called 
meter, that is able to dispatch the measure of the global electric load. 
A distributed control strategy for managing electricity can be designed following 
the lines of the Power Levelling Strategy introduced and discussed in [4]. When an 
overload occurs, each domotic agent enters in an overload status, in which it waits 
for a given time before yielding and going to a standby status, from which it tries 
to resumes its operation, making a new demand, after a given time has elapsed. 
The time each agent Ai waits before yielding is called Overload Time and it is 
denoted by τ oi. The time each agent Ai waits before trying to resume operation is 
called Suspension Time and it is denoted by τ si (see [4, 5] for a detailed discussion 
and description of the power levelling strategy). 
The Overload Time τ oi and the Suspension Time τ si are the parameters of the 
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individual control action that each domotic agent Ai employs to regulate its own 
behavior. Their choice affects the performances of the system in each scenario S in 
terms of number of overloads OLs, which one would limit, and in terms of average 
relative delay ∆s, which one would limit too. The two objectives are mutually in 
contrast and the choice of the above control parameters has to be performed by 
solving an optimization problem. In the multi agent framework developed in [4, 5, 
6], the optimization problem concerning the choice of τ oi and τ si for each domotic 
agent Ai in a given scenario has been formally stated by defining the objective 
function to be minimized as 

fS(τo1,τs1,…,τoN,τsN) = αOLs + β∆s        (5) 
where S denote the scenario. Since an analytic expression of fS cannot be easily 
found, a suitable simulation/optimization method has been used to find the best set 
of parameters. Metaheuristic methods based on Tabu Search and on Genetic 
Algorithms have been implemented, in a LabVIEV environment, using the HAS-
SIM simulator described in [4, 5, 6]. Comparison in [13] has shown that Genetic 
Algorithms, although computationally more expensive than Tabu Search, produce 
better solutions. 
The control strategy briefly recalled above guarantees that blackout do not occur, 
since the system remains in overload conditions for a time smaller than the Limit 
Time Tlim, but, contrary to what happens in the case of centralized control 
architectures, overloads may occur frequently.  
 
5 Simulation and Comparative Tests 
To compare at various levels the performances of strategies of the above described 
kinds, the behavior of a home automation system that includes two domotic agents 
and one domotic object (that is two agents that can be disconnected or put in a 
standby status and one which cannot) has been simulated in different scenarios 
using the HAS-SIM simulator. The load profiles of the two domotic agents, 
representing respectively a washing machine and a dishwasher, are illustrated in 
Figure 1 and 2. The domotic object is characterized by a fixed load of 2.5kW and it 
represents appliances and devices that cannot be disconnected or put in a standby 
status. Threshold is fixed at 3kW and the scenario’s schedule is a simple one: the 
third agent is always on and the other two turn on at the same time T0. 
In the case of distributed control architecture, the simulator has been first used to 
optimize off-line, using genetic algorithms, the control parameters, namely the 
Overload Time and the Suspension Time for the dishwasher and for the washing 
machine. Performances are therefore those corresponding to the best choice of 
parameters. Five different tests have been performed using different weights γ i to 
compute by (2) the performance index ∆S  as described in Table I and Table II. 
The electricity consumption profiles corresponding to the best performances, 
respectively when the weights are (1, 1) in the distributed case and (3, 1) in the 
centralized one (the two centralized strategies present similar results), are 
illustrated in Figure 3 and Figure 4. 
We can see that the system behavior is quite similar in the two configurations. In 
particular, the time globally required for performing all the scheduled tasks is more 
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or less the same. In the case of the distributed control architecture, we observe one 
overload more than in the other case. The centralized control architecture, in 
addition, allocates the resource to the standby agent as soon as it is made available. 
The reaction of the distributed system when the resource becomes available is 
slower, since the agent whose demand is pending waits, in any case, until its 
Suspension Time has elapsed. 
 
6 Conclusion 
Centralized control architectures and distributed ones represent two possible 
choices for realizing home automation systems endowed with efficient control 
strategies. Both choices appear to be practicable from a technological point of 
view, using well established signal acquisition and processing techniques and, 
regarding the hardware, devices like low cost microcontrollers. Transmission of 
information presents unsolved problems, related to the choice of the technology 
(wireless, dedicated bus, power line) and to that of the protocol (LonTalk, 
KONNEX, others) to be used. Centralized control architectures are simpler to 
realize, but they present the additional cost of the supervisor that users may not be 
willing to pay. 
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Fig. 1. Dishwasher’s load profile. Fig. 2. Washing machine’s load profile. 

  

  
Fig. 3. Consumption profile with distributed control 

architecture; weights (1,1). 
Fig. 4. Consumption profile with centralized 

control architecture: weights (3,1). 

 

194



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010   

 

 

Semi-Markov Disability Insurance Models 

 
Guglielmo D’Amico, Montserrat Guillen and Raimondo Manca 

 
Dipartimento di Scienze del Farmaco, 

Università “G. D’Annunzio”of Chieti-Pescara, Chieti, Italy  

Email: g.damico@unich.it 

Departament d’Econometria, Estadistica I Economia Espanyola, RFA-IREA, 

Universitat de Barcelona, Spain 

Email: mguillen@ub.edu  

Dipartimento di Matematica per le decisioni economiche, finanziarie e assicurative, 

Università “La Sapienza” di Roma, Roma, Italy 

Email: raimondo.manca@uniroma1.it  
 
Abstract: In this paper, we present a stochastic model for disability insurance contracts. The 

model is based on a discrete time non-homogeneous semi-Markov process to which the 

backward recurrence time process is joined. This permits to study in a more complete way 

the disability evolution and to face in a more effective way the duration problem. The use of 

semi-Markov reward processes gives the possibility of deriving equations of the prospective 

and retrospective reserves. The model is applied to a sample of contracts drawn at random 

from a mutual insurance company. 

 

1  Introduction 
 

Non-homogeneous semi-Markov processes (NHSMP) were defined independently 

by Hoem (1972) and Iosifescu Manu (1972). The approach of Iosifescu Manu was 

further generalized in Janssen and De Dominicis (1984).  

The development of the theory of semi-Markov processes quickly found 

applications in finance and insurance problems. The reader can find examples  in 

Janssen (1966), Hoem (1972), CMIR (1991), Carravetta et al (1981), Balcer and 

Sahin (1979, 1986) Janssen and Manca (1997) and, more recently, in the book by 

Janssen and Manca (2007). 

A generalization of the NHSMP transition probabilities is obtained by introducing 

the initial and final backward times, see D’Amico et al. (2009). The backward time 

gives the possibility to consider the dependence of the transition probabilities on 

the time of entrance into a given state. 

A detailed description of continuous time homogeneous semi-Markov processes 

with backward is reported in Limnios and Oprişan (2001) and in Janssen and 

Manca (2006). The discrete time non-homogeneous semi-Markov reward process 

with backward is presented in Stenberg et al (2007). 

In this paper we generalize the results obtained by D’Amico et al. (2009) 

introducing the reward structure. The reward structure gives the possibility to 

determine equations for the prospective and retrospective mathematical reserves 
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and a discrete version of the Thiele differential equation in a semi-Markov 

environment. 

To the best of the authors’ knowledge, it is the first time that the general formulae 

of a discrete time NHSMP with rewards and initial and final backward processes 

are presented together with the corresponding mathematical reserves.  

The paper is organized in the following way. Next section presents a short 

introduction to NHSMP considering initial and final backward recurrence times. 

Section 3 analyzes semi-Markov reward processes with initial and final backward 

times. Successively, prospective and retrospective reserves are determined. Section 

4 describes the disability data from a mutual insurance company from Catalunya 

and gives the results obtained by the model with these data.   

 

2  Semi-Markov processes 
 

We follow the notation given in Janssen and Manca (2006). In a semi-Markov 

process (SMP) environment, two random variables (r.v.) run together. ,nJ n∈� , 

with state space I={1, 2, …, m}, represents the state at the n-th transition.  

,nT n∈� , with state space equal to � , represents the time of the n-th transition, 

 : , : .n nJ I TΩ → Ω → �  

We suppose that the process (Jn, Tn) is a non-homogeneous Markov renewal 

process and by  we denote the inter-arrival time process.  The kernel Q =[Qij(s,t)] 

associated to the Markov renewal process is defined in the following way: 

 Qij (s,t) = P[ Jn+1 = j, T n+1 ≤ t |  Jn = i, Tn=s] 

and so: 

 pij (s)= P[ Jn+1 = j, |  Jn = i, Tn=s]= 
∞→t

lim   Qij (s,t);  i, j∈I,  s, t∈ � , s t≤ . 

P(s) = [pij(s)] is the transition matrix of the embedded non-homogeneous Markov 

chain.  

 

Furthermore, it is necessary to introduce the probability that the process will leave 

state i from time s within time t: 

  

 Hi (s,t) = P[ Tn+1 ≤ t  |  Jn = i, Tn=s]. 

 

Obviously it follows that:  

 
 

1

( , ) ( , )
m

i ij

j

H s t Q s t
=

=∑ . 

 

Now it is possible to define the distribution function of the waiting time in each 

state i, given that the state successively occupied is known: 
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 Fij (s,t)=P[ Tn+1≤  t | Jn = i, Jn+1 = j, Tn=s]. 

 

The related probabilities can be obtained by means of the following formula: 

 

 

 
( , ) ( ) if ( ) 0

( , )  
1 if ( ) 0

ij ij ij

ij

ij

Q s t  /  p s p s
F s t

p s

≠
=  =

. 

 

The main difference between a discrete time non-homogeneous Markov process 

and a DTNHSMP is in the distribution functions Fij(s,t). In a Markov environment, 

this function has to be a geometric distribution function. Instead, in the semi-

Markov case the distribution functions Fij(s,t) may be of any type.  

By means of the Fij(s,t) we can take into account the problem given by the duration 

inside the states. In the disability context, we know that the transition probabilities 

depend on the time an individual has remained in a certain state level. 

Now, let { }( ) sup | nN t n T t= ∈ ≤� , then the NHSMP Z(t) can be defined as 

{ }( ) sup | nN t n T t= ∈ ≤� , denoting the state occupied by the process at each time. 

 The transition probabilities are defined in the following way: 

 

 
( )( , ) P ( ) | ( ) , .ij N ss t Z t j Z s i T sφ  = = = =    

 

They are obtained by solving the following evolution equations: 

 

 
1 1

( , ) ( , ) ( , ) ( , )
m t

ij ij i j

s

s t d s t b s tβ β
β ϑ

φ ϑ φ ϑ
= = +

= +∑ ∑   (2.1) 

where  

 

 [ ]1 1

( , ) ( , 1) if
( , ) , | ,

0 if

ij ij

ij n n n n

Q s t   Q s t  t s
b s t P J j T t J i T s

t s
+ +

− − >
= = = = = = 

=
  

 

and 

 

 

1 ( , ) if
( , )

0 if .

i

ij

H s t i j
d s t

i j

− =
= 

≠
 

 

 

The first part of formula (2.1) gives the probability that the system does not have 

transitions up to the time t given that it entered in the state i at time s.  ( , ),
ij
d s t  in a 
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disability insurance model represents the probability that the policyholder does not 

have any new evaluation from the time s up to the time t. This part makes sense if 

and only if i=j. 

In the second part of (2.1), ( , )
i
b sβ ϑ  represents the probability that the system 

enters state β  just at time ϑ  given that it entered in the state i at time s. After the 

transition, the system will go to state j following one of the possible trajectories 

that go from state β  at the time ϑ and bring the system to be in state j at time t.  

 

There are well known algorithms making possible the solution of equation (2.1), 

see for example Janssen and Manca (2007).  

 

Definition 1: Let ( )( ) N tB t t T= − be the backward recurrence time process (see 

Limnios and Oprişan (2001), Janssen and Manca (2006)). 

 

The backward recurrence time process denotes the time since the occurrence of last 

transition. 

 

In D’Amico, Guillen and Manca (2009) the following probabilities were defined: 

 

 
[ ]

( ) ( ) ( ) ( ) 1

( , ; ) P ( ) | ( ) , ( )

P | , ,

b

ij

N t N s N s N s

l s t Z t j Z s i B s s l

J j J i T l T s

φ

+

= = = = −

 = = = = > 
 , (2.2) 

 
[ ]

( ) ( ) ( ) 1 ( ) ( )

( ; ', ) P ( ) , ( ) ' | ( )

=P , ', | ,

b

ij

N t N t N t N s N s

s l t Z t j B t t l Z s i

J j T l T t J i T s

φ

+

= = = − =

 = = > = = 
. (2.3) 

 

Formulae (2.2) and (2.3) represent the semi-Markov transition probabilities with 

initial and final backward recurrence time respectively.  

In (2.2) we know that at time s the system is in the state i. We know also that it 

entered in this state at time l and s-l represents the initial backward time. Then we 

are looking for the probability to be in the state j at time t. 

In (2.3) we know that the system entered in the state i at time s. In this case we are 

interested in the probability to be in the state j at time t with the entrance in this 

state at time l’. The final backward time is t-l’. 

Putting the two cases together we obtain the transition probabilities with initial and 

final backward times: 

 

  
[ ]

( ) ( ) ( ) 1 ( ) ( ) ( ) 1

( , ; ', ) P ( ) , ( ) ' | ( ) , ( )

P , ', | , ,

b b

ij

N t N t N t N s N s N s

l s l t Z t j B t t l Z s i B s s l

J j T l T t J i T l T s

φ

+ +

= = = − = = − =

 = = > = = > 
. (2.4) 
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In Figure 1 a trajectory of an NHSMP with initial and final backward times is 

reported. In this figure we have that ( ) , ( ) 1,N s n N t h= = −  the starting backward  

( ) nB s s T s l= − = −  and the final backward 1( ) 'hB t t T t l−= − = − .  

 

 
Figure 1: Initiual and final backward trajectory 

 

To present the evolution equations of probabilities (2.2), (2.3) and (2.4) we 

introduce the following notation: 

 

1 ( , )
if

1 ( , )( , ; )

0 if

i

iij

H l t
i j

H l sd l s t

i j

−
= −= 

 ≠  
 

which represents the probability to have no transition from state i between times l 

and t given that no transition occurred from state i between times l and s.  

Moreover by 

 

( , )
( , ; )

1 ( , )

ij

ij

i

b l t
b l s t

H l s
=

−  
 

we denote the probability to make next transition from state i to state j from time l 

to time t given that the system does not make transitions from state i between times 

l and s. 

  

The relations (2.5), (2.6) and (2.7) represent the evolution equations of (2.2), (2.3) 

and (2.4) respectively: 
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1 1

( , ; ) ( , ; ) ( , ; ) ( , ),
m t

b

ij ij i j

s

l s t d l s t b l s tβ β
β ϑ

φ ϑ φ ϑ
= = +

= +∑ ∑   (2.5) 

 

 { }

'

'
1 1

( ; ', ) ( , ) ( , ) ( ; ', ),
m l

b b

ij ij i jl s
s

s l t d s t b s l tβ β
β ϑ

φ ϑ φ ϑ=
= = +

= +∑ ∑1   (2.6) 

 

where { }'
1

l s= =1  if and only if  'l s=  . 

 

 { }

'

'
1 1

( , ; ', ) ( , ; ) ( , ; ) ( ; ', ).
m l

b b b

ij ij i jl l
s

l s l t d l s t b l s l tβ β
β ϑ

φ ϑ φ ϑ=
= = +

= +∑ ∑1   (2.7) 

 

Expression (2.5) provides the probability that the system is in the state j at time t 

given that it was in the state i at time s and entered in this state at time l. If in (2.5) 

l s=  then we recover the equation (2.1).  

 

Expression (2.6) gives the probability that the system will arrive in the state j just 

at time l’ and will remain in this state, without any other transition, up to time t  

given that it entered at time s in state i. The part { }'
( ; )

ij l s
d s t =1  of (2.6) represents 

the probability not to have a transition from time s to time t. Consequently the final 

backward time 't l− must be exactly equal to t s−  and it has sense only if i j=  . 

The second part of (2.6) means that the system does not move from time s to time   

ϑ  and that, just at this time, it jumps to  state β  .Afterwards, following one of the 

possible trajectories, the system arrives in state j just at time l' and does not move 

from this state at least up to time t. 

 

Remark 1. It should be noted that considering all the possible final backward 

process values we recover the transition probabilities (2.1) that is: 

 
'

( , ) ( ; ', )
t

b

ij ij

l s

s t s l tφ φ
=

=∑  . 

 

Expression (2.7) gives the probability that the system entered in the state j at time 

l’ and remained inside this state without any other transition up to the time t given 

that it entered in the state i at time l and it did not move up to s. The term  

{ }'
( , ; )

ij l l
d l s t =1  gives the probability not to have transitions from l to t outside state i 

given that no transition occurred from l to s. This probability contributes only if   

i j=  and 'l l=  . The second part of (2.7) represents the probability to make next 

transition from i at time l to whatever state β  at whatever time ϑ  and then to 
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move following whatever trajectory which make provision for the entrance in j at 

time l’ with no transition up to time t. This probability is conditioned on the 

permanence of the system in i from time l up to time s. 

 

Remark 2. Relation (2.7) is a mixture of (2.5) and (2.6). This last evolution 

equation is the one used to construct the model for the disability insurance. This 

kind of model was suggested by Haberman and Pitacco (1999) but there were no 

formulae to the problem, or they were not presented. 

 

 

3  Semi-Markov reward processes with backward times 
 

Now we introduce the reward structure. A permanence reward ( ),i s tψ  is paid 

when the process visits state i at time t for a contracts starting at time s. An impulse 

reward ( ),ij s tγ  is paid due to the transition from state i to state j at time t for a 

contracts starting at time s. We assume that permanence and impulse rewards are 

amount of money. They have to be discounted using a discrete time non-

homogeneous discount factor ( , )s tν .  

Following the line of research in Stenberg et al. (2007) we define the accumulated 

reward process with initial and final backward times by means of the following 

relation: 

 

Definition 2. Let ( ), ; ',ij l s l tξ  be the discounted accumulated semi-Markov reward 

process with initial and final backward times, defined by  

 

( )

( ) ( )

( )

( )
( ) 1 ( ) 1

( ) 1 ( ) ( ) ( ) 1

1

'

( ) 1 ( ) 1 ( ) ( ) ( ) 1

1

( ) 1 , ( ) 1 ,
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| , , ' ( , ) ( , )

, | , ,
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N s N s

ij

t

N s N s N s N s ij i

s

l

N s N s N s N s N s

k I s

i N s i J N s J j N

l s l t

T t J i T l T s l l s v s

J k T J i T l T s

s v s v s T s T T

τ

θ

ξ

χ δ χ ψ τ τ

χ θ

ψ τ τ γ ξ
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+ +
= +

+ + +
∈ = +

+ +

=

 
> = = > =  

 

+ = = = = > ⋅

+ +

∑

∑ ∑

( )( )
( ) 1

( ) 1 ( ) 1

1

, ; ', .
N sT

s N s

s

T l t
τ

+

+ +
= +

 
 
  
∑

 

(3.1) 

 

The process ( ), ; ',ij l s l tξ  describes the discounted total amount of money 

accumulated from time s up to time t considering that the semi-Markov process 

will be in state j at time t with entrance in this state at time l’ (final backward equal 

to t-l’) given that at time s it was in state i with entrance in this state at time l 

(initial backward equal to s-l).    
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Let us denote by ( ) ( ), ; ', , ; ',b b

ij ijV l s l t E l s l tξ =   . To compute the expectation of 

(3.1) we have to consider that: 

 

i)            

( )
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 > = = > = 

 −
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 ii) ( )( ) 1 ( ) 1 ( ) ( ) ( ) 1, | , ,N s N s N s N s N sJ k T J i T l T sχ θ+ + += = = = >  and 

( )
( ) 1 , ( ) 1 ( ) 1, ; ',

N sJ j N s N sT T l tξ
+ + +  are independent random variables ; 
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, | , ,

1 ( , )

ik

N s N s N s N s N s

i

b s l
E J k T J i T l T s
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θ
χ θ+ + +

− = = = = > =  − −
  

 

by taking expectation in (3.1) we get the following equation:  

 

 

  

( ) ( ) ( )
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1

'

,

1 1
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τ

θ

θ τ

χ ψ τ τ

θ ψ τ τ γ θ θ θ θ θ

= +

∈ = + = +

 
= =  

 

 
+ + + 

 

∑

∑ ∑ ∑
  

(3.2) 

 

Equation (3.2) is the evolution equation representing the actuarial value of the total 

rewards accumulated in the interval [s,t].  

Following the approach of Stemberg et al (2007) it is possible to derive recursive 

equations for the higher order moments of the reward process ( ), ; ',ij l s l tξ .  

 

It should be noted that equation (3.2) makes provision in a complete way of the 

duration dependence by using the backward process at initial and final times 

simultaneously. Moreover the process considers also the final state j and this would 

be also an advantage in defining the retrospective reserve (see subsection below).  

 

There are some interesting particular cases of equation (3.2). First of all we can 

ignore the duration effects on the starting state by not considering the initial 

backward value. In this case, by putting ( ) 0B s =  we obtain the following 

definition:. 

202



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010   

 

 

 

Definition 3. Let ( ); ',ij s l tξ  be the discounted accumulated semi-Markov reward 

process with final backward time, defined by  
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(3.3) 

 

 

If we denote by ( ) ( ); ', ; ',b

ij ijV s l t E s l tξ =   , by taking the expectation of (3.3) we 

have: 
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1 1
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θ ψ τ τ γ θ θ ξ θ θ
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∈ = + = +

 
= = −  

 

 
+ + + 

 

∑

∑ ∑ ∑
(3.4) 

 

If we ignore the duration effects on the arriving state by not considering the final 

backward value and we do not take care for the arriving state j we have the process 

( ), ;i l s tξ . It represents the discounted accumulated semi-Markov reward process 

with initial backward time. This process has been defined and analyzed by 

Stemberg et al (2007). 

 

3.1 Prospective reserves 
3.2  

Let us assume that the policy is issued at time s in state Z(s)=i of the semi-Markov 

chain with backward value B(s)=s-l. Premiums and benefits for the policy are paid 

by the insured and by the insurer depending on the state of the disability degree. 

The permanence reward ( , )i s tψ  considers the payment of a premium or a benefit 

due to the occupancy of state i at time t for a contract starting at time s. 

The impulse reward ( , )
ij
s tγ  can be used to consider an insurance benefit or lump 

sum. 

In general the prospective premium reserve is defined as the expected value of the 

loss function, see Wolthuis (2003). In our case the random process ( ), ; ',ij l s l tξ  
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represents the discounted accumulated rewards process with initial and final 

backward values and expresses the difference between future benefits and premium 

payments with constraints on the duration in the starting and arriving states. 

Consequently ( ), ; ',ij l s l tξ  is a constrained loss function and its expectation  

represents the prospective reserve with full backward information. A particular 

case of ( ), ; ',b b

ijV l s l t  is ( ), ;b

ijV l s t  which is the prospective reserve with initial 

backward.  

In life insurance generally the policy terminates with the death of the policyholder. 

The death occurs at a random time, for this reason the prospective reserves is 

considered for t→∞  , see for example Wolthuis (2003). 

Let denote by ( ) ( ), , ; .i il s l sξ ξ= ∞  By conditioning on the state at time s+1 we 

have:  
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(3.5) 

 

If we denote by ( ) ( ), ,i iW l s E l sξ =   , by taking the expectation of (3.5), by 

applying similar arguments to i), ii) and iii) we obtain 
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( , 1) , 1 1, 1 ( , 1)
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H s l s

ψ

ψ γ
∈

 − − +
 = + + + +   − − 

 − +
 + + + + + + + +   − − 

∑
 (3.6) 

 

 

Equation (3.6) expresses the change of the prospective reserve for state i at time s 

with duration s-l from time s to time s+1. Therefore it can be seen as a 

generalization of the Thiele differential equation for a disability insurance contract 

described by a non-homogeneous semi-Markov chain. 

 

3.2  Retrospective reserves 
 

204



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010   

 

 

In general retrospective reserves are defined as the expected discounted value of 

past premiums minus past benefits. 

There are different definitions of retrospective reserves. Here we consider the 

conditional retrospective reserve defined by Norberg (1990) and we adapt it to our  

general framework. 

For the retrospective reserve notation see Janssen, Manca and Volpe di Prignano 

(2009).  

Let us denote the conditional retrospective premium reserve relative to the period  

[ ],s t
 
with initial and final backward values by ( ), ; ', .b b

ijM l s l t   

We assume that the function ( ), ; ', .b b

ijM l s l t  satisfy for all states i,j and times 

’l s l t≤ ≤ ≤  the following relation: 

   

 ( ) ( )( , ) , ; ', , ; ', ( , ; ', )b b b b b b

ij ij ijv s t l s l t M l s l t V l s l tφ = −   (3.7) 

 

from which we get   

 

  .  

 ( )
( )

1
, ; ', ( , ; ', )

( , ) , ; ',

b b b b

ij ij b b

ij

M l s l t V l s l t
v s t l s l tφ

= −   (3.8) 

 

If  ( ), ; ', 0b b

ij l s l tφ =
 
we set ( ), ; ', 0b b

ijM l s l t = . 

Notice that it is possible to derive recursive equation for the retrospective reserves 

by using relation (3.2) and (3.6) for the prospective reserves. 

 

 

4  Real data numerical example 
 

The model has the following four states: 

 

W – active; 2) P – pensioner; 3) Di – disabled; 4) De – dead 

 

interrelated as indicated In Figure 2. 
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Figure 2: Graph of the disability model 

 

It is well known that transition probabilities from the disabled state are function of 

the duration in the current state (see Haberman and Pitacco (1999)). In the SMP 

environment this aspect is considered but the (2.1) solution is not sensitive to the 

duration aspect. The introduction of the backward process as in (2.7) permits to 

manage transition probabilities that depend on the initial and final durations. 

 

The data analyzed come from a sample of contracts drawn at random from a 

mutual insurance company  from Catalunya. 150,000 insurance contracts are 

analysed and 2,800 LTC spells are observed for a large period from 1975 to 2005.  

In order to simplify the model, we chose to work with a five year interval. 

 

Owing to lack of space, we do not show the kernel estimates and other results, but 

we can make them available upon request. We would only to point that, as it is 

possible to see in Figure 3, the transition probability values change in function of 

both the initial and final backward times, so the model results to be sensitive to 

both backward times.  

In all histograms W is the starting state. The blue colour reports the results in 

absence of initial backward IBk=0), the red colour the case with 1 year of initial 

backward recurrence time (IBk=1). The first observation is that the probability 

distribution is spread among the final backward recurrence times (for example in 

the south west histogram FBk=0, 1, 2 and 3) and the arriving states. Indeed, in the 

north-west part there are eight possible events with arriving time equal to starting 

time plus one (AT=ST+1), four in the case of final backward time equal to 1 and 
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four with final backward time equal to 0. In the north-east, with arriving time equal 

to starting time plus two (AT=ST+2), there are twelve possible cases, four for each 

different final backward time and so on. The first blue and red bars of each 

histogram represent the probability to stay in the starting state; it decreases in 

function of the arriving time. It is also interesting to observe that the shape of the 

histograms changes in function of both the initial and final backward times, so the 

model results to be sensitive to both backward times. 

To help the Figure 3 understanding the first two bars of the first histogram 

represent respectively the probabilities 11 11
(0,0;0,1), (0,1;1,2)b b b bφ φ  

 
 

   

Figure 3: comparison between initial and final recurrence backward times  
 

The same behaviour is translated to the accumulated reward process. We assumed 

the following reward structure: 

 

, ,
( , ) 5000, ( , ) 15000, ( , ) 30000, ( , ) ( , ) 2000,

W P Di W Di P Di
s t s t s t s t s tψ ψ ψ γ γ= − = = = =  

Final backward  V1(0,3;l’,10) V1(1,3;l’,10) V1(2,3;l’,10) V1(3,3;l’,10) 

l’=3 -4622.85 -8392.82 -11732.10 -13395.30 

l’=4 -420821.00 -424019.00 -426845.00 211.25 

l’=5 -415040.00 -417212.00 -419330.00 -1537.27 

l’=6 -401852.00 -402520.00 -403586.00 -8536.55 

l’=7 -371546.00 -370686.00 -369788.00 -20629.00 

l’=8 -291318.00 -285725.00 -279689.00 -23346.60 
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l’=9 -131829.00 -125292.00 -115690.00 -20180.90 

l’=10 -3209.33 -11431.30 -15806.30 -17031.90 

Table 1:expected accumulated reward values 

 

Table 1 shows the dependence of the accumulated reward process in function of 

the initial and final backward. In fact, by comparing two columns we see different 

expected reward values due to different initial backward values. By comparing two 

rows we see the effects due to different final backward values. 
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Equipe de Statistique et Probabilités
route de Narbonne, 31062 Toulouse.
(e-mail: loubes@math.univ-toulouse.fr)

3 Laboratoire LMGEM, University Aix-Marseille 2
Campus de Luminy, case 901, 13288Marseille cedex 09.
(e-mail: anne-francoise.yao@univmed.fr)

Abstract. Let Zi = (Xi, Yi), i ∈ NN (N ≥ 1) a spatial random field. In this work,
we deal with the problem of estimation of the regression of the Yi’s given respectively
the Xi in dimension reduction setting. We suppose that the Zi’s have the same
distribution as a variable Z = (X, Y ), where Y is a real-valued and integrable
variable and X valued in a separable space E (of eventually infinite dimension).
Keywords: Random fields, Spatial statistic, Functional data analysis, Dimension
reduction.

1 Introduction

In many areas: geology, oceanography, econometrics, soil science, epidemiol-
ogy, physics, environment, risk management, image processing, the data are
spatially dependent (see e.g. [12], [4] or [6]). Then their treatment requires
specific tools provided by spatial statistic.

In this setting, unlike the parametric case, nonparametric spatial regres-
sion is only tackled in a few papers, among them see for instance [10], [3],
or [5]. Their results show that, as in the i.i.d. case, the spatial nonpara-
metric estimator of the regression function is penalized by the dimension of
the regressor. Then, we propose the estimation of the regression function
m(x) = E(Y |X = x) using some dimension reduction methods. Under the
assumption: that there exist Φ a mapping from E to RD, with D as small
as possible, and a function g : RD → R, an unknown function such that the
function m(.) can be written as

m(x) = g(Φ .x). (1)

Actually, Model (1) conveys the idea that “less information on X” , Φ .X,
gives as much information on m(.) as X. The function g thus becomes the
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regression function of Y given the D dimensional vector Φ.X. Estimating the
matrix Φ and then the function g (by nonparametric methods) provides an
estimator which converges faster than the estimator of the direct nonpara-
metric estimator of m.

In this paper we propose two methods of estimation of Model (1) when
X is a finite dimensional space in Section 2 and secondly when X is a high-
dimensional random variable (such as a curve).

The next section is devoted to general setting and notations.

2 General setting and notations

We are dealing with a measurable strictly stationary spatial process Zi =
(Xi, Yi), i ∈ NN (N ≥ 1), defined on a probability space (Ω, A,P) which
is such that: the Z ′

is have the same distribution as a variable Z = (X,Y ),
where Y is a real-valued and integrable variable and X valued in Rd. In what
follows, we will denote by µ the probability distribution of X, by νi,j the joint
probability distribution of (Xi, Xj) (∀ i, j). The letter in bold i =(i1, ..., iN ) ∈
ZN is referred as a site, ∥.∥ will denote any norm over ZN , C an arbitrary
constant. We will write n → +∞ if mink=1,...,N nk → +∞ and we set n̂ =
n1 × ...× nN .

We aim to estimate Model (1) from observations of process Zi = (Xi, Yi),
on a lattice of RN . Without the lost of generality, we assume this latter lattice
is a rectangular set In =

{
i = (i1, ..., iN ) ∈ NN , 1 ≤ ik ≤ nk, k = 1, ..., N

}
,

n ∈ (N∗)N . We measure the spatial dependency using an α−mixing con-
dition. For B(S) (resp. B(S′)) denotes the Borel σ−fields generated by
(Zi, i ∈ S) (resp. (Zi, i ∈ S′)), let α(B(S),B(S′)) = supA∈B(S), B∈B(S′) |P (B∩
C) − P (B)P (C)|. Then a field (Zi) is said to satisfy a mixing condition if
there exists a function X : R+ → R+ with X (t) ↓ 0 as t → ∞, such that for
all S, S′ ⊂ (N∗)N ,

α(B(S),B(S′)) ≤ ψ(CardS, CardS′)X (d(S, S′)) (2)

where CardS (resp. CardS′) is the cardinality of S (resp. S′), d(S, S′) the
Euclidean distance between S and S′, and ψ : N2 → R+ is a symmetric
positive function nondecreasing in each variable. In this paper we will deal
with the strong mixing case, defined as ψ ≡ 1 and consider two main cases,
the polynomial case where ∀u ∈ R+, χ(u) ≤ Cu−θ, for some θ > 0, and also
the geometrically strong mixing case (GSM) characterized by χ(u) ≤ Cρu,
for some ρ ∈ (0, 1).

3 An inverse regression model in spatial setting

In this Section, we deal with the case where E = Rd. An estimation of Φ is
done through an estimation of his range Im(ΦT ) (where ΦT is the transpose
of Φ) called Effective Dimensional Reduction space (EDR).
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Various methods for dimension reduction exist in the literature for i.i.d
observations, see for instance the additive models [8]). Here, we aim at gen-
eralizing the inverse regression method, proposed in [9] to spatial models.
Roughly speaking, its work relies on an estimate of the variance of the in-
verse regression, Σe := var(E(X|Y )) which warrants a good estimation of
the EDR space. In his initial version, Li suggested an estimator based on
the regressogram estimate of E(X|Y ) but the drawbacks of this estimator led
other authors to suggest alternatives based on the nonparametric estimation
of E(X|Y ) to recover the optimal rate of convergence in

√
n. Here, we pro-

pose a spatial counterpart under strong mixing conditions of the estimating
method of [13] which uses a kernel estimation of E(X|Y ).

3.1 Estimation of the covariance of Inverse Regression Estimator

We solve the problem of estimation in three main step:

1. Estimation of E(X|Y )
2. Estimation of Σe = varE(X|Y ) and Σ = varX (we assume the exis-

tance of both matrix).
3. Computing Principal Component Analysis of the estimation Σ−1Σe

In the following, without the lost of generality, we will assume that X is
centreded.
Step 1 is based on spatial kernel regression estimation:

rn(y) =

{
φn(y)
fn(y) if fn(y) ̸= 0,

1
n̂

∑
i∈In

Yi if fn(y) = 0,

with for all y ∈ R,

fn(y) =
1

n̂hn

∑
i∈In

K

(
y − Yi

hn

)

φn(y) =
1

n̂hn

∑
i∈In

XiK

(
y − Yi

hn

)
,

where fn is a kernel estimator of the density, K : Rd → R is a bounded
integrable kernel such that

∫
K (x) dx = 1 with bandwidth hn ≥ 0 is such

that limn→+∞ hn = 0.
We can now define the kernel-type estimator of Σe

Σe,n =
1
n̂

∑
rn(Yi) rn(Yi)T −XX

T
. (3)

where X = 1
n̂

∑
i∈In

Xi.
In the following, we will provide the asymptotic behaviour of this estimate.
Once the variance of the inverse regression is estimated, the methodology

described in [9] can be used to estimate the EDR space. More precisely, if
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X is such that for all vector b in Rd, there exists a vector B of RD such
that E(bTX|Φ.X) = BT (Φ.X) (this latter condition is satisfied as soon as X
is elliptically distributed), then, if Σ denotes the variance of X, the space
Im(Σ−1var(E(X|Y )) is included into the EDR space. Moreover, the two
spaces coincide if the matrix Σ−1var(E(X|Y )) is of full rank. Hence, the
estimation of the EDR space is essentially based on the estimation of the
covariance matrix of the inverse regression E(X|Y ) and Σ which is estimated
by using a classical empirical estimator.

3.2 Weak consistency

In this section, we will make the following technical assumptions∥∥∥∥ r(Y )
f(Y )

∥∥∥∥
4+δ1

<∞, for some δ1 > 0 (4)

and ∥∥∥∥r(Y )
f(Y )

1{f(Y )≤en}

∥∥∥∥
2

= O
(

1

n̂
1+δ
2

)
. for some 1 > δ > 0. (5)

We also assume some regularity conditions on the functions: K(.), f(.)
and r(.):

• The kernel function K(.) : R → R+ is a k−order kernel with compact
support and satisfying a Lipschitz condition |K (x) −K (y)| ≤ C|x− y|

• f(.) and r(.) are functions of Ck(R) (k ≥ 2) such that supy |f (k)(y)| < C1

and supy ||φ(k)(y)|| < C2 for some constants C1 and C2.

Set Ψn = hk
n +

√
log n̂√
n̂hn

.

Theorem 1. Assume that we have: α(t) ≤ Ct−θ, t > 0, θ > 2N and C > 0.
If ψ : v 7→ E(||X||2|Y = v) is continuous. Then for a choice of hn such that
n̂h3

n(log n̂)−1 → 0 and n̂hθ1
n (log n̂)−1 → ∞ with θ1 = 4N+θ

θ−2N , we get

Σe,n −Σe = Op

(
hk
n +

Ψ2
n

e2n

)
.

Corollary 1. Choosing h ≃ n−c1 , en ≃ n−c2 for some positive constants c1
and c2 such that c2

k + 1
4k < c1 <

1
2 − 2c2, leads to

Σe,n −Σe = op

(
1√
n̂

)
. (6)
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3.3 Applications

Using the spatial dependency in practice
Thanks to the stationarity of the process, it suffices to compute the esti-

mators at given points yj (observed at the site j). Thus the inverse regression
at yj is defined by :

ren(yj) =
φn(yj)
fe,n(yj)

with

fn(yj) =
1

n̂hn

∑
i∈In

K

(
yj − Yi

hn

)
IVj

(i), φn(yj) =
1

n̂hn

∑
i∈In

XiK

(
yj − Yi

hn

)
IVj

(i)

and fe,n(yj) = max(en, fn(yj)) where the set Vj =
{
i, φ (||i − j||) > C ||i − j||−θ

}
(in the polynomial case) or Vj = {i, φ (||i − j||) > C exp(−θ||i − j||)} (in the
GSM case) depend on the mixing parameter θ.

For all j ∈ In, consider V ′
j defined as previously for some θ′ > 0, not

necessary equal to Vj. Then, let

Σe,n(j) =
1
n̂

∑
i

re,n(Yi) re,n(Yi)T IV ′
j
(i) −X(j)X

T
(j)

with X(j) = 1
n̂

∑
iXiIV ′

j
(i). Here again, the stationarity of the process en-

sures that Σe,n(j) ≃ Σe,n(k) for all sites j and k. Hence, an estimation of
Σe is obtained by using any Σe,n(j), or in an equivalent way, the median or
the mean of the Σe,n(j)’s. It is the latest case that we consider here in our
simulation study. Note also that the same procedure holds for the estimation
of Σ.

Note that the choice of both Vj, the set of some nearest neighbors of j, and
Vj’s is a difficult interesting problem. For our simulations we restrict ourselves
to the case where the sets composed of an arbitray fixed kn number of nearest
neighbours. The bandwidths are set using cross-validation techniques.

Finally the algorithm for estimating the spatial covariance of the inverse
regression estimation is the following

1. Compute the optimal bandwith, hopt , by using cross-validation proce-
dure.

2. For each yj ∈ In take the set Vj of the kn nearest neighboors and

compute:
∑

i∈Vj
K

(
yj−Yi

hn

)
,
∑

i∈Vj
XiK

(
yj−Yi

hn

)
,
∑

i∈Vj
Xi.

3. Choose en according to the assumptions of Theorem 1 and compute
ren(yj).

4. Compute Σe,n based on step 2 and 3 with k
′

n number nearest neighboors.

This algorithm is illustrated in the following simulations study.
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Simulation study

Model 2. The data are generated from model:

Yi,j = exp(βt
1Xi,j) + sin

(
π(βt

2Xi,j)/2
)

+ εi,j (7)

where 1 ≤ i, j ≤ 26 the β′
is are the same as in Model 1, (Xi,j) is the

process such that Xi,j = A2
i,j .Wi,j + Bi,j .19, with 19 = (1, ..., 1︸ ︷︷ ︸

9 times

), B =

GRF (0, 5, 7, 2), W being the process of the increments of a zero mean Brow-
nian sheet in R9, ε = GRF (0, 1, 5, 1) and A = D sin

(
B+1
20

)
with Di,j =

1
26×26

∑
1≤u,v≤26 exp

(
−∥(i,j)−(u,v)∥

a

)
.

Function D controls directly the spatial mixing condition even if using
the Gaussian Random Fields also brings some spatial dependency. Namely,
D corresponds to a mixing condition with χ (h) → 0 at exponential rate. We
point out that the greater is a, the weaker is the spatial dependency.
Prediction for Model 2 with a = 2.
To get predictions, we have simulated Model 2 with 1 ≤ i, j ≤ 36. The initial
sample has been divided into two samples according to a regular scheme:
a training sample (of size 31 × 31) to estimate the EDR space and a test
sample (size 335) to compute the prediction error. We have estimated the
βi’s obtained with kn = 10 and k

′

n = 100, we have used the kernel regression
estimator of [10] and computed the prediction error based on the sample test.
The coefficient of determination of the regression procedure is R2 ≃ 0.7.

Fig. 1. Error of prediction of Model 2 with a = 2: R2 ≃ 0.86
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4 Estimation of Model (1) in high dimensional setting

Here, we consider the case where X ∈ E is a high dimensional variable.
Namely, we consider the following two cases.

4.1 The mapping, Φ is defined through a semi-metric

We deal in this part with the case where the space E is endowed with a metric
δ. Then, we consider the setting where the mapping Φ is such that:

Φ(x) =
{
E → RD

x 7→ (δ(xcent1 , x), ..., δ(xcentD
, x) )

where xcentℓ
, ℓ ∈ 1, ..., D are some centralities of the distribution of the

Xi’s to be defined. In the functional data analysis setting, xcentℓ
can be for

example the mean function, the median curve, modals curves, depth func-
tions,...

4.2 The mapping Φ is linear.

Let us consider the case where the space E is endowed with an inner product.
Then, we propose as function Φ, an operator of projection on some subpace
S ⊂ E spanned by the orthogonal system of vectors : ui, ..., uD where the
ui’s are known.
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Abstract: In this article we propose a quantitative approach to a relatively new problem: 

categorizing text as pragmatically correct or pragmatically incorrect (forcing the notion, 

coherent/incoherent). The typical text categorization criterions comprise categorization by 

topic, by style (genre classification, authorship identification), by expressed opinion 

(opinion mining, sentiment classification), etc. Very few approaches consider the problem of 

categorizing text by degree of coherence. One example of application of text categorization 

by its coherence is creating a spam filter for personal e-mail accounts able to cope with one 

of the new strategies adopted by spamers. This strategy consists of encoding the real 

message as picture (impossible to directly analyze and reject by the text oriented classical 

filters) and accompanying it by a text especially designed to surpass the filter.  

An important question for automatically categorizing texts into coherent and incoherent is: 

are there features that can be extracted from these texts and be successfully used to 

categorize them? We propose a quantitative approach that relies on the use of ratios between 

morphological categories from the texts as discriminant features. We use supervised 

machine learning techniques on a small corpus of English e-mail messages and let the 

algorithms extract important features from all the pos ratios. The results are encouraging. 

 

1 Introduction. 
 

In this article we propose a quantitative approach to a relatively new problem:  

categorizing text as pragmatically correct or pragmatically incorrect (forcing the 

notion, we will refer to this categories as coherent and incoherent). The typical text 

categorization criterions comprise categorization by topic, by style (genre 

classification, authorship identification), by expressed opinion (opinion mining, 

sentiment classification), etc. Very few approaches consider the problem of 

categorizing text by degree of coherence, as in (Miller, 2003). One example of 

application of text categorization by its coherence is creating a spam filter for 

personal e-mail accounts able to cope with one of the new strategies adopted by 

spamers. This strategy consists of encoding the real message as picture (impossible 

to directly analyze and reject by the text oriented classical filters) and 

accompanying it by a text especially designed to surpass the filter. For human 

subjects, the text in the picture is easily comprehensible, as opposed to the 

accompanying text, which is only recognizable as either syntactically incorrect 

(collection of words), or semantically incorrect, or pragmatically incorrect i.e. 

incoherent (collection of proverbs or texts obtained by putting together phrases or 

paragraphs from different text). On the other hand, for classical spam filters, which 

usually relay on algorithms that use as features content words (based on the 

frequencies of the words commonly used in spam messages), the picture offers no 

information and the accompanying text may pass as valid (because it contains 

content word usually not present in spam messages). As a result, such messages are 
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typically sent by the spam filter into the Inbox, instead of the Bulk folder. The role 

of this e-mail messages is double: to surpass the spam filter so that get to be read 

by the owner of the account and, second and more important, if they are manually 

labeled as spam messages, they untrain the classical spam filter due to their content 

words which do not usually appear in spam messages. Thus, after the spam filter 

sees enough such messages labeled as spams, it eventually cannot make the 

difference any more between spam and normal messages. An important question 

for automatically categorizing texts into coherent and incoherent is: are there 

features that can be extracted from these texts and be successfully used to 

categorize them? We propose a quantitative approach that relies on the use of 

ratios between morphological categories from the texts as discriminant features. 

We supposed that these ratios are not completely random in coherent text. 

The goal of our experiment is to automatically classify e-mail messages into two 

classes: coherent messages, to go to Inbox and incoherent messages (good 

candidates for Bulk folder). We used a number of supervised machine learning 

techniques on a small corpus of English e-mail messages and let the algorithms to 

extract important features from all the pos ratios ; The results are encouraging: the 

best performing technique used in our experiment has a leave one out (l.o.o.) 

accuracy of 85.48%. 

 

2 The corpus. 
 

We manually built a small English e-mail messages corpus comprising 110  

messages: 55 negative (incoherent) and 55 positive (coherent). The 55 negative 

messages were manually selected frm a large list of personal spam messages. 

There are three categories of specially designed text for surpassing the spam filter: 

syntactically incorrect, semantically incorrect and pragmatically incorrect. In this 

article we focus on the last category, so we only included into the 55 negative 

examples the pragmatically incorrect messages (most of them being collections of 

proverbs or phrases randomly chosen from different texts and assembled together). 

We reproduce one negative and one positive examples in Appendix 1. As positive 

messages we selected coherent messages from two sources: Enron corpus 

(http://www.cs.cmu.edu/ enron/) and personal e-mail messages, trying not to have 

a too homogenous collection of e-mail messages. All 110 e-mail messages are 

genuine, with no human intervention into their text. 

 

3 Categorization experiments and results. 
 

To produce the set of features, we tagged each text using the set of tags from Penn 

Tree Bank. We considered that this set of tags is too detailed; for the purpose of 

this experiment we do not need all tags, so we only took in consideration 12 

representative parts of speech: we eliminated the punctuation tags and we mapped 

different subclasses of pos into a single unifying pos (for example all subclasses of 

adverbs were mapped into a single class: the adverbs, all singular and plural 
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common nouns were mapped into a single class: common nouns, etc). We give 

here the mapping table we used: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the task of tagging we used Maximal Entropy Part of Speech Tagger 

(Ratnaparkhi, 1996) because it is free to use and because it has a high reported 

accuracy of 96.43%. 

We computed pos frequencies for each of the texts from the training set (both from 

the positive – coherent and from the negative - incoherent examples). We 

normalized them (divided all the frequencies to the total number of tagged words 

in each text), to neutralize the fact that the texts had different lengths. We then 

computed all possible 66 ratios between all tags. We also added a small artificial 

quantity (equal to 0.001) to all the frequencies before computing the ratios, to 

guard against division by zero. These 66 values become the features on which we 

trained the 3 out of 5 types of machines we employed (the other two needed no 

such pre-processing). Because of the relative small number of examples in our 

experiment, we used leave one out cross validation, which is considered an almost 

unbiased estimator of the generalization error. Leave one out technique consists of 

holding each example out, training on all the other examples and testing on all 

examples. 

The first and the simplest technique we used was the linear regression (Duda et al., 

2001), not for its accuracy as classifier, but because, being a linear method, allows 

us to analyze the importance of each feature and so determine some of the most 

prominent features for our experiment of categorizing coherent/ incoherent texts. 

For this experiment we used the pre-processed data as described above. Its l.o.o 

accuracy was of 68.18%, which we used further as baseline for next experiments. 

We ordered the 66 features (pos ratios) in decreasing order of their coefficients 

computed by performing regression. The top 5 features that contribute the most to 

the discrimination of the texts are very interesting from a linguistic point of view: 

 the ratio between modal auxiliary verbs and adverbs, representing 17.71% 

of all feature weights; 

 he ratio between the pre-determiner (such as all, this, such, etc) and 

adverbs, representing 14.6% of all feature weights; 

Pos Label Pos Label Pos Label 

EX 1 VBZ 3 RBS 7 

NN 1 MD 4 PRP 8 

NNS 1 PDT 5 PRP$ 8 

NNP 2 DT 5 CC 9 

NNPS 2 JJ 6 CD 10 

VB 3 JJR 6 IN 11 

VBD 3 JJS 6 TO 11 

VBG 3 RB 7 WDT 12 

VBN 3 RBR 7 WP 12 

VBP 3 RBS 7 WP$ 12 

221



 the ratio between pre-determiner and conjunction, representing 9.92% of 

all feature weights; 

 the ratio between common nouns and conjunctions, representing 7.37% of 

all feature weights; 

 the ratio between modal verbs and conjunctions, representing 7.25% of all 

feature weights. 

These top 5 features accounted for 56.85% of data variation. The first ratio may be 

explained by the inherent strong correlation between verbs and adverbs. The 

presence of conjunction in 3 out of the top 5 ratios confirms the natural intuition 

that conjunction is an important element w.r.t. the coherence of a text. Also, the 

presence of the pre-determiners in the top 5 ratios may be related to the important 

role coreference plays in the coherence of texts. 

As we said, we used the linear regression to analyze the importance of different 

features in the discrimination process and as baseline for state of the art machine 

learning techniques. We tested two kernel methods (ν support vector machine and 

Kernel Fisher discriminant), both with linear and polynomial kernel. 

Kernel-based learning algorithms work by embedding the data into a feature space 

(a Hilbert space), and searching for linear relations in that space. The embedding is 

performed implicitly, that is by specifying the inner product between each pair of 

points rather than by giving their coordinates explicitly. 

 
The kernel function captures the intuitive notion of similarity between objects in a 

specific domain and can be any function defined on the respective domain that is 

symmetric and positive definite. Details about SVM and KFD can be found in 

(Taylor and Cristianini, 2004). 

The ν support vector classifier with linear kernel (k(x, y) =< x, y >) was trained, as 

in the case of regression, using the pre-processed 66 features, exactly the same 

features used for linear regression. The parameter ν was chosen out of nine tries, 

from 0.1 to 0.9, the best performance for the SVC being achieved for ν = 0:3. The 

l.o.o. accuracy for the best performing ν parameter was 78.18%, with 10% higher 

than the baseline.  

The Kernel Fisher discriminat with linear kernel was trained on preprocessed data 

as it was the case with the regression and ν support vector classifier. Its l.o.o. 

accuracy was 75.46 %, with 7.28 % higher than the baseline. The flexibility of the 

kernel methods allow us to directly use the pos frequencies, without computing any 

pos ratios. That is, the polynomial kernel implicitly relies on the inner product of 

all features, so there is no further need to compute their ratios in advance. 

The support vector machine with polynomial kernel was trained directly on the 

data, needing no computation of ratios. The kernel function we used is:  

k(x, y) = (< x, y > +1)
2
 . 

Its l.o.o. accuracy for the best performing ν = 0:4 parameter was 81.81 %, with 

13.63% higher than the baseline. 
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The Kernel Fisher discriminant with polynomial kernel was trained directly on the 

data, needing no ratios. Its l.o.o. accuracy was 85.46 %, with 17.28 % higher than 

the baseline. We summarized these results in the next table. 

The best performance was achieved by the Kernel Fisher discriminant with 

polynomial kernel. 

 

Learning method type  Accuracy 

Regression (baseline) 68.18% 

linear Support Vector Classifier 78.18% 

quadratic Support Vector Machine 81.81% 

linear Kernel Fisher discriminant 75.46% 

polynomial Kernel Fisher discriminant 85.46% 

 

4 Conclusions.  
 

The best l.o.o. accuracy we obtained, i.e. 85.48% is a good accuracy because there 

are inherent errors, transmitted from the part of speech tagger and perhaps from the 

subjective human classification into the two classes (coherent/incoherent text) used 

as the training set. Also using only the frequencies of the parts of speech in the 

texts disregards many other important feature for text coherence. 

 

5 Further works. 
 

It would be interesting to compare our quantitative approach to some qualitative 

techniques related to text coherence, such as latent semantic analysis (Dumais et 

al., 1988 ) or lexical chains(Hirst and St.-Onge, 1997). 

Also, it would be useful to train the machine to have an error as small as possible 

for positive examples (coherent texts sent into Bulk folder), even if the error for 

negative examples would be bigger (incoherent texts sent into Inbox). 
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6 Appendix 1 
 

We reproduce here in order: 

 a positive example of a coherent e-mail message; 

 a negative example of an incoherent e-mail message; 

 

”I will be getting back to the website some time this week. Thank you for updating 

the info on the need analysis page. If you haven’t done it yet, please look at Paula’s 

page to check what remains to be done for your language. Remember that your 

deadline for sending me your final report forms as explained in Prague is Nov.15. I 

hope Mario can give you some details on how to go about filling in the various 

pages. Concerning the Wikipedia entry for Euromobil in all 9 languages, we agreed 

in Prague that it was indeed a good idea. I haven’t been able to deal with it yet, but 

I saved the revised PL text and I hope to have some time shortly to do it. I hope 

those of you who haven’t done it yet can do it also. Best, Jeannine” 

 

” No one will ever think of looking for you in there. A job applicant challenged the 

interviewer to an arm wrestle. I am fascinated by fire. I did not object to the object. 

Your first-aid kit contains two pints of coffee with an I.V. hookup. And you can 

travel to any other part of the building without difficulty. Interviewee wore a 

alkman, explaining that she could listen to the interviewer and the music 

at the same time. You can outlast the Energizer bunny. Dancing around in a 

threatening  manner until you have dispatched their predecessors. I know who is 

responsible for most of my troubles I have no difficulty in starting or holding my 

bowel movement. People get dizzy just watching you. Candidate said he never 

finished high school because he was kidnapped and kept in a closet in Mexico.” 
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Abstract. In this paper we show that Rank Distance Aggregation can improve
ensemble classifier precision in the classical text categorization task by presenting a
series of experiments done on a 20 class newsgroup corpus, with a single correct class
per document. We aggregate four established document classification methods (TF-
IDF, Probabilistic Indexing, Naive Bayes and KNN) in different training scenarios,
and compare these results.
Keywords: text categorization, rank distance categorization, Reuters database.

1 Introduction

The problem of combining classifiers has been intensively studied in the last
period and it is a clear idea that ”together are stronger” [5]. The domains
where classifier scheme were introduced and applied vary a lot : bioinfor-
matics (the sequence analysis problem), document classification, document
image analysis, biometric recognition (personal identification based on var-
ious physical attributes such as iris, face, fingerprint) or speech recognition
are few of them [6], [7], [8]. A typical combination schema consists of a set
of individual classifiers and a combiner which combines the results of the
individual classifiers to make the final decision. In many situations, the re-
sults of individual classifiers are rankings (an ordered list of objects). Every
ranking can be considered as being produced by applying an ordering cri-
terion to a given set of objects. The situation of ordering several objects,
and, consequently, obtaining a ranking is encountered in many situation: an
electoral process, where the ordering criterion between the participants is
straightforward: the number of votes they have gained; the results of a foot-
ball tournament, where the criterion is the number of points obtained by each
team at the end of the tournament, etc. However, it is not the general case to
have very simple methods to decide which is the ordering criterion, and, as
a consequence, which is the ranking; to support this, we mention situations
like: selecting documents based on multiple criteria, building search engines
for the WEB [Dwork et al., 2001] or finding the author of a given text. Ex-
amples of multi-criteria selection arise when trying to choose a product from
a database of products, such as travel plans or restaurants (users might rank
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restaurants based on several different criteria like cuisine, driving distance,
ambiance, star-rating, etc.) Other situations when we combine rankings are
the cases when we take decisions based on subjective or sensorial criteria
(e.g. perceptions). Especially when working with perceptions, but not only,
we face the situation to operate with rankings of objects where the essential
information is not given by the numerical value of some parameter of each
object, but by the position the object occupies in the ranking, like movies or
music tops (according to a natural hierarchical order, in which on the first
place we find the most important element, on the second place the next one
and on the last position the least important element). In all these situations
we have to combine two or more rankings, which has been ordered by using
different criteria, in order to make a decision. We deal with the so-called:
rank aggregation problem.

In this paper we use a combining ranking schema based on the rank dis-
tance and show that this ensemble is superior to performances of individual
classifiers.

2 Motivation

The issue of using multiple classification methods together to form a better
classifier is a well researched problem and appears in a wealth of classical
Machine Learning scenarios. We mention here some of the benefits of using
more than one classifier: learning more complex decision boundaries (e.g.
more than circles or lines); theoretical advantage shown for some combin-
ing methods (e.g. boosting); many classifiers already implemented, showing
different accuracies.

The fields of Pattern Recognition and Machine Learning have reached
a point where many approaches are available for all the usual stages of a
categorization project. That is, for most of the real world applications, many
feature extraction techniques have been proposed, tested and theoretically
analyzed, which has lead to methodologies for data analysis being exported
to different applications and projects. With diverse feature selection methods,
extensive testing of many classifiers was possible.

Many feature extraction techniques do exist for nearly all applications.
Many classifiers readily available, so which is ”the best” featureclassifier pair?
We have two options:

• choose wisely (but don’t optimize for one dataset);
• use more than one pair, thus combine different features with different

classifiers.

Most of the time though, more than one classifier–feature pair have proven
”the best” precision or recall, and the nature of the supervised generaliza-
tion problem has made choosing a clear cut winner, at least per application,
particularly difficult.
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3 Rank distance categorization

Usual ensemble methods put a considerable degree of emphasis on the numer-
ical values outputted by different classifiers for each category. In theoretical
settings they are processed and used as probabilities or as confidences. Dif-
ferent normalizing schemes are usually employed, ..... After these steps the
resulting values decide, in a fixed way, one winning class.

Our method discards these values and transforms the classifier outputs
into rankings of class labels. This information is thereafter ignored, to the
extent given by the positions in the rankings and the ranking lengths. Then
we compute the rankings that are closest to all the base classifiers’ outputs
in terms of the rank-distance [1]. A set of rankings with this property is
called the Rank Distance Aggregation of the original rankings. In the single
correct class setting we simply take a vote among the aggregate rankings and
output that class. If a tie between 2 or more classes appears, we select one
at random, with equal probability. This is the usual voting fixed combiner
on top of the aggregation set, instead of the base classifier outputs.

3.1 Formal definition

A ranking is an ordered list of labels and can be viewed as the result of
applying an ordering criterion to a set of objects.

Definition 1. Given two partial rankings σ and τ over the same universe U ,
we define the rank-distance between them as:

∆(σ, τ) =
∑

x∈σ∪τ

|ord(σ, x)− ord(τ, x)|.

Theorem 1. [1] ∆ is a distance function.

The motivation behind using orders instead of ranking positions is based
on the intuition that ranking differences on the highly ranked objects should
have a larger inpact on the overall distance than disagreements on the lower
ranked objects. Secondly, the length of the raking is not discounted. This
complies with the intuition that longer rankings are produces by more thor-
ough criteria, although it puts extra pressure on base rankings; this means
longer hierarchy must be justified, with the benefit of gaining extra expres-
sivity.

Computing the rank-distance (RD) of two rankings is straight-forward
and linear in the number of objects in the two rankings. This number is small
in many practical applications, much lower than the total number of universe
objects (n = #U). When implemented as random access arrays indexed by
the universe objects, the rank-distance computation has complexity O(n) in
the worst case.
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3.2 Rank Aggregation

In a selection process rankings are issued for a common decision problem,
therefore a ranking that “combines” all the original (base) rankings is re-
quired. One commonsense solution is finding a ranking that is as close as
possible to all the particular rankings. Apart from many paradoxes of dif-
ferent aggregation methods, this problem is NP-hard for most non-trivial
distances.

Formally, the result of all the individually considered selection criteria
is a finite collection of, not necessarily different, (partial) rankings, that we
will call a ranking multiset T = {τ1, τ2, ..., τk}. When aggregating T into
a single ranking we are looking for a σ with a minimal rank distance to all
the rankings of the multiset; since ∆ takes only positive values, we have to
minimize the sum:

∆(σ, T ) =
∑

τ∈T
∆(σ, τ).

Definition 2. Let T = {τ1, τ2, ..., τk} be a multiset of rankings over object
universe U . A rank-distance aggregation (RDA) of T is a ranking σ (over
the same universe U) that minimizes ∆(σ, T ). We denote the set of RD
aggregations by agr(T ).

A partition of the set agr(T ) by ranking length will give an effective
means of computation.

Definition 3. Let 1 ≤ t ≤ #U and T a multiset of rankings over U . A
partial ranking τ of length t that minimizes ∆(τ, T ) among all other rankings
of length t is said to be a t-aggregation of multiset T .

Obviously, for any 1 ≤ t ≤ #U there exists at least one t-aggregation σ,
with an associated minimal distance dt = ∆(σ, T ). To compute agr(T ) it is
sufficient to compute the minimal distance:

dmin = min
1≤t≤#U

{d1, d2, ..., d#U},

and the set of indices:

D = {s|ds = dmin, 1 ≤ s ≤ #U}.

Also, for any s-aggregation σ ∈ agr(T ), all other s-aggregations are in
agr(T ), since, for a fixed integer s, all other s-aggregations have (by defi-
nition) the same minimal distance to T as σ. We can now summarize this
approach:

Algorithm 1 Let T = {τ1, τ2, ..., τk}
1: for t = 1 to #U then
2: compute a t-aggregation of T , namely πt;
3: end
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4: let dmin = min1≤s≤#U ∆(πs, T );
5: for all t such that ∆(πt, T ) = dmin then
6: compute and output all the t-aggregations of T ;
7: end

Computing the closest t-aggregation to T in line 2 is equivalent to find-
ing one solution for a certain assignment problem / minimal weight bipartite
perfect matching, which has complexity O(n3), where n is the number of indi-
vidual objects mentioned in at least one of the rankings. Line 6 is equivalent
to enumerating all minimal weight perfect matchings in a certain bipartite
graph. Therefore, the total time needed is O((2x + 2)n4), where x is the
number of existing aggregate rankings (i.e. rankings with the minimal RD
to the base set). See [2] for further details.

Example 1. Let T be the following multiset of rankings over the universe of
objects U = {1, 2, 3, 4}:

T = {(1 > 2 > 3), (3 > 4), (1 > 3 > 2 > 4)}.
The RDA of T is the set:

agr(T ) = {(1 > 2 > 3), (1 > 3 > 4), (1 > 3 > 2 > 4)}.
Notice that all the 3&4-aggregations are present in agr(T ). The 1&2-aggregations
have larger distances to T , so all are excluded. Also important to note is that
agr(T ) is not necessarily a subset of T , a desirable rationality condition for
an aggregation method, known as “absence of dictator”. Other rationality
conditions verified by the rank-distance aggregation are Pareto optimality,
reasonableness, stability, loyalty, inversion and free order [1].

3.3 Rank distance categorization

Now we can formally introduce Rank Distance Categorization (RDC) method.
Let d be a pattern , C = {c1, c2, . . . , cm} be a set of all m possible cate-

gories of d, and l1, l2, . . . , ln be n classifiers .
Each classifier gives a ranking of classes; let L=L1, L2, . . . , Ln be the mul-

tiset of the individual rankings obtained by applying the previous n classifiers.
Let agr(L)={A1, A2, . . . , Ak} be the aggregation of the multiset L.

Definition 4. The class of the object predicted by the RDC method is the
one that occupies most frequently the first position in the rankings A1, .., Ak.

Example 2. Set the following sequence of 5 rankings: L = {(1 > 2 > 3), (1 >
2 > 3), (3 > 1 > 2), (2 > 3 > 1), (2 > 3 > 1)}.
We have: agr(L) = {(1 > 2 > 3), (2 > 1 > 3), (2 > 3 > 1)}. So, the class
predicted by RDC method is the class 2.

In other words, RDC is a voting method on rank distance aggregations.
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Classifiers 2pc 5pc 10pc

TFIDF 79.23 70.46 93.10
PRIND 42.56 56.76 71.30
KNN 71.90 74.86 75.36
NBAYES 75.23 76.26 92.53

Voting on RDA 76.23 77.06 91.86

Fig. 1. Precision(%). Underlined is the maximum, bold is everything closer than
0.50% to the maximum.

4 Experiments in text categorization

We chose to conducted our experiments with fixed combining rules on top
of the libbow library [9], available on most Unix systems, including Linux,
Solaris, SUNOS, Irix and HPUX. We used the categorization tool rainbow
and the 20 newsgroups corpus, both provided by the library’s development
team. The corpus consists of 20.000 newsgroup articles, uniformly distrib-
uted across 20 classes. The rainbow text classification tool supports Naive
Bayes, TFIDF/Rocchio, Probabilistic Indexing and K-nearest neighbor, 4 es-
tablished text categorization methods, with well known favorable settings and
shortcomings, which also provide reliable results under certain conditions.

For our purposes, the universe objects are these 20 assignable classes, and
the classifier outputs are transformed into rankings of class labels. There
is a “pruning” phase, where values outputted by the classifiers for each
document–class pair are rescaled per document and sorted in descending
order. The most probable class is put first on the ranking. After that, only
values which make up 60% or more of the previous class’ probability are
added to the resulting ranking. This method is empirically consistent with
the requirement that longer rankings are produced only when justified by
the underlying criterion. The actual aggregation is done locally, on the 4
rankings available for each test document. The number of involved objects
is much smaller than 20, usually less than 5 classes are competing for the
first place. This fact makes the aggregation problem computationally trivial
by today’s resources, such that fast and parallel aggregation for thousands of
documents is possible in a very short time.

The number of training documents, as well as how representative they
are statistically, are very important parameters for supervised categorization
methods in general, with severe performance penalties. This means that, in
many real life situations, much less information is available to these methods
than required for descent classification precision. To be fair, we have chosen
7 training settings. Each setting consists of N random documents per class
for training the classifiers (on the same documents), and 500 documents (per
class) for testing, where:

N ∈ {2, 5, 10, 20, 50, 100, 500}.
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Classifiers 20pc 50pc 100pc 500pc

TFIDF 92.83 91.53 91.63 91.76
PRIND 77.19 82.86 83.86 86.86
KNN 81.83 89.16 89.83 88.96
NBAYES 91.63 91.19 91.03 92.00

Voting on RDA 92.66 92.56 92.16 92.40

Fig. 2. Precision(%). Underlined is the maximum, bold is everything closer than
0.50% to the maximum.

These settings are consistent with the Reuters-21578 collection, which is chal-
lenging also because of the large number of under-sampled classes, and the
more than 90 topics.

As shown in figure 1, if the number of training documents is relatively
small, the base classifiers produce unreliable results, some more than others.
In this scenario some of the base classifiers overtake the aggregations, as
expected. Aggregating in these settings is also referenced in the literature as
unbalanced classifier fusion.

On the other hand, if the training set is sufficiently large (or if special
care is taken in the training process), the aggregations usually do better
than the individual classifiers, as seen in figure 2. In this case Voting on
RDA outperforms the other fixed fusion rules in all 4 training scenarios.
What is remarkable is that Voting on RDA manages to outperform all the
other methods, although there is significant precision fluctuations in the base
classifiers over the 4 different scenarios, suggesting increased reliability. In-
terestingly enough, voting on RDA outperforms the individual classifiers, by
as much as 0.64% which means 33 additional documents classified correctly.
In an application that requires extreme precision, like person identification
in security application, this is significant, since false positives can result in
unauthorized access by coincidence or fake credentials, like fake fingerprints.

5 Conclusions and future works

This article presents a series of experiments with text categorization meth-
ods, realized with the rank-distance aggregation set. The categorization task
(on the 20 newsgroup corpus) features 20 assignable classes and 10.000 docu-
ments for testing (500 per class). We use the rainbow Unix document classi-
fication tool to output the results of 4 different text categorization methods,
and we compare these results with Voting on the Rank Distance Aggregation
set. The results demonstrates superior precision o RDC over all the fixed
rules tested. In a future works we want to compare the RDC method with
other combining schema regarding their performances on the same database.

Acknowledgements Research supported by CNCSIS, PNII-Idei, project
228/2007.
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Abstract: sLC coefficient is a similarity index between variables proposed by Georges Le 

Calvé (1977), based on Daniels (1944) and Lerman’s (1973) coefficients. In this paper we 

present the sLC coefficient generalized to compare interval-valued variables, using real data 

presented by Guru, Kiranagi and Nagabhushan (2004). This symbolic data refers to the 

minimum and maximum temperatures registered during the twelve months of a certain year 

in twenty cities. By means of hierarchical cluster analysis and principal component analysis 

applied directly to the similarity matrix obtained with the generalized coefficient sLC, we 
visualize the similarity between the twelve months of the year described by their interval 

[minimum, maximum] temperatures on each city. This approach allows the visualization of 

the data proximity structure, being highly consistent with previous knowledge about the 

data. 

Keywords: Interval-valued variables, Similarity coefficient, Hierarchical cluster analysis, 

Principal component analysis, Symbolic data. 

 

1. Introduction 
 

The sLC coefficient is a similarity index between variables proposed by Georges Le 

Calvé (1977), based on Daniels (1944) and Lerman’s (1973) coefficients. Here the 

generalized coefficient sLC is used to compare interval-valued variables (Doria, 

2008). 

As we know, in the context of Symbolic Data Analysis (e.g., Bock and Diday, 

2000), in a symbolic data matrix, lines correspond to symbolic objects (SO's) 
whereas columns correspond to symbolic variables, which may take not just one 

value, as usual, but several values that can be weighted and linked by logical rules 

and taxonomies. Interval-valued data appear when the observed values of the 

variables are intervals from the set of real numbers R. This type of data often arises 

in practical situations, such as the recording of monthly interval temperatures in 

twenty cities during the twelve months of the year (Guru et al., 2004). The twelve 
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months interval-valued temperatures in these cities are compared here using the 

generalized similarity coefficient sLC. In addition, by means of hierarchical cluster 

analysis (HCA) and principal component analysis (PCA) models applied directly to  

the similarity matrix obtained with the generalized coefficient sLC, we visualize the 

similarity between the twelve months of the year described by their interval 

[minimum, maximum] temperatures registered on these cities. 

 

2. The generalized similarity coefficient sLC 
 

The similarity coefficients between variables s, sLC and PL were inspired on an idea 

originally advanced by Daniels (1944), later developed by Lerman (1973) and 

generalized by Le Calvé (1977). In this approach, each variable is associated with a 

score matrix, whose definition depends on the nature of the initial variable, as well 

as on the nature of the variable with which it is to be compared. The basic 

coefficient, s, is defined as the scalar product between the score matrices; the sLC 

coefficient is the standardized coefficient s, under a certain reference hypothesis; 
and PL coefficient corresponds to the probabilistic coefficient. Recently, 

coefficients s, sLC and PL were generalized to the comparison of interval-valued 

variables, among other symbolic variables (Doria, 2008). 

 

Definition of the S, SLC and PL coefficients (Le Calvé, 1977): A probabilistic 
similarity coefficient between variables X, Y, designated by PL, is defined by the 

probability of SLC being smaller than sLC: PL(x,y) = P( SLC ≤ sLC(x,y) )=Φ( sLC(x,y)). 

The random variable SLC is the standardised similarity, SLC=(SX,Y(w)-µ)/σ , and 

SX,Y(θ,θ’)=< θXθ
t
,θ’Yθ’

t
 > , ∀w∈(θ,θ’), considering the set of all permutations 

couples, Ω=Θ(I)xΘ(I) defined on I, provided with a probability measure uniformly 

distributed. PL is the probability distribution function of that standardised similarity 

being observed. Under very general conditions about the score matrices, the 

random variable SLC has asymptotic standard normal distribution, the coefficients 

sLC and s are the actual values of the random variables SLC and S, respectively, and 

Φ denotes the standard normal distribution function. 

Let us consider a three-way data matrix [ ]( )ij
ij xxM , , (i=1, …, n entities; j=1, …, p 

interval-valued variables). 

 

Definition of the score (Doria, 2008): The score of the interval-valued variable Xj 
is defined as follows 
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In which [ ]ij
ij xxA ,= , [ ]ji

ji xxB '
' ,=  and H(.,.) indicates the non-symmetric 

dissimilarity of Hausdorff between the interval values given by entities i and i’. We 
consider that d(a,b) represents the Euclidean distance between a and b. 
 

The score matrix defined is a dissimilarity matrix. If we compare interval-valued 

variables with other type of variables whose score matrices are similarity matrices, 

we consider the affine transformation: SH(A,B)= max H(A,B) – H(A,B). 

 

3  Comparing interval-valued variables using real data: Results 
 

The data we have analysed refers to the minimum and maximum temperatures 

registered during the twelve months of a certain year in twenty cities considered 

very similar by the observers: Amsterdam, Athens, Copenhagen, Frankfurt, 

Genebra, Lisbon, London, Madrid, Moscow, Munich, New York, Paris, Rome, St. 

Francisco, Seoul, Stockholm, Tokyo, Toronto, Vienna, Zurich (Guru et al., 2004). 

The data is registered in a tridimensional matrix M(20x12x2). Figure 1 illustrates 

the temperature distributions during the year in those cities. Our main goal is to 

compare the months of the year, taking in account the information about their 

interval temperatures, [min, max], registered in those cities and represent them 
graphically. 
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Fig. 1. Boxplots of the temperatures range distributions registered during the year in 

several cities. Outliers are marked with the data city codes: 4.Frankfurt, 5.Genebra, 
8.Madrid, 15.Seoul, 18.Toronto and 20.Zurich. 

 

The comparison between the variables was achieved using the generalized 

similarity coefficient sLC and the similarity matrix SLC (12x12) was obtained 

(Doria, 2008). 

 

 

 

 

To represent SLC matrix we have used data analysis techniques: 

 

- Principal component analysis of this similarity table. The results are in Table 1, 

Figure 2 and Figure 3. 

Similarity matrix SLC is positive semi-definite. The 1
st
 component is a general 

component that explains 67.6% of the data variability. The 1
st
 component plane has 

a strong percentage of explained inertia associated to it (85.1% of total inertia 

explained). 

 

Table 1. Results obtained with the P.C.A. of the similarity matrix SLC 

Axes 
Units inertia 

(eigenvalue) 

Percentage 

of explained 

inertia 

Cumulate percentage of 

explained inertia 

1 69.62 67.6 67.6 

2 18.01 17.5 85.1 

3 5.28 5.1 90.2  
 

Similarity matrix SLC is positive semi-definite. The 1
st
 component is a general 

component that explains 67.6% of the data variability. The 1
st
 component plane has 

a strong percentage of explained inertia associated to it (85.1% of total inerta 

explained). 
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Fig. 2. Plot of the 1
st
 component plane obtained with the 

P.C.A. of the similarity matrix SLC. 

 

The 2
nd
 component, that explains 17.5% of total inertia, is the factor that opposes 

Summer (months with higher temperatures) to Winter (months with lower 

temperatures). In the 1
st
 component plane we observe several associations: the  

warmer months (June, July, August), the colder months (December, January, 

February, March, November, April) and the milder months (October, September),  

but May is far from the other months because his peculiar temperatures range 

behaviour (e.g., Figure 1). 
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Fig. 3. Plot of the component plane (2, 3) obtained with the 

P.C.A. of the similarity matrix SLC. 

While the 3rd component only explains 5.1% of total inertia, this component is 

important as it represents the range of temperatures observed: it opposes May (with 

greater range of temperatures) to December (with smaller range of temperatures). 

The natural circular disposition of the months is also noticed. 

 

- Hierarchical cluster analysis with complete linkage (Table 2, Figure 4). 

 

Table 2: Results obtained with hierarchical cluster analysis (sLC+Complete 
Linkage): the best clusters in conformity with the “level statistics” criterion 
(Lerman, 1970); Bacelar-Nicolau, 1972, 1980) 

Algorithm: 

Results: 

Partition obtained on the 

k
th
 level 

Statistic:  

STAT(k) 

Coefficient sLC 
Complete 

Link 

{Jan, Feb, Mar, Apr, Nov, 

Dec, Sep, Oct} 

STAT( 9 ) 

  {May} 6.2377 

3 5.28 {Jun, Jul, Aug}   
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The hierarchy of partitions, and in particular the partition obtained at the 9
th
 

dendrogram’s level with the HCA’s algorithm (sLC+Complete Linkage), are 
consistent with the factorial space composed by the first three components: 

Cluster 1={January, February, March, April, November, December, September, 

October}, Cluster 2={May}, Cluster 3={June, July, August}. 

 

 

 
          Levels    1  to   11 

  Jan --*                          

        |-----*                    

  Feb --*     |-----*              

              |     |              

  Mar --*-----*     |--------*     

                    |        |     

  Apr --*-----------*        |--*  

                             |  |  

  Nov --*-----------------*  |  |          

                          |--*  |-----*    

  Dec --*-----------------*     |     |    

                                |     |    

  Sep --*--------*              |     |    

                 |--------------*     |    

  Oct --*--------*                    |    

                                      |    

  May --*--------------------------*  |    

                                   |--*    

  Jun --*--------------*           |       

                       |-----------*       

  Jul --*--*           |                   

           |-----------*                   

  Aug --*--*                               

          Levels    1  to   11 

  Jan --*                          

        |-----*                    

  Feb --*     |-----*              

              |     |              

  Mar --*-----*     |--------*     

                    |        |     

  Apr --*-----------*        |--*  

                             |  |  

  Nov --*-----------------*  |  |          

                          |--*  |-----*    

  Dec --*-----------------*     |     |    

                                |     |    

  Sep --*--------*              |     |    

                 |--------------*     |    

  Oct --*--------*                    |    

                                      |    

  May --*--------------------------*  |    

                                   |--*    

  Jun --*--------------*           |       

                       |-----------*       

  Jul --*--*           |                   

           |-----------*                   

  Aug --*--*                               

 
 

Fig.4. Dendrogram obtained with hierarchical cluster analysis 

(sLC+Complete Linkage). The most relevant clusters are obtained at 9th level 
in conformity with the “level statistics” criterion (Lerman, 1970; Bacelar-

Nicolau, 1972, 1980), STAT(9)=6.2377. 

 

4  Conclusions 
 

The similarity coefficients s, sLC and PL (Le Calvé, 1977) can be easily generalized 

as they are general by definition. The selection of Haussdorf distance to define the 

score matrix associated to interval-valued variables showed to be appropriated. 

With this type of data it’s preferable to use the sLC coefficient. The results showed 

that the sLC coefficient accounted, not only the minimum and maximum values of 
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the interval, but also its range and represent well the monthly temperatures across 

seasons. 

It can be concluded that this approach allows the visualization of the data 

proximity structure, being highly consistent with previous knowledge about the 

data. 
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Abstract—In this paper, an on-line algorithm using an adaptive 
learning rate is proposed for the modeling of the multivariable 
nonlinear stochastic systems. Different cases of Signal -to- Noise 
Ratio (SNR) are taken to show the effectiveness of this algorithm. 
The development of an adaptive learning rate is based on the 
analysis of the convergence of the conventional gradient descent 
method for the neural networks. A comparative study between 
the application of a neural networks using a variable and fixed 
learning rate for multivariable nonlinear stochastic systems is 
treated. The effectiveness of the proposed algorithm applied to 
the modeling of behavior of nonlinear dynamic stochastic systems 
is demonstrated by simulation experiments. The results of 
simulation showed that the use of neural networks with an 
adaptive learning rate is more interesting than a fixed learning 
rate. Two types of non linear stochastic systems are taken. 
 
Key words — multivariable system, nonlinear, stochastic, 
neural networks, modeling, learning rate. 

I. INTRODUCTION 

ODELING nonlinear systems by Neural Networks (NN) 
has been the subject of much research over the past 
decade because of the ability of learning, generalization 

and approximation that have these networks [1]-[4]. Indeed, 
this approach provides an effective solution through which 
large classes of nonlinear systems can be modeled without a 
precise mathematical description. Identification is the process 
of determining the dynamic model of a system from 
measurements inputs / outputs. Often, the measured output of 
system is tainted by the noise. This is due either to the effect of 
disturbances acting at different parts of the process, either to 
measurement parts of the process, either to measurement 
noise. These disturbances introduce errors in the identification 
of model parameters. Among the parameters of the NN, there 
is the fixed learning rate. The research of the suitable learning 
rate represents a major disadvantage which can slow down the 
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phase of training. The adaptive training algorithm of a 
nonlinear single-variable system is studied in [5].  
In this paper, the adaptive training algorithm of a multivariable 
nonlinear stochastic system is used.  
This paper is organized as follows: The second section 
contains the presentation of the neural modeling of the 
nonlinear multivariable stochastic systems. In the third section, 
the gradient descent method is developed. The fourth section 
treats the simulation of the nonlinear multivariable stochastic 
systems by the NN with a fixed learning rate. The necessity of 
the variation of the learning rate is seen on the level of the fifth 
section.   

II. NEURAL NETWORKS FOR NONLINEAR STOCHASTIC SYSTEMS 

MODELING 

In this section, the stages of the neural modeling of nonlinear 
systems are treated then the gradient descent method is 
presented which is used to minimize the function cost. 

II.1. STAGES OF NEURAL NETWORKS MODELING 

 
Some stages of neural modeling of a nonlinear system are 
detailed in [6]-[7]. In order to find the neural model, it must 
respect these steps like standardize and center all the input 
variables, choose the structure of a model, estimate the 
synaptic weights and validate the obtained model.    
 
Various types of algorithms of training are used such as the 
gradient descent method, the conjugate gradient algorithm [8], 
the Levenberg-Marquardt method [9], the adaptive learning 
algorithms [10]-[11] and other modified algorithms [12]-[17]. 

II.2. PRINCIPLE OF NEURAL MODELING 

 
In this part, the principle of dynamic neural modeling of the 
stochastic nonlinear multivariable systems is presented. This 
principle is presented by Fig. 1. 
A nonlinear multivariable system given by the following form:   
A nonlinear multivariable system given by the following form:   

[ ]( 1) ( ), ..., ( 1), ( ), ..., ( 1)y k f y k y k ns u k u k nu+ = − + − +  

with  
:f unknown function of model process.  

[ ]1 2 , (1 )( ) ( ) ( )nu nuU u k u k u k ×= … being the input 

of the process,  

[ ]1 2 , ( 1)( ) ( ) ( )ns

T
nsY y k y k y k ×= … being the 

output of the process, 
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[ ]1 2 , ( 1)( ) ( ) ( )ns

T
nsY r yr k yr k yr k ×= … being the 

output of the NN,  

[ ]1 2 , ( 1)( ) ( ) ( )ns

T
nsE e k e k e k ×= …  

( ) ( ) ( ) :i i ie k y k yr k= − error between the i th− measured 

output and the i th−  neural output, 
:x the neural input vector, ( 1), ( ),t t nu ns× = +  

:ncc number of  nodes of the hidden layer.   
:W synaptic weights of the input layer towards the hidden 

layer, size( )ncc t×  

:Z synaptic weights of the hidden layer towards the output 
layer, size( )ns ncc×   

:s activation function of all nodes.  
:η learning rate. 

:λ a scaling coefficient used to expand the range of NN 
output. 
TDL : tapped delay line block  
The output of the l th−  hidden node( 1, ..., ) :l ncc=  

1

                                         (01)
t

l lj j l
j

net w x w x
=

= =∑

( ) :ls net output of the l th−  node of hidden layer ,  

The i th− neural output ( 1, ..., )i ns= is given by the following 
equation:   

( 1) ( ( ) )                                      (02)
1 1

ncc t
yr k s s w x zlj ji il

l j
λ ∑+ = ∑

= =  

( 1) ( ( ) )                                                  (03)
1

ncc
yr k s s net zl ili l

λ ∑+ =
=

Finally, the compact form is defined as  

( 1) ( )                                                          (04)TY r k s Z S W xλ  + =   

with  

1
; 1, ...,

T t
x x R j tj

× = ∈ =   
T

; 1, ...,   1, ...,
ns ncc

Z z R i ns and l nccil
×

 = ∈ = =   

; 1, ...,   1, ...,
ncc t

W w R l ncc and j tlj
× = ∈ = = 

 

1
( ) ( ) ; 1, ...,

T ncc
S W x s net R l nccl

×
 = ∈ = 

 

 
To see the influence of the noise to modeling, we act on 

theSNR . This report/ratio measures the correspondence 
between the real exit and the estimated exit, the equation of the 

SNR is as follows: 

2

0

2

0

1
( ( ) )

                              (05)
1

( ( ) )

N

j j
i

j N

j j
i

y i y
N

SNR
v i v

N

=

=

−
=

−

∑

∑
with  

( ) :v i  noise of measurement of symmetric terminal 

,δ [ ]( ) , ,v i δ δ∈ − +   

:N  numbers of measurement, 

:y  output average value,  

:v  noise average value. 
 
To see the influence of the noise to modeling, we act on the 
signal mean squared errormse .     

2

0

1
( ) ( )                                           (06)

N

i i
i

mse e e
N =

= ∑  

 

unu(k) 

- 

+ 

- 

+ 

ens(k+1) 

e1(k+1) 

yrns(k+1) 

yr1(k+1) 

yns(k+1) 

y1(k+1) 

Disturbances  

u1(k) 

On-line 
Learning 

 
 

z x w 

 
Process  

TDL 

TDL 

TDL 

TDL 

Fig.1. Principle of the neural modeling of the multivariable system 
 

III.  PRINCIPLE OF GRADIENT DESCENT METHOD 

 
The principle of neural identification given for the single-
variable systems [6] remains also usable for the case of the 
multivariable systems.  

The principle is to minimize the i th− criterion such as: 

[ ]21 12( ) ( ( )) ( ) ( )                       (07)
2 2

i i i iJ k e k y k yr k= = −

 
To find the variation of the synaptic weights of the hidden 
layer towards the output layer, and the variation of the synaptic 
weights of the input layer towards the hidden layer the 
equations (3), (4), (7) and the theory of [1] are used, we find 
then:  
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) 1)( ( '( ) ( ) ( )                     (08)il il i l ik z kz s net S Wx e kη λ= − +

( ) ( 1) '( ) '( ) ( )        (09)i l il ik w klj lj
Tw s net S Wx z x e kη λ= − +

 
with ( 1, ..., )i ns=

 

In these expressions,  ( 1, ..., )i nsiη = is a positive constant 

value which represents the learning rate(0 1)iη≤ ≤ and 

'( )S Wx represents Jacobian matrix of ( ).S W x   

t ncc 1
R ; 1, ...,            '( ) s'( w x ) (10)j jj=1 l

nccS Wx diag l×∈ == ∑
 
 
 

with
t

t

t

( w x )j jj=1
'( w x ) ,  =1,...,ncc.                        j jj=1 ( w x )j jj=1

l

l

l

s

s l
∂ ∑

=∑
∂ ∑

 

IV.  SIMULATION OF MULTIVARIABLE NONLINEAR STOCHASTIC 

SYSTEMS ( 5)SNR =  

In this section, two types of stochastic nonlinear multivariable 

systems with 2 dimensions ( 2, 2)ne ns= = are presented 

with ( 5)SNR = . 

The system (S1) and (S2) are defined respectively by the 
following equations:   
 

( )

( )

0.3 ( ) 0.6 ( 1) 0.6sin( ( ))1 1 111 0.3sin(3 ( )) 0.1sin(5 ( )) ( )1 1 1
( 1) (11)

0.3 ( ) 0.6 ( 1) 0.8sin(2 ( ))2 2 212 1.2 ( )) ( )1 2

y k y k u k
y k

u k u k v k
S

y k y k y k
y k

u k v k

π
π π

 + − + +
+ =  

+ + 

 + − + +
+ =  

+ 







 

 

( )

( )

1

3 20.8 ( ) ( ) ( )21 1
22 ( )2

( ) ( ) ( )1 1 2( 2)            (12)
22 ( )2

( ( ) 0.5)( ( ) 0.8)1 2 ( )222 ( )2

1

2

1 ( )

1

y k u k u k

y k

y k y k y kS
y k

u k u k
v k

y k

y

y

k v k

k

+
+

+

 − + 
+ 

 
− + +

 +  

=

=


+




 +



 

with 1v  and 2v
 
are a random signal but 1u  and 2u

 
are the 

input of the systems considered defined by:  

2
( ) sin                                                              (13)1 250

k
u k

π
=  

 
 

 

( ) 2
sin                                                            (14)2 25

k
u k

π
=  

 
 

 
The system (S2) is strongly nonlinear compared to (S1).   

The input 1u and 2u  are presented in the Fig. 2. 
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Fig.  2. Input signals of the nonlinear system 

 

IV.1. SIMULATION RESULTS OF SYSTEM (S1)  

 
A dynamic Neural Networks (NN) is used to simulate a 
multivariable system (S1) which defined by the equation (11). 
 
Fig. 3 presents the evolution of the real output and the NN 
output of the system (S1).  
 
Fig. 4 presents the prediction error between the real output and 
the NN output.  
 
The results obtained, present that for a fixed learning 

rate 1 0.32η = , the NN output 1yr  follows the measured 

output 1y  with an error of prediction 1 0.0720e = and that 

2yr follows the measured output 2y  with an error of 

prediction 2 0.0601e = whose learning rate is2 0.27η =  
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Fig. 3. Output of Process and NN of system (S1) using a fixed learning rate 
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Fig. 4. Learning Error between the Output of Process and NN 
 

IV.2. SIMULATION RESULTS OF SYSTEM (S2)  

 
In this example, the input signals presented by Fig. 2. 
  

Fig. 5 presents the evolution of the real output and the NN 
output of the system (S2) defined by the equation (12). 
  
Fig. 6 presents the prediction error between the real output and 
the NN output.   
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Fig. 5. Output of Process and NN of system (S2) using a fixed learning rate 
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Fig.  6. Learning Error between the Output of Process and NN  
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The results obtained, present that for a fixed learning 

rate 1 0.3η = , the NN output 1yr  follows the measured output 

1y  with an error of prediction 1 0.0650e = and that 

2yr follows the measured output 2y with an error of 

prediction 2 0.0670e = whose learning rate is2 0.25η = . 

 

We took three cases of (5,10 and 20)SNR to show the 

influence of disturbance modeling. The results obtained are 
presented in table 1 for the first system and in table 2 for the 
second system. 

 

 
 

In both tables, when the SNR increases the ( )imse e  

decrease, it is due under the presence of disturbance in the 
system. 
 
In this section, the simulation of the two systems (S1 and S2) 
is carried out using a fixed learning rate. To find the suitable 
learning rate it is necessary to carry out several tests by 

keeping the condition that(0 1)iη≤ ≤ . This research of the 

learning rate can slow down the phase of training. To cure this 
disadvantage and in order to accelerate the phase of training, a 
variable learning rate is used. 

V. ADAPTIVE LEARNING RATE 

 
The need for using a variable learning rate is to have a fast 
training.   
 
For ( 1,..., ),i ns=

 
we have:

 

  ( 1) - ( ) ( 1) - ( 1) - ( ) ( ) (15)i i i i i ie k e k y k yr k y k yr k+ = + + +

we suppose that   
 

( 1) ( 1) - ( )                                            (16)i i iy k y k y k∆ + = +
 
and  

( 1) ( 1) - ( )                                          (17)i i iyr k yr k yr k∆ + = +
 
by application of [5] 
 

                                                    ( 1) ( 1) (18)i iy k yr k∆ + ∆ +≪

 
then 

( 1) ( ) ( 1) ( )                 (19)ii i le k e k yr k s netλ+ − ≈ −∆ + = − ∆

2 2
' (

' '( ) ( ) ( ) ( ) * ( )

( 1) - ( ) - ) *

             (20)
i i si l

T T TS W x S W x z S W x S W x z x x e kilil i

e k e k netηλ
 +  

+ =

 
So we find that 

( 1) - ( ) - ( ) ( )                                       (21)i i i iie k e k k e kη ξ+ =

with 
2 2( ) ' ( ) *

( ) ( ) '( ) '( )               (22)

i

il il

lk s net
T T TS Wx S Wx z S Wx S Wx z x x

ξ λ=

+ 
 
 from where 

[ ]( 1) 1- ( ) ( )                                            (23)i i i ie k k e kη ξ+ ≈

 To ensure convergence, i.e.,lim ( ) 0i
k

e k
→∞

= it is necessary 

that ( ) 1e ki < is satisfied.  

This condition proves that 1
0 2 ( ).ki iη ξ −< <

 
For that and in 

order to have a variable learning rate is necessary that 
for ( 1, ..., )l ncc= and( 1, ..., )i ns= : 

1(k)                                                                        (24)i iη ξ −=
t221/( ' ( w x ) *j jj=1

( ) ( ) '( ) '( ) )              (25)

i l

il il

s

T T TS W x S W x z S W x S W x z x x

η λ= ∑

+ 
 

 

We find that the learning rate iη depends on the neural input 

vectorx , depends on ljw and depends onilz . The variations 

of the synaptic weights of the hidden layer towards the output 
layer and of the input layer towards the hidden layer are 
presented respectively:   

( ) ( )

'( ) ( ) ( ) '( ) '( )

t
'( w x ) ( ) ( )j jj=1

(26)
S Wx e ki

T T T
s net S W x S Wx z S Wx S Wx z x xil ill

z s S Wx e kil i l i

λ

η λ

+

∆ = ∑

=
 
 

 

'( ) ( )

'( ) ( ) ( ) '( ) '( )

t
'( w x ) '( ) ( )j jj=1

(27)

T
S Wx z x e kil i

T T T
s net S Wx S Wx z S Wx S Wx z x xil ill

Tw s S Wx z x e klj i l il i

λ

η λ

+

∆ = ∑

=
 
 

 
Finally the update of the synaptic weights of the hidden 

TABLE 1 
DIFFERENT CASES OF SNR 

SNR 5 10 20 

mse(e1) 7.6115e-005 6.6792e-005 5.6480e-005 
mse(e2) 7.4588e-005 6.6434e-005 4.2051e-005 

    

TABLE 2 
DIFFERENT CASES OF SNR  

SNR 5 10 20 

mse(e1) 8.6986e-005 7.7050e-005 5.9475e-005 
mse(e2) 8.6886e-005 7.5627e-005 5.2788e-005 
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layer towards the output layer according to the variable 
learning rate is in the following way: 

 

( 1)

( ) ( )

'( ) ( ) ( ) '( ) '( )

( )

  (28)

kil il
S Wx e ki

T T T
s net S Wx S Wx z S Wx S Wx z x xil ill

z k z

λ

−

+

= +

 
 

  

like for the synaptic weights of the input layer towards the 
hidden layer: 

 

( )

'
( ) ( )

  (29)
'( ) ( ) ( ) '( ) '( )

( 1)klj lj
T

S W x z x e kil i
T T T

s net S Wx S W x z S W x S W x z x xil ill

w w k

λ +

= +−

 
 

 

V.1. SIMULATION RESULTS OF SYSTEM (S1) ( 5)SNR =  
 
Fig. 7 presents the evolution of the NN output and the real 
output of the system (S1).   
Fig. 8 presents the prediction error between the real output and 
the neural output. 
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Fig. 7. Output of Process and NN of system (S1) using a variable learning rate 
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Fig. 8. Learning Error between the Output of Process and NN 
 
 
The results obtained present that for an adaptive learning rate, 

the neural output 1yr  follows the measured output 1y  with an 

error of prediction 1 0.0634e = and that 2yr follows the 

measured output 2y with an error of prediction2 0.0588e =  

 
 

V.1. Simulation results of system (S2) ( 5)SNR =  

 
Fig. 9 presents the evolution of the real output and the 
estimated output of the system (S2).   
 
Fig. 10 presents the errors of the predictions between the real 
output and the neuronal output.   
 
Fig. 11 and 12 present the evolution of the squared error in two 
case; fixed and adaptive learning rates. 
 
The results obtained, concerning system (S2), present that for 

an adaptive learning rate, the neural output 1yr  follows the 

measured output 1y  with an error of prediction 

1 0.0539e = and that 2yr follows the measured output 

2y with an error of prediction2 0.0668e = . 
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Fig. 9. Output of Process and NN of system (S2) using a variable learning rate 
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Fig.  10. Learning Error between the Output of Process and NN  
 

The results obtained presented in Fig (11 and 12) showing that, 
when a variable learning rate is used, the convergence of the 
squared error is very fast that when a fixed learning rate is 
used.   
The results obtained when used an adaptive learning rate are 
better than using a fixed learning rate. 

The variable learning rate avoids the divergence of the 
training, so it provided an acceptable quality of training. 
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Fig. 11. Evolution of the Mean Squared Error of (S1) 
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Fig. 12. Evolution of the Mean Squared Error of (S2) 
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The dynamic NN present a significant power in the simulation 
of the multivariable stochastic systems which have strong non-
linearity. 
 
The results obtained are presented in table 3 for the first 
system and in table 4 for the second system. 
 

 

In both tables, when the SNR increases the ( )imse e  

decrease, it is due under the presence of disturbance in the 
system. 

The values obtained by ( )imse e
 
in tables 3 and 4 are lower 

compared to ( )imse e calculated in tables 1 and 2, that 

explains the variable rate adjusts with changes in examples. 
 

VI.  CONCLUSION 

 
A new on-line variable rate learning algorithm for 
multivariable nonlinear stochastic systems is proposed. This 
algorithm is applied with success. It shows much better 
performance in terms of the learning speed and the reduced 
training error. This algorithm is a solution to avoid the search 
for such fixed training rate which presents a disadvantage at 
the level the phase of training. The variable rate learning 
algorithm does not require any experimentation for the 
selection of an appropriate value of the learning rate. Different 
cases of SNR are discussed to test, on the one hand, the power 
of the NN for modeling and on the other hand to see the 
performances of this algorithm. The obtained results showed 
that the neural network using a variable training rate is very 
powerful to model every multivariable nonlinear stochastic 
system. These results confirm the validity and suitability of the 
algorithms proposed.  
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TABLE 3 
DIFFERENT CASES OF SNR  

SNR 5 10 20 

mse(e1) 5.9068e-005 5.1520e-005 3.9321e-005 
mse(e2) 6.5014e-005 5.5524e-005 4.3109e-005 
    

TABLE 4 
DIFFERENT CASES OF SNR  

SNR 5 10 20 

mse(e1) 7.4020e-005 6.3687e-005 6.3348e-005 
mse(e2) 7.8639e-005 4.6019e-005 4.5375e-005 
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Abstract. New characteristics of continuous random variables introduced in [4]-[6]
are generalized for discrete random variables. It makes possible to introduce uncer-
tainty function of random variable and compare its mean value with the Shannon
entropy.
Keywords: scalar score, information, entropy.

1 Introduction

Let X be a discrete random variable with probability mass function f(k), k =
0, 1, ..., n. From the times of the Shannon’s discovery, the uncertainty of
X before the experiment or information contained in a realization x of X
after the experiment is expressed, for any k, as U(k) = log(1/f(k)). If the
result of an experiment is more or less expected, uncertainty is low, whereas
an unexpected result with low probability f(k) carries a great amount of
uncertainty. The mean value of this “uncertainty function” is the entropy

H(X) = EU(k) =

n∑
k=0

log(1/f(k)) f(k) =

n∑
k=0

−f(k) log f(k). (1)

Let X be a continuous random variable with support set X = (a, b) ⊆
R, distribution F and density f . The analogy of the Shannon entropy for
continuous random variables is the differential entropy

h(X) = E log(1/f(x)) =

∫
X
− log f(x)f(x) dx. (2)

Since U(x) = log(1/f(x)) can be negative in certain range of parameters
practically for any parametric distribution, it can be hardly considered to be
an “uncertainty function”. Even the mean value EU can be negative, too.
This is the reason that statisticians prefer the Fisher information. However,
Fisher information relates to the parameters of parametric distributions. The
generalization presented in [2] is meaningful for distributions with support R
only.

In [3]-[5] we introduced to a given regular continuous distribution F a
scalar function S(x), called now the scalar score. It appeared that S2(x)
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can be considered as expressing information contained in observation x in
the given model. In the present paper we briefly describe the scalar score
and introduce an uncertainty function based on S2(x). In the last section
we generalize concept of the scalar score for discrete distributions and show
a relation between the mean uncertainty and the Shannon entropy.

2 Scalar score

As an important function of a distribution G with support R and density g
we identified, using lesson drawn from [6], the score function

TG(y) = − 1

g(y)

d

dy
g(y). (3)

Value ET 2
G is the generalized Fisher information introduced in [2].

Let η : X → R be a suitable mapping. As an important function describ-
ing the transformed distribution on X 6= R,

F (x) = G(η(x)), x ∈ X , (4)

was suggested in [4] the transformed score function of G,

T (x) = TG(η(x)). (5)

From (3) and (4) we obtain

T (x) = − 1

f(x)

d

dx

(
1

η′(x)
f(x)

)
, (6)

where η′(x) = dη(x)/dx is the Jacobian of the transformation.
For a comparison of properties of function (6) of different distributions, it

turned out to be necessary to use one concrete η : X → R for all distributions
with a given support. According the principle of parsimony, that one provid-
ing the simplest mathematical forms of (6) for a large amount of commonly
used distributions should be used. According [7] and [5], η was defined as

η(x) =


x if X = R

log(x− a) if X = (a,∞)

log
(x− a)
(b− x)

if X = (a, b).
(7)

Function (6) with η given by (7) is called the transformation-based score or
shortly the t-score.

Under mild regularity condition, the transformation-based score is a unique
description of distributions, expressing the relative change of a “basic com-
ponent” of the density of the model (the density divided by Jacobian of the
transformation) with respect to the probability density.

252



Uncertainty of random variables 253

T-scores of some distributions are well-known functions. The t-score of
the standard normal distribution is T (x) = x. The t-score of a location
distribution with support R and location parameter µ (expressing the location
of the maximum of the density) is the score function

TG(y − µ) =
∂

∂µ
log g(y − µ). (8)

The log-location distributions [8] are distributions transformed from R into
X = (0,∞) by η(x) = log(x) with “transformed location” parameter τ =
exp(µ). By [4], Theorem 1, it holds for them that

S(x; τ) ≡ η′(τ)T (x; τ) =
∂

∂τ
log f(x; τ), (9)

which is the likelihood score for τ .
It is easy to see using (8) and (5) that T (τ ; τ) = 0. Moreover, the value

ES2 =
∫
X S(x; τ)2f(x) dx is the Fisher information for τ .

Our basic notions, parameter τ and inference function S of log-location
distributions, were generalized for arbitrary distribution as follows:

As the most important point of the distribution, expressing its central
tendency, was identified, instead of τ , the zero of the t-score, the solution x∗

of equation
T (x) = 0,

called the t-mean. The t-mean is actually the transformed mode (the max-
imum of the density) of the prototype. It is an easily manipulated number
which is not far from the mean of light-tailed distributions, being a reasonable
“center” of heavy-tailed and skewed distributions.

Function (9) was generalized by using the t-mean instead of τ by

S(x) = η′(x∗)T (x). (10)

We call it a scalar score of distribution F . Scalar scores of parametric dis-
tributions S(x; θ) = η′(x∗)T (x; θ) were suggested as inference functions for
adapting the data to the assumed parametric model. For a given x, S(x)
describes the sensitivity of the t-mean to the value x. Function S(x, θ) as a
function of θ is the “likelihood score for x∗” either x∗ is a parameter of the
distribution or not.

The sample mean and sample variance of distributions with probability
densities approaching to zero too slowly (the heavy tailed distributions) are
not relevant characteristics of the data since the integrals defining the mo-
ments can be infinite. It follows from (3) that if g(y) = O(e−y) if y → ±∞
then TG(y) = O(1). Since (7) retains the properties of t-scores on boundaries
of the support, the scalar scores of heavy-tailed distributions are bounded.

Function S2(x) attains its minimum at x∗ (proof: the density of (4) is
f(x) = g(η(x))η′(x). The term η′(x) is common to all distributions with the
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given support and does not carry any information about X. The first term
is minimal if d

dxg(η(x)) = d
dx (f(x)/η′(x)) = 0, which gives T (x) = 0 by (6)).

Further, S2(x) increases from x∗ quickly/slowly if S is unbounded/bounded.
Under the usual regularity conditions ES2 is finite and means information.
We thus insist that function S2(x) could play the role of the Fisher informa-
tion function of continuous random variables, giving a relative information
contained in observation x, small if the distribution is heavy-tailed,being vast
if x is an outlier in a model which not “expect” an occurrence of outlying
observations.

Since η′(x∗) 6= 0 and ES2 > 0, the score variance

ω2 =
1

ES2
=

1

[η′(x∗)]2ET 2(θ)
(11)

is finite. The score variance of distributions with X = (0,∞), ω2 = (x∗)2/ET 2,
is proportional to the square of the t-mean, which is in agreement with σ2 of
light-tailed distributions (see Table 2, where we denoted s = 1/c. The value
σ2 of the Weibull distribution is an approximation for low s).

Distribution exponential gamma Weibull lognormal

σ2 τ2 α/γ2 π2

6
τ2s2 τ2es

2

(es
2

− 1)
ω2 τ2 α/γ2 τ2s2 τ2s2

Table 1. Ordinary and score variance of light-tailed distributions

The score variance of heavy-tailed distributions, however, is a new quan-
tity. The left panel of Fig. 1 compares ω and σ of the beta-prime distribution

for q = p, where ω2 is given in Table 2 below and σ2 = p(p+1)
(q−1)(q−2)) . The or-

dinary σ blows up at q = 2.
The score variance of distributions with support X = (−b, b) is ω2 =

b2

16ET 2 . For the uniform distribution with f(x) = 1
2b thus ω2 = 3b2

4 , whereas

the ordinary σ2 = b2

3 . The right panel of Fig. 1 shows σ and ω = ( 2p+1
p2 )1/2

of the beta distribution, q = p. Measure ω assigns large values to U-shaped
distributions with p < 1.

3 Uncertainty function

Definition 1. Let X be random variable with distribution F with support
set X . Denote by f its density, T the t-score and x∗ the t-mean. Let η be
given by (7) and S be the scalar score given by (10). Define the uncertainty
function of X by

U(x) =
S2(x)

(ES2)2
. (12)
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Fig. 1. σ and ω of the beta-prime and beta distributions as functions of p.

The uncertainty function is defined by such a way that the mean uncer-
tainty equals to the score variance, EU = ω2. U(x) can be determined also
from relation

U(x) = ω2T
2(x)

ET 2
, (13)

equivalent to (12). Table 2 and Fig. 2 shows uncertainty functions of some
currently used distributions.

F X f(x) T (x) ω2 U(x)

normal R 1√
2πσ

e−
1
2 ( x−µσ )

2
1
σ
x−µ
σ

σ2 (x− µ)2

Cauchy R 1

πσ(1+( x−µ
σ

)2)

1
σ

2 x−µ
σ

1+( x−µ
σ

)2
2σ2 16(x−µ)2

(1+( x−µ
σ

)2)
2

lognormal (0,∞) c√
2πx

e−
1
2
log2( x

τ
)c c log(x

τ
)c τ2

c2
τ2

c2
log2(x

τ
)c

Weibull (0,∞) c
x

(x
τ

)ce−(x/τ)c c[(x
τ

)c − 1] τ2

c2
τ2

c2
[(x
τ

)c − 1]2

gamma (0,∞) γα

xΓ (α)
xαe−γx γx− α α

γ2
(x− α/γ)2

log-logistic (0,∞) c
x

(x/τ)c

[(x/τ)c+1]2
c (x/τ)

c−1
(x/τ)c+1

3τ2

c2
9τ2

c2
[(x/τ)c−1]2

[(x/τ)c+1]2

Pareto (a,∞) cac/xc+1 c− a(c+1)
x

a2(c+2)

c3
a2(c+2)2

c2

(
1− a(c+1)

cx

)2

beta-prime (0,∞) 1
B(p,q)

xp−1

(x+1)p+q
qx−p
x+1

p(p+q+1)

q3
(p+q+1)2

q2
(x−p/q)2
(x+1)2

beta (0, 1) xp−1(1−x)q−1

B(p,q)
(p+ q)x− p pq(p+q+1)

(p+q)4
(p+q+1)2

(p+q)2
(x− p

p+q
)2

Table 2. Uncertainty functions of some distributions.

Denote the square root of the mean uncertainty ω2 by ω(X). Instead
of the differential entropy h(X), the positive values eh(X) are sometimes
studied (see [2]). Table 3 shows a close relation between ω(X) and eh(X) of
distributions with support R. The correspondence between ω(X) and eh(X)

of distributions with support X 6= R is less apparent, but they have, generally,
a similar behavior. As an example, the left panel of Fig. 3 shows eh(X) and√

2πeω(X) as functions of parameter α of the gamma distribution.
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Fig. 2. Uncertainty functions of gamma (full line), lognormal (dashed line) and
log-logistic (dotted line) distributions.

F f(x) eh(X) ω(X)

normal 1√
2πσ

e−
1
2
( x−µ
σ

)2
√

2πeσ σ

Cauchy 1
πσ(1+(x/σ)2)

4πσ 2σ

gamma γα

Γ (α)
xα−1e−γx Γ (α)

γ
e((1−α)ψ(α)+α) √α/γ

Weibull c
τ
xc−1e−

xc

τ τ1/c

c
e(c−1)ε/c+1 τ1/c

c

Pareto cac/xc+1 a
c
e(1+1/c) a

c

√
c+2√
c

power cxc−1 1
c
e(1−1/c)

√
c(c+2)

(c+1)2

Table 3. Comparison of eh(X) and ω(X) for some distributions.
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Fig. 3.
√

2πeω(X) (full line) and eh(X) (dotted line) of gamma distribution as
function of α (left) and of geometric distribution as function of p (right).

4 Uncertainty function of discrete random variables

In the last section we generalize the concept of the t-score for discrete dis-
tributions and show that the logarithm of the mean uncertainty has similar
behavior as Shannon entropy.

Let a random variable takes on values k = 0, 1, 2, ... with probabilities
f(k). As an analogy with distributions with support X = (0,∞), for which
1/η′(x) = x, the t-score of the discrete distribution can be determined by
replacing in formula (6) the derivatives by differences,

256



Uncertainty of random variables 257

T (k) = − 1

f(k)
[(k + 1)f(k + 1)− kf(k)] = k − (k + 1)

f(k + 1)

f(k)
. (14)

Example 4.1. Geometric distribution has probability mass function
f(k) = (1 − p)pk. By (14), T (k) = k(1 − p) − p. The t-mean k∗ = p

1−p
equals the mean, and, since ET 2 = p, ω2 = (k∗)2/ET 2 = p/(1 − p)2, which
is the ordinary variance. The uncertainty function is, by (13),

U(k) =
ω2

ET 2
T 2(k) =

(
k − p

1− p

)2

.

Functions of p, eH(X), where H(X) = − log p − p
1−p log p and

√
2πeω(X) of

the geometric distribution are similar (right panel of Fig. 3).

Example 4.2. Poisson distribution has probability mass function f(k) =
e−λλk

k! . By (14), T (k) = k − λ, x∗ = ω2 = λ and

U(k) = (k − λ)2.

Let n be a fixed number and random variable X takes on values k =
0, 1, 2, ..., n with probabilities f(k). As an analogy with distributions with
finite interval support X = (0, n), for which 1/η′(x) = x(n − x)/n, the t-
score of the discrete distribution can be written as

T (x) =
1

f(x)

d

dx

[
−x(n− x)

n
f(x)

]
. (15)

If we approximate (15) by symmetric differences, we obtain

T (k) = −1 +
2k

n
− k(n− k)

2nf(k)
[f(k + 1)− f(k − 1)] (16)

for k = 1, ..., n−1, with T (0) = −1 and T (n) = 1. The score variance is then

ω2 =
[k∗(n− k∗)]2

n2ET 2
. (17)

Example 4.3. Discrete uniform distribution has probabilities f(k) =
1

n+1 . Its t-score is T (k) = 2k/n − 1 so that x∗ = n/2 equals the mean. The

t-score moment is ET 2 = 2(2n + 1)/3n − 1. For large n, ET 2 .
= 1/3. The

score variance is ω2 = n2

24ET 2 and the uncertainty function

U(k) =
(k − n/2)2

4[(2n+ 1)/3n− 1)]2
.

For large n, U(k)
.
= 9

4 (k−n/2)2. The uncertainty function of the continuous
uniform distribution on 0, 1) is U(x) = 9

4 (x− 1/2)2.

257



258 Z.Fabián

Example 4.4. Binomial distribution has mass probability function f(k) =(
n
k

)
pk(1− p)n−k. By (16), its t-score is

T (k) = −1 +
2k

n
− k(n− k)

2n

[
(n− k)p

(k + 1)(1− p)
− k(1− p)

(n− k + 1)p

]
.

Using (13), (17), numerical solutions of equation T (x) = 0 and the direct
computation of 1

n+1

∑n
k=0 T

2(k), we obtained a plot of uncertainty function
for n = 10 and p = 0.5 (left panel of Fig. 4), and the comparison of functions
of p, the square root of the mean uncertainty ω(X) multiplied by term

√
2πe

with eH(X) (right panel of Fig.4). In this case, the mean uncertainty seems
to be a better tool for distinguishing values of p as the Shannon entropy.

0 0.2 0.4 0.5 0.6 0.8 1
0

2

4

6

8

p

Fig. 4. Binomial distribution, n = 10, p = 0.5. Left: Uncertainty function, right:√
2πeω(X) (full line) and eH(X) (dotted line).
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Abstract 

 
 A new use of Coefficient of Variation (Cv) is presented in order to define 

Distribution Models via Sampling. The interesting case of the simply increasing 

continuous probability distribution functions (pdf) is studied and the suitably obtained 

model is presented. A first level checking via sampling and graphs (e.g. histogram) is 

taking place in order to examine if we have an increasing or no model to be defined. 

After this using the idea of Cv and some polynomial forms the model is defined. In 

order to examine if the model is a well approximating one we check the 

correspondence of the sample data to the expected outputs from the model, by a Chi-

square test. So the obtained model becomes a self checked one. The presented 

distribution models are polynomial and they so they have a real exponent k>-1. The 

value k=-1 seems to be a kind of an absolute zero point for the exponent of the 

polynomial pdf. The polynomial form of pdf is an approximation to the really existing 

pdf with more complicated form. This idea was also used in Farmakis (2003) for the 

symmetric continuous distributions (scd).        
 

Key Words & phrases: Sampling, Distribution Models, Coefficient of Variation.        

 

 
 

1. Introduction 
 

The Coefficient of Variation (Cv) is a very well known and useful concept for the 

statisticians. A new idea from the early 2003 is to use Cv in order to check and 

manipulate distributions and their behavior. In other words the recently emerging new 

use of Cv is for the definition and the scaling of the symmetric continuous 

distributions (scd) by the help of sampling, Farmakis (2003). Basic tool is the 

probability density function (pdf) of the random variables and we approximately state 

it via sampling processes and using the concept of Cv too.   

Definition: For any random Variable X, with only positive values, the Coefficient of 

Variation is the unit free rate given by  

                                     v

VarX
C

EX
=                                                                  (1.1)  

where 
1

1 N

i

i

EX X
N =

= ∑ is the Mean Value of X and ( )22
VarX EX EX= −  its Variance. 

259



 2 

It is well known that, for every random variable (r.v.) X, we can have any parameter 

like EX, VarX and CvX from its pdf. If the r.v X is continuous, then it is sufficient to 

have to do with an integrable pdf. An integrable kind of pdf is always a pdf with 

polynomial form.  

 

The new idea of this paper is to approximate the pdf of a random variable (rv) X 

with a k-degree polynomial form using sample data, beyond the case of symmetric 

pdf included in Farmakis (2003). Especially we deal with the Increasing pdf.  
             

First of all we face the case of an increasing pdf in the interval [0, b] in paragraph 2. 

Some illustrative Examples will be given in paragraph 3. A short discussion takes 

place in the frame of the last paragraph 4.   

Here we give the form of mean value of a continuous rv X with pdf f(x):  

               ( )EX x f x dx

∞

−∞

= ⋅ ⋅∫                                                                                (1.2)    

Obviously the pdf f(x) is a non negative function of X with the basic property:  

                       ( ) 1f x dx

∞

−∞

⋅ =∫                                                                        (1.3)     

 

 

2. On the Increasing form of pdf  
 

2.1 Theoretical point of view                 
 

Suppose we have a rv X with pdf approximable by the next polynomial function:  

             
[0, ]

( )

0 [0, ]

k
x

h x b
f x b

x b

  ⋅ ∈  =   
 ∉

,     
1

, 1
k

h k
b

+
= ≠ −                             (2.1)         

Trying to have the basic statistical parameters of X we have:   

          
2

0 0

1
( ) ...

( 2) 2

bkb k

k

x x k
EX x f x dx h x h b

b b k k

∞ +

−∞

+ = ⋅ ⋅ = ⋅ ⋅ = = ⋅ = ⋅  ⋅ + + ∫ ∫ .       (2.2) 

Also        

        
3

2 2 2 2

0 0

1
( ) ...

( 3) 3

bkb k

k

x x k
EX x f x dx h x h b

b b k k

∞ +

−∞

+ = ⋅ ⋅ = ⋅ ⋅ = = ⋅ = ⋅  ⋅ + + ∫ ∫     

and of course     

            

2 2
2

2

1 1 ( 1)
...

3 2 ( 3) ( 2)

k k b k
VarX b b

k k k k

+ + ⋅ + = ⋅ − ⋅ = = + + + ⋅ + 
.                           (2.3)   

From (1.1), (2.2) and (2.3) we obtain  

                 
1

( 1) ( 3)
vC

k k
=

+ ⋅ +
                                                                         (2.4)  

i.e. the CvX is straightforward connected with the degree k of pdf  in (2.1). It is very 

important to note that CvX is not depended on the parameter b (range).   

For our convenience we adopt the form    
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                 -2

v v

1
C = or λ= C

λ
                                                                 (2.5)  

From (2.4) and (2.5) we have the solution  

                  ( ) 2 1k λ λ= − + +                                                                                 (2.6)    

with rejection of the other root of (2.4)-(2.5).    

Note 2.1: We can also express the adoption in (2.5) by the form of 
( )2

-2

v

EX
λ= = C

VarX
.          

The next Table 2.1 with some values for Cv, λ and k will be helpful to see some cases 

of pdf (of integral values for λ):  

 

Table 2.1 

Cv -2

vλ = C  k = -2 + 1+ λ  Remarks  

?*? 0 Tends to  -1 1k ≠ −  

1 1 2 2− +   

0.7071 2 2 3− +   

0.5774 3 0 Uniform Distribution  

0.5000 4 2 5− +   

0.4472 5 2 6− +   

0.4082 6 2 7− +   

0.3780 7 2 8− +   

0.3536 8 1 Linearity  

0.3333 9 2 10− +   

0.3162 10 2 11− +   

 

 

If a r.v X has the value λ we can adopt the notation Xλ and so we can imaging the 

series ( )
N

X λ λ∈
of increasing pdf with the exponent k given by (2.6), see also in   

Farmakis (2003).  

This is the theoretic point of view of the approximation of an increasing pdf via a 

polynomial form of degree k.  

 

2.2 Applied point of view                                                       
 

We study a r.v. X. For this we get a sample of size n and we classify and put the data 

in a table and construct the suitable histogram, in order to have a view of the 

increasing nature of the pdf. If it is so, then we try to approximate the mean value, the 

variance and the coefficient of variation of X, from the sampling data and via their 

estimators:  2 ˆ, , vx s C  respectively and the suitable quantity λ. From this we obtain the 

value of k and we calculate the coefficient h. So the polynomial model for the 

approximating pdf is ready (see (2.1)). From the obtained pdf we calculate the 

numbers nr΄ of the expected observations for the suitable spaces of [0, b] checking in 

parallel if they have a good fitting to the observed cases via the sample. We use of 

course Chi-Square test. If the least sample value of data xmin is not equal to zero, then 

we have to transform the data via X-Xmin and follow on. For more details, it is useful  
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to see the interesting examples in the paragraph 3. For the best reliability of this 

method, always a size of sample n>50 is needed, Farmakis (2003).               

 

3. Applications of the increasing form of pdf   
 

We give some illustrative examples for some continuous random variables defined in 

[0, b] as an increasing function.  

 

Example 3.1: A sample of n=140 nodes (sites) was studied for the duration of the 

customer’s visit and we have found the results included to the next table of data 

distributed in 7 spaces with wideness w=4 min. Calculate the parameters 2 ˆ, , , vx s s C . 

After this establish the formula of pdf for the r.v. X=”duration”.  

 

Table 3.1  
Real Time 

Spaces 
X-Xmin 

Spaces 

Centers: 

′
ix  

ni Ni ′
i i

x = (x - m)/w

 

′⋅i in x  ′⋅
i

2

in x  

[24 – 28) [00 – 04) 02 2 2 -3 -6 18 

[28 – 32) [04 – 08) 06 8 10 -2 -16 32 

[32 – 36) [08 – 12) 10 15 24 -1 -15 15 

[36 – 40) [12 – 16) 14 20 44 0 0 0 

[40 – 44) [16 – 20) 18 25 70 1 25 25 

[44 – 48) [20 – 24) 22 30 102 2 60 120 

[48 – 52] [24 –28] 26 40 140 3 120 360 

Totals   140   T1= 168 T2= 570 

 

Answer: The data are in the first four columns of Table 3.1. We have filled up the 

next columns of this table. The fifth column stands for the cumulative frequencies of 

the nodes. The parameter m on the title of the 5
th

 is the temporary mean value for the 

sample and as usually is taken to be one middle standing value. Here m=14 is 

adopted. The parameter w=4 is the size of the seven spaces of the range of the time 

R=b=28 (=52-24).  

The sample mean value is given as  1 168
14 4 18.8min

140

T
x m w

n
= + ⋅ = + ⋅ =      

The sample variance is given as   

                         
22 2

2 1
2

16 168
570 42.4058

1 139 140

Tw
s T

n n

   
= ⋅ − = ⋅ − =   −   

 

and the standard deviation is 2 42.4058 6.5120 mins s= = = .    

Thus the sample coefficient of variation is the unit free quantity  

         ˆ
v

s 6.5120
C = = = 0.3464

x 18.80
.                                                                  (3.1)  

Now the road is open to calculate the exponent k of the formula (2.1) via the (2.5) and 

(2.6), in order to obtain the formula (2.1) of pdf:   

From (3.1) and (2.5) we get 2 2ˆ 0.3464 8.3338vCλ − −= = = ,  

from (2.6) we get ( ) 2 1 2 1 8.3338 1.0551k λ λ= − + + = − + + =      

and from (2.1) we have 
1 2.0551

0.073396
28

k
h

b

+
= = = .     
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Thus the pdf formula is given by 

              

1.0551

0.073396 [0, 28]
( ) 28

0 [0,28]

x
x

f x

x

  ⋅ ∈  =   
 ∉

                                        (3.2)  

Now it is the moment to check the reliability of the method via the next test shown in 

the Table 3.2. The very-very little value of Chi-squared is a very good proof for the 

“good fitting” of the “observed” to the “theoretic” values ni and ′
i

n respectively.   

 

Table 3.2  
Real Time 

Spaces 
X-Xmin 

Spaces 

Centers: 

′
ix  

ni  Ni ) 140′ ⋅=i in f(x

Theoretic  

2
)′−

′
i i(n n

 
n

 

[24 – 28) [00 – 04) 02 2 2 2.5 0.1000 

[28 – 32) [04 – 08) 06 8 10 8.1 0.0012 

[32 – 36) [08 – 12) 10 15 24 13.9 0.0871 

[36 – 40) [12 – 16) 14 20 44 19.8 0.0020 

[40 – 44) [16 – 20) 18 25 70 25.8 0.0248 

[44 – 48) [20 – 24) 22 30 102 31.9 0.1132 

[48 – 52] [24 –28] 26 40 140 38.0 0.1053 

Totals   140  140.0 X
2
= 0.4336 

 

 

 

Example 3.2: Suppose we face the same sample of Example 3.1 but now the observed 

frequencies are in the exactly inverse order than in example 3.1, as we see in the 4
th

 

column of the next Table 3.3. Of course it is again n=140 nodes and the data were 

distributed in 7 spaces with wideness w=4 min. Calculate the parameters 2 ˆ, , , vx s s C . 

After this establish the formula of pdf for the r.v. X=”duration”.  

 

Table 3.3  

Real Time 

Spaces 
X-Xmin 

Spaces 

Centers: 

′
ix  

ni Ni ′
i i

x = (x - m)/w

 

′⋅i in x  ′⋅
i

2

in x  

[24 – 28) [00 – 04) 02 40 40 -3 -120 360 

[28 – 32) [04 – 08) 06 30 70 -2 -60 120 

[32 – 36) [08 – 12) 10 25 95 -1 -25 25 

[36 – 40) [12 – 16) 14 20 115 0 0 0 

[40 – 44) [16 – 20) 18 15 130 1 15 15 

[44 – 48) [20 – 24) 22 8 138 2 16 32 

[48 – 52] [24 –28] 26 2 140 3 6 18 

Totals   140   T1=-168 T2= 570 

 

Answer: The data are in the first four columns of Table 3.3. We have filled up the 

next columns of this table. The fifth column stands for the cumulative frequencies of 

the nodes. The parameter m on the title of the 5
th

 is the temporary mean value for the 

sample and as usually is taken to be one middle standing value. Here m=14 is 

adopted. The parameter w=4 is the size of the seven spaces of the range of the weight 

R=b=28 (=52-24). For the present case we have the same data but now the frequencies 
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seem to come out  from decreasing pdf than an increasing one, as we pass from space 

to space of the duration.   

The sample mean value is given as  1 168
14 4 9.2 min

140

T
x m w

n

−
= + ⋅ = + ⋅ =      

The sample variance is given as   

                         
22 2

2 1
2

16 ( 168)
570 42.4058

1 139 140

Tw
s T

n n

   −
= ⋅ − = ⋅ − =   −   

 

and the standard deviation is 2 42.4058 6.5120 mins s= = = .    

Thus the sample coefficient of variation is the unit free quantity  

         ˆ
v

s 6.5120
C = = = 0.7078

x 9.20
.                                                                  (3.3)  

Now the road is open to calculate the exponent k of the formula (2.1) via the (2.5) and 

(2.6) and to get the formula (2.1) of pdf:   

From (3.1) and (2.5) we get 2 2ˆ 0.7078 1.9961vCλ − −= = = ,  

from (2.6) we get ( ) 2 1 2 1 1.9961 0.2691k λ λ= − + + = − + + = −      

and from (2.1) we have 
1 0.7309

0.026104
28

k
h

b

+
= = = .     

Thus the pdf formula is given by 

              

0.2691

0.026104 [0,28]
( ) 28

0 [0, 28]

x
x

f x

x

−  ⋅ ∈  =   
 ∉

                                           (3.4)  

Now it is again the moment to check the reliability of the method via the next test 

shown in the Table 3.4. The very big value of Chi-squared is a very good proof for the 

“non good fitting” of the “observed” to the “theoretic” values ni and ′
in respectively, 

with a value of p<<0.005.   

 

Table 3.4  

Real Time 

Spaces 
X-Xmin 

Spaces 

Centers: 

′
ix  

ni Ni ) 140′ ⋅=i in f(x

Theoretic 

2)′−
′

i i(n n
 

n
 

[24 – 28) [00 – 04) 02 40 40 33.8 1.1373 

[28 – 32) [04 – 08) 06 30 70 22.3 2.6587 

[32 – 36) [08 – 12) 10 25 95 19.3 1.6834 

[36 – 40) [12 – 16) 14 20 115 17.6 0.3273 

[40 – 44) [16 – 20) 18 15 130 16.5 0.1364 

[44 – 48) [20 – 24) 22 8 138 15.6 3.7026 

[48 – 52] [24 –28] 26 2 140 14.9 11.1685 

Totals   140  140.0 X
2
= 20.8142 

 

 

Example 3.3: A sample of n=249 students worked on the internet and they make 

citation on the number of pages they had visited per week. X= number of pages cited 

by the students (Node=Student). The results are included to the next table of data 

could be seen as continuous data via the very big number of pages per student. The 

data are distributed in 6 spaces with wideness w=500 pages. Calculate the 
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parameters 2 ˆ, , , vx s s C . After this establish the formula of pdf for the r.v. X=”number 

of pages”. 

  

Table 3.5  
Number of 

pages 

Centers: 

′
ix  

ni Ni ′
i i

x = (x - m)/w

 

′⋅i in x  ′⋅
i

2

i
n x  

[0000 –0500) 0250 3 3 -3 -9 27 

[0500 –1000) 0750 17 20 -2 -34 68 

[1000 – 1500) 1250 32 52 -1 -32 32 

[1500 – 2000) 1750 47 99 0 0 0 

[2000 – 2500) 2250 66 165 1 66 66 

[2500 – 3000) 2750 84 249 2 168 336 

Totals  249   T1= 159 T2= 529 

 

Answer: The data are in the first three columns of Table 3.1. We have filled up the 

next columns of this table. The fourth column stands for the cumulative frequencies of 

the nodes. The parameter m on the title of the 5
th

 is the temporary mean value for the 

sample and as usually is taken to be one middle standing value. Here m=1750 is 

adopted. The parameter w=500 is the size of the six spaces of the range of the time 

R=b=3000.  

The sample mean value is given as  1 159
1750 500 2069.28

249

T
x m w pages

n
= + ⋅ = + ⋅ =      

The sample variance is given as   

                         
22 2 2

2 1
2

500 159
529 430917.22

1 248 249

Tw
s T

n n

   
= ⋅ − = ⋅ − =   −   

 

and the standard deviation is 2 430917.22 656.44s s pages= = = .    

Thus the sample coefficient of variation is the unit free quantity  

         ˆ
v

s 656.44
C = = = 0.3172

x 2069.28
.                                                                  (3.5)  

Now the road is open to calculate the exponent k of the formula (2.1) via the (2.5) and 

(2.6) and to get the formula (2.1) of pdf:   

From (3.5) and (2.5) we get 2 2ˆ 0.3172 9.9388vCλ − −= = = ,  

from (2.6) we get ( ) 2 1 2 1 9.9388 1.3073k λ λ= − + + = − + + =      

and from (2.1) we have 
1 2.3073

0.000769
3000

k
h

b

+
= = = .     

Thus the pdf formula is given by 

              

1.3073

0.000769 [0,3000]
( ) 3000

0 [0,3000]

x
x

f x

x

  ⋅ ∈  =   
 ∉

                                   (3.6)  

Now it is the moment to check the reliability of the method via the next Chi-squared 

test by the help of the next Table 3.6. The very-very little value of Chi-squared is a 

very good proof for the “good fitting” of the “observed” to the “theoretic” values ni 

and ′
in respectively. We found again a little value, the X

2
= 0.4520.    
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Table 3.6 
Real Time 

Spaces 

Centers: 

′
ix  

ni  Ni ) 140′ ⋅=i in f(x

Theoretic  

2
)′−

′
i i(n n

 
n

 

[0000 –0500) 0250 3 3 4.0 0.2500 

[0500 –1000) 0750 17 20 15.7 0.1076 

[1000 – 1500) 1250 32 52 30.6 0.0641 

[1500 – 2000) 1750 47 99 47.4 0.0034 

[2000 – 2500) 2250 66 165 65.8 0.0006 

[2500 – 3000) 2750 84 249 85.5 0.0263 

Totals  249  249.0 X
2
= 0.4520 

 

 

 

 

 

4. Discussing about the increasing form of pdf   
 

We have already dealt with the theoretic point of view and with the applications of the 

increasing pdf as they can be detected on Tables 3.1 till 3.4. The source results 

coming out from comparison of the two tables 3.2 and 3.4 is that:     

 

1
st
 ) If and only if the pdf is an increasing one, then the formula (2.1) extracted 

from the sample data can describe the distribution of the r.v. X. This is an obvious 

result come out via the Chi-squared test of a very good significance level, i.e. the 

suitable p-value is vanishing. This result has been enforced by the example 3.3 

where from a sample of size n=249 units and a pdf of increasing nature we have 

that the formula (2.1) takes its natural form of (3.6).          

 
2

nd
 ) The forms (3.2), (3.4) and (3.6) are estimations at a point. The best estimation 

could be given by a confidence interval for k(λ) in order to see if some expected 

value for k stands inside this interval, e.g. someone could be curious if in example 

3.1 we have k(λ)=1. This means that if there is a question if k=1 or any information 

that it is probably k=1 we can state: “If there is a confidence interval (c.i.) of (at 

least 95%) including the value k=1, then we say that we have not enough 

information to restrict the hypothesis (H0) which states that k=1”. For more details 

see Farmakis (2003), Sachs (1984). Let us note again that k=1 means that we have 

a pdf with a linear form of expression.          
 

3
rd

 ) There is a natural infimum for the parameter k. This is k=-1 and it behaviors 

as an absolute zero. So the parameter k (or better the k+1one) becomes a ratio 

variable for the increasing distribution, as it is for also proved for the symmetric 

distributions, Farmakis (2003). 
   

4
th

) As a resume we give the next Table 4.1 with the basic formulae of the symmetric 

distributions, Farmakis (2003), and of the increasing distribution of the present 

paper.   

We note once again that in all we have write here and in Farmakis (2003) the value 

of the parameter λ is immediately connected with the concept of CV by the formula:  
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( )2

-2

v

EX
λ = C =

VarX
.                                          (4.1)  

We try in the most of the cases to imagine that it is λ=1,2,3,4,…, since the value λ=0 

must be avoided because is a source of problems for the basic parameter, the 

exponent k. So the set of the increasing pdf can be seen as classified and scaled by 

the series ( )
Nλ∈λ

X , see also Farmakis (2003).    

                                                                                

Table 4.1  

(I) Symmetric Distributions (II) Increasing Distributions 

2

2

( ) [ , ]

( ) ( ) [ , ]

0 [ , ]

k a b

k a b

h x a x a

f x h b x x b

x a b

+

+

 ⋅ − ∈


= ⋅ − ∈
 ∉

 [0, ]
( )

0 [0, ]

k
x

h x b
f x b

x b

  ⋅ ∈  =   
 ∉

 

5 1 8

2
k

λ− + +
=  2 1k λ= − + +  

1

2 ( 1)
, 1

( )

k

k

k
h k

b a
+

⋅ +
= ≠ −

−
 

1k
h

b

+
=  

 

                   

 

 

 

 

 

 

R E F E R E N C E S   
 

 

  

FARMAKIS N. (2001) “Statistics, Theory in Brief-Exercises”, A & P Christodoulidi,  

               Thessaloniki, 2001 (in Greek).  

FARMAKIS N. (2003) “Estimation of Coefficient of Variation: Scaling of  

                Symmetric Continuous Distributions”, Statistics in Transition, Vol. 6, Nr 1,  

                pp 83-96.    

FARMAKIS N. (2007) “Introduction to Sampling”, Ed. A & P Christodoulidi,  

               Thessaloniki, 2007 (in Greek).  

JOHNSON, N. L. & WELCH, B. L. (1940), “Applications of the non-central  

               distribution”, Biometrika, Vol. 31, p 362-389. 

LEVY, P. S. & LAMESHOW, S. (1991) “Sampling of Populations: Methods and  

               Applications”, John Wiley & Sons, Inc. New York. 

SACHS, L. (1984) Applied Statistics, Springer-Verlang Inc, New York. 

267



268



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010 

  

 

 

Dynamic routing combined to forecast the behavior of 

traffic in the city of São Paulo using Neuro Fuzzy 

Network 
 

Ricardo Pinto Ferreira, Carlos Affonso and Renato José Sassi 

 
Nove de Julho University, São Paulo, Brazil 

Email: kasparov@uninove.edu.br  

Nove de Julho University, São Paulo, Brazil 

Email: carlos.affonso@ajato.com.br  

Nove de Julho University, São Paulo, Brazil 

Email: sassi@uninove.br   
 
Abstract: The challenge of getting and keeping customers drives the development of new 

ways to meet the consumption needs of increasingly tends to micro-segmentation of product 

and consumer market. The new consumption habits of Brazilians have brought new 

prospects for consumption. The objective of this paper is to propose the development of a 

dynamic routing system supported by the behavior of urban traffic in the city of São Paulo 

using Neuro Fuzzy Network. The methodology of this paper consists in the capture of 

relevant events that interfere with the flow of traffic of the city of São Paulo and 

implementation of a fuzzy neural network trained with these events to the behavior of 

traffic. The system offers three levels of hierarchical routing is possible to consider not only 

the basic factors of routing, but also external factors that directly influence the flow of traffic 

and the disruption which may be avoided in large cities, through openings in the path 

(dynamic routing ). Predicting the behavior of traffic represents the strategic level routing, 

dynamic routing is the tactical level and routing algorithms to the operational level. This 

paper will not be discussed the operational level. 

Keywords: The behavior of traffic, Dynamic Routing, Neuro Fuzzy Network. 

 

1  Introduction 
 

The new consumption habits of Brazilians brought to market products with a life cycle 

shorter consequently increasing volumes of items collected and distributed every day by 

Today (2009). 

An important aspect for maximum efficiency in transportation is the definition of the routes 

of the collections or deliveries.  This setting determines the path that a vehicle will travel to 

complete the requirements of transport services. Bowersox et al., (2006). 

The Vehicle Routing Problem (VRP) has been studied with much interest within the last 

three to four decades. The majority of these works focus on the static and deterministic cases 

of vehicle routing in which all information is known at the time of the planning of the 

routes. In most real-life applications though, dynamic information occurs parallel to the 

routes being carried out. Larsen (2001). 

The problem of vehicle routing is to determine vehicle routes that minimize the total cost of 

attendance, each of which starting and ending in the warehouse or on the vehicle, ensuring 
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that each point is visited exactly once and the demand on any route does not exceed capacity 

of the vehicle that meets.  When the definition of the routes involves not only spatial or 

geographical aspects, but also time, such as restrictions on hours of service points to be 

visited, the problems are then referred to as routing and scheduling. Cunha (1997). 

In urban areas it is possible to give up some advantage as the minimum distance to obtain 

shorter shift. Ballou (1993).  The proposed dynamic routing deviations from regions with 

lower traffic flow time offering other alternative routes that minimize the waiting time 

(unproductive). 

 The traffic chaos witnessed in the city of São Paulo is formed by several notable events 

recorded during the day and directly affect the flow of traffic, congestion impede the 

efficiency of urban transport and cause significant damage.  Notable occurrences are 

instances highlighted by the Operations Center of the Society of Traffic Engineering, which 

interfere or may modify the conditions of flow and safety of city traffic. CET (2009).  

 A vehicle stops on a busy route immediately causes a reduction in the speed of vehicles that 

route.  The consequence is the change in traffic flow on streets perpendicular or parallel, 

there is the momentary chaos.  In cities without adequate planning as São Paulo, chaos may 

even become permanent. Pena (2004).  

 A fuzzy neural network was developed using an artificial neural network architecture 

Multilayer perceptrons (MLP) with backpropagation algorithm.  Data were collected notable 

occurrences of traffic in the metropolitan region of São Paulo in December 16, 2009. 

 

2  The hierarchy of routing 
 

Through the three-level hierarchical routing is possible to consider not only the 

basic factors of routing (routing algorithms) as well as external factors, such 

episodes have a direct influence on service levels in large cities (dynamic routing) 

that represents the tactical level of routing. The prediction of the behavior of traffic 

represents the strategic level of routing. The Figure 1 illustrates the proposed 

hierarchy for routing supported by three levels. Ferreira et al., (2010). 
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Fig. 1. Hierarchy routing.  Source: Ferreira et al., (2010) 

 

3  The Dynamic Routing 
 

The static routes do not allow to optimize the entire path of the vehicle and urban 

areas are fertile in events that directly influence the time and travel distance so the 

time lost in traffic, and increase the cost of travel, provides better combustion of. 

Ferreira and Sassi (2009). 

With dynamic routing, deliveries continue to occur and, after interruption, the 

previously congested pocket can usually be treated without prejudice to all points 

of delivery or pickup.  Figures 2, 3 and 4 illustrate a step-by-example in changing 

the route during a break on the road where they were held up deliveries of supplies 

and other items already in the initial route amended without prejudice to other 

customers, so just stopping the vehicle takes deliveries in the semi-arc missed in 

the initial route. 

Figure 2 (A) shows the path to the barren pocket of distribution (blue line) points 

to be served (green dot) and the initial planned route (red line).  Figure 2 (B) shows 

the interruption of the path within the range of distribution schedule. 
 

 
Fig. 2. Bag distribution (A and B). Source: Authors 

 

Figure 3 (C) shows the alternative route (yellow line) that enables delivery of the 

same pocket of distribution continues to be made. Figure 3 (D) shows the end of 

the interruption and customers that have not been met. 
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Fig. 3.  Bag distribution (C and D). Source: Authors 

 

Figure 4 (E) shows the new alternative route (yellow line) that will serve customers 

in the semi-arc missed in the initial programming. 

 

 
Fig. 4.  Bag distribution (E). Source: Authors 

 

The dynamic routing in this paper represents the tactical level of routing, as seen in 

section 2. 

 

4  Fuzzy neural network to predict the behavior of urban traffic 
 

We use the concept of fuzzy logic as the mathematical tools necessary for the 

treatment of algebraic and logical operations performed in the universe of fuzzy 

sets. Passino and Yurkovich (1998). The concepts of fuzzy logic can be used to 
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translate in mathematical terms the inaccurate information expressed by a set of 

linguistic variables.  

Be used the nomenclature of Fuzzy sets defining them as a class of objects of 

continuous variables.  Such sets are characterized by membership functions which 

indicate for each element a degree of membership from 0 to 1. Nicoletti and 

Camargo (2004). The concepts of intersection, union, complement, convexity, etc..  

are extended to such sets, and various properties of these notions in the context of 

fuzzy sets are established by Zadeh (1965). 

The artificial neural networks are models inspired by brain structure with the 

objective to simulate human behavior as learning, association, generalization and 

abstraction. Haykin (1999). These models consist of simple processing units called 

artificial neurons, which calculate mathematical functions. 

The Artificial Neural Networks and Fuzzy Logic have been widely applied to 

many problems including identification, prediction, classification and control.  

However, both techniques have limitations, but put them together in a single model 

(network) can overcome these limitations. Gomide et al., (1998). 

The Neuro Fuzzy networks have emerged as a promising tool, because they bring 

the benefits of neural networks and fuzzy logic, where the learning and 

computational power of neural networks, and capacity for representation and 

reasoning of fuzzy logic are combined. Gomide et al., (1998). 

Currently, there is great interest in neural network models to solve unconventional 

problems in recent years the artificial neural networks have emerged as a viable 

alternative with many applications. A Neuro Fuzzy network was developed using 

Multilayer perceptrons (MLP) architecture with backpropagation for learning 

algorithm. 

As a programming language was used Scilab 5.1, according to the advantages 

pointed out in (http://www.scilab.org/.) Are also available in this language 

computer packages (toolboxes) specially designed for fuzzy logic and neural 

networks as a metric to verify the validity of the network, the average error was 

established as the difference between the value returned by the network and the 

output of the database.  Data were collected notable occurrences of traffic in the 

metropolitan region of São Paulo on December 16, 2009 in order to obtain the 

impact of such occurrences in the flow of traffic through relevant events on the 

behavior of traffic, these parameters have been converted through Fuzzy sets. 

Figure 5 shows the types of occurrences that were used in the fuzzy neural 

network. 
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Fig. 5.  Notable Occurrences. Source: Adapted from CET (2009) 

 

Figure 6 illustrates the results of the behavior of real traffic, the blue line represents 

the actual behavior of December 16, 2009, the green line represents the lower 

middle and red line represents the upper middle-hours.  The graph shows the slow 

rate of slow transit logged every 30 minutes, Monday through Friday, at the time of 

7h to 20h and the lines indicating the lower and higher. CET (2009) and Ferreira et 

al., (2010). 

 
Fig. 6. Behavior observed in December 16, 2009. Source: CET (2009) 

 

Figure 7 illustrates the results obtained by fuzzy neural network compared to the 

captured CET in December 16, 2009. 
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Fig. 7. Behavior calculated by the fuzzy neural network. Source: Authors 

 

With the initial results it appears that the network was a reasonable outcome of the 

proposed problem and can assist in decision making about the time windows that 

should be avoided and that exhibit the behavior above the norm. 

5  Conclusion 
 

Predicting the behavior of traffic can be an excellent tool to help decision making 

before the routing so as to enable the steps of physical distribution with greater 

effectiveness and productivity.  With the ability to predict the fluctuations of traffic 

flow you can choose the best windows service in order to avoid times when traffic 

forecasting point to levels that undermine the slow service. The combined routing 

dynamic traffic forecasting can increase significantly the efficiency of routing in 

large cities.  The static routes do not allow improving the whole route of the 

vehicle so that all customers are met within the estimated time window. Diversions 

intelligent aimed at reducing time in transit, even if distance is a little bigger, and 

there is a saving time and fuel, it is concluded that the prediction of traffic and 

routing dynamics are innovative alternatives to routing.  The aim is to continue 

with this early work using other data samples collected on different days of the 

week, in different months and days with atypical of the city of São Paulo to get 

new results using the fuzzy neural network.  The dynamic routing will also be 

studied in order to set the possible integration of the three levels of routing as 

proposed in the paper. In future studies is the prospect of using Rough Neuro 

Fuzzy Network to try to better resolution of the problem proposed. 
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Abstract:  The role of recursive residuals in the validation of linear models is well-recognised.  Furthermore, their 

contribution to quality control and change point analysis has become increasingly valued.  A new procedure for deriving 

recursive residuals – assuming data observations are time-ordered - is now presented and its theoretical efficacy 

established.  Relevant results are illustrated across a number of real-life data applications. 

Keywords: Influence, Leverage, Outliers  

 

1     Introduction 
 

Residual analysis is a vital aspect of any linear modelling application. In the past, residuals have proven 

an effective tool for dealing with a wide variety of modelling issues, including problems of structural 

change, serial correlation of errors, functional misspecification, heteroscedasticity, outliers, influence 

and leverage - amongst others. Corresponding tests have been developed in relation to various types of 

residuals – most recently, recursive residuals which can be shown to have important theoretical 

advantages over more common alternatives.  

 

Kianifard and Swallow (1996) provide a comprehensive review of recursive residuals, their properties 

and usage. Most recently, a series of novel formulations for generating recursive residuals was offered 

by Goldolphin (2009). In contrast, Hamilton (1991) shows how conventional regression diagnostics can 

be modified to good effect using recursive residuals.   

 

The paper introduces a new procedure for computing recursive residuals. Formulae for deriving the 

latter it is shown can be greatly simplified by exploiting longstanding algebraic identities from the field 

(Plackett, 1950) ,(Pollock, 1999). Relevant details of the computations are provided in the next section. 

In section 3, the technique is illustrated for a number of relevant data sets from the literature. 

 

2      Analysis 

 

Traditionally a linear regression model is formulated: 

 

 Y = Xβ + ε 

 

where Y = (y1, …yn)’ is an n x 1 vector of values of the response variable, β = (β1, ….βp)’ is a p x 1 

vector of unknown fixed parameters, ),....( ''

1 nxxX = is an n x p matrix of explanatory variable values 

such that rank(X) = p and ε = (ε1, ….εn)’ is an n x 1 vector of independent normal random variables with 

mean zero and unknown fixed variance σ
2
.  
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Ordinary least squares (OLS) residuals can be written: 

 
∧

−= βXYe  where YXXX ')'( 1−
∧

=β  

 

Partitioning the data into the first j-1 cases and the last n-j+1 cases, then if Xj-1 is the (j-1) x p matrix 

corresponding to the first j-1 rows of X where j-1 ≥ p and 
1

1

'

1 )( −

−− jj XX  can be assumed non-singular, 

then  β can be estimated by 1

'

1

1

1

'

11 )( −−

−

−−−

∧

= jjjjj YXXXβ  where Yj-1 is the vector consisting of the 

first  j-1 elements of Y. We refer to this regression model based on the first j-1 cases as regression j-1.  

 

If )()( '

jjjjjjj XYXYS
∧∧

−−= ββ then it can be shown 
2

1 jjj wSS += −  (Brown et al, 1975) where 

 

the jth recursive residual, wj can be written: 

 
2/11

1

'

1

'

1

'

})(1{ jjjj

jjj

j
xXXx

xy
w

−

−−

−

∧

+

−
=

β
     

or equivalently 
2/1

)1( )1( −+ jjj

j

h

v
    j = p+1, …, n  (1) 

 

where - adapting Hawkin’s (1991) - notation  

 

  kiijijk xXXxh 1

)( )( −=  

 

The numerator of (1) - which can be described as the predicted residual of case j using regression j-1 

- can alternatively be expressed as: 

 

)( 1

''

1

'

−

∧∧∧

−

∧

−+−=−= jjjjjjjjjj xxyxyv ββββ      (2) 

  )( 1

'

−

∧∧

−+= jjjj xu ββ  

where jjjj xyu
∧

−= β'
is the OLS residual of the last case in regression j. 

 

Now since  

jjjjjjjjjjjjjjj xxXXXXYXyxXX
∧

−−

∧

−

∧

−− +===+ βββ )( '

1

'

1

''

11

'

1   (3) 

 

it follows: 

)())(( '

11

'

1 jjjjjjjj xyxXX
∧

−

∧∧

−− −=− βββ  

 

and hence  
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)()( '1

1

'

11 jjjjjjjj xyxXX βββ −=− −

−−−

∧∧

 

 

Substituting for 1−

∧∧

− jj ββ  in (2) we have: 

))(1)(()()( 1

1

'

1

'''1

1

'

1

''

1

'

jjjjjjjjjjjjjjjjjjjj xXXxxyxyxXXxxyxy −

−−

∧∧
−

−−

∧

−

∧

+−=−+−=− ββββ

 

i.e.         
2

2

)1( )1(
j

j

jjjjjj
w

v
uhuv =+= −

            (4) 

 

which, following rearrangement, yields   

 

     jjj vuw =2
   (5) 

 

2.1 Properties 

 

When β is constant, Brown et al (1975) show that the recursive residuals wj (j  ≥  p+1, …n) are i.i.d  

N(0, σ
2
).  

 

In contrast, it is known (Kianifard and Swallow, 1996) that the uj errors are correlated with unequal 

variances according to the non-diagonal covariance matrix: ))(( 1''2

jjjj xXXxI −−σ ; similarly for the 

vj  terms which share the alternative covariance matrix: ))(( 1

1

'

1

'2

jjjj xXXxI −

−−+σ  

 

By virtue of (5) it is evident that  

 

    Sgn(uj) = Sgn (vj) = Sgn (wj) 

 

Similarly from (4) it can be deduced that: 

 

    |uj| ≤ |wj|≤ |vj| 

 

2.2 Leverage 

 

Adapting a rule by Hoaglin & Welch (1978), Hawkins (1991) defines a case having “high leverage” as 

one where: 

 

   hjj(j) > 2p    (6) 

    j 

 

Now since (Farebrother, 1978)  
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j 2
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and thus from (5) 
j

p

v

u

j

j 2
1−<   

 

Hence inequality (6) can alternatively expressed: 

 

  

)
2

1(
j

p

u
v

j

j

−

>       (7) 

    

3    Applications 
 

3.1 Rousseeuw and Leroy's data (1987) 

 

Rousseeuw and Leroy's data relate to the total number (tens of millions) of international calls from 

Belgium for the years 1950 – 1973. From late 1963 till early 1970, observations are inconsistently 

recorded in minutes of these calls. Thus, whereas data for 1964-69 can be thought of as ‘totally 

contaminated’ those for 1963 and 1970 are only ‘partially’ so. 

 

Following Kianifard & Swallow (1996), Table 1 presents  uj, vj and wj residuals (j = 4,4, ….24) for the 

dataset. Clearly for the years 1953-1957 the latter values are relatively consistent and small. After 1957 

however they appear to undergo a step change. This lasts until 1962 after which they rise again very 

precipitately.  By 1963 the increase is some three- or four-fold in line with the partial contamination of 

the data for that year.  However, for 1964-1969, corresponding to the period when the full 

contamination occurred, the increase is by a further factor of 13 or more. Interestingly, from 1970-1973 

the residuals become negative and in absolute value terms start to decline as bad data are progressively 

filtered from the calculations. Kianifard and Swallow (1996) show that recursive residuals are much 

more sensitive to the data’s features than their standardised or studentised counterparts, significant 

values of the latter being obtained only for the year 1969. In contrast, wj  are found to be significant for 

the years 1958-1959, 1963-1966 and 1970-1971. Figure 1 which plots parameter estimates for 

regression j by j reveals that the pronounced changes in uj and vj – and hence wj – found in Table 1 are 

primarily due to shifts in the intercept parameter.  

 

Year-1949 uj vj wj 

4 0.03 0.10 0.05 

5 0.02 0.06 0.03 

6 0.02 0.04 0.02 

7 0.02 0.04 0.03 

8 0.01 0.02 0.02 

9 0.08 0.13 0.10 

10 0.09 0.14 0.12 

11 0.11 0.16 0.13 
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12 0.11 0.16 0.13 

13 0.10 0.14 0.12 

14 0.38 0.51 0.44 

15 7.61 10.04 8.74 

16 5.98 7.75 6.81 

17 5.68 7.24 6.42 

18 5.33 6.70 5.98 

19 5.50 6.83 6.13 

20 6.19 7.60 6.86 

21 -9.65 -11.73 -10.64 

22 -10.30 -12.41 -11.30 

23 -8.97 -10.71 -9.80 

24 -7.90 -9.36 -8.60 

 

Table 1. Residuals uj, vj and wj residuals by j (= year -1949) 

 

 

Fig. 1. Estimated intercept and slope for regression j (j = 4,5, ….24) 

In addition, the graph of vj versus uj (j = 4,5, ….24) shown in Figure 2 highlights the existence of three 

distinct regimes mirroring those in  Kianifard and Swallow’s original scattergram of the data.  
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Fig. 2. Plot of vj versus uj (j = 4,5, ….24) 

Note that whereas cases 1950-1952 were used as the basis set for the residuals covered in both Table 1 

and Figures 1 - 2, cases 1971-1973 form the basis set for those plotted in Figure 3. Consistent with 

Figure 1, years 1963 (j = 14) and 1969 (j = 20) are highlighted here as those where change occurred and 

as Figure 4 confirms, shifts in intercept value seem once again to be the explanation for this.  

 

  

Fig. 3 Plot of residuals uj, vj and wj (j = 1,2, ….21)  
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Fig. 4. Estimated intercept and slope for regression j (j = 1,2, ….21) 

3.2Montgomery and Peck’s data (1982) 

Data collected by Montgomery and Peck (see Hawkins, 1991) concern the three variables: 

Y, the time taken to service a vending machine, X1, the number of items stocked by the machine and X2, 

the distance travelled to reach it. Though cases were not explicitly time-ordered, Hawkins argues 

reasonably that they might well be so. Residuals uj, vj and wj – using the first four cases as the basis set 

for the calculations - are plotted in Figure 5, extreme values of wj occurring for j = 9 and j = 20. 

Correspondingly, when  residuals are calculated using the last four cases as the basis set wj, can again be 

found to be maximised at j = 9. In both his backward and forward analyses Hawkins deduces that case 9 

has high leverage. Similarly in his backward analysis, case 20 is identified as ‘marginally outlying’. 
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Fig. 5 Plot of residuals uj, vj and wj (j = 5,6, ….25)   

These different types of discordancy are represented quite differently in the  plot of vj by uj in Figure 6.  

As with Figure 2 earlier the points here follow a  roughly linear pattern but in keeping with inequality 

(7) that for case 9 is much higher than the pattern would suggest. Case 20 on the other hand conforms to 

the pattern but has a uj value markedly lower than that for the other points. 

 

 

Fig. 6. Plot of vj versus uj (j = 5,6, ….25) 
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3    Conclusions 

Various alternative formulae exist for computing recursive residuals. Supplementing these we have 

established that the jth recursive residual (j = p+1, p+2, ….n) can be simply found by taking the 

harmonic mean of the OLS residual of the last case in regression j and the predicted residual for case j 

using regression j-1. This elegant result is associated with a number of simple mathematical identities 

which allow existing tests – for example, that for leverage - to be productively re-interpreted. As several 

contrasting examples show, valuable new insights then become possible.  
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Abstract. In this paper, we consider the problem for designing of optimal smoothing spline
curves with equality and/or inequality constraints. The splines are constituted employing
normalized uniform B-splines as the basis functions. Then various types of constraints are
formulated as linear function of the so-called control points, and the problem is reduced to
convex quadratic programming problem. The performance is examined by some numerical
examples.
Keywords: B-splines, optimal smoothing splines, equality/inequality constraint, quadratic
programming.

1 Introduction

The problems of constructing curves for a given set of discrete observational data
may arise in many applications of science and engineering. For such problems, a
commonly-used way is to use interpolating and approximating methods using spline
functions. Thus splines have been studied extensively (e.g. [1–3]).

In addition to traditional approximating or interpolating splines, there are a large
class of problems where we need to impose various constraints on splines – such as
monotone smoothing splines [4], interval interpolation splines [5], etc. Employing
B-splines approach, the authors have developed a method for designing smoothing
splines with constraints over interval or at isolated points, and the construction of
the spline then becomes a quadratic programming problem [6].

This paper is a continuation of our studies on the optimal design of constrained
spline curves based on B-spline approach in [6]. We here develop the general-
ized design method so that the multiple curves can be designed simultaneously with
equality and/or inequality constraints. Such a design method may be useful in many
applications, e.g. estimation of probability density functions [7] and trajectory plan-
ning for robotic motions [8], etc. The performance is examined by some numerical
example.

This paper is organized as follows. In Section 2, we briefly review B-splines and
design methods of optimal splines. Then in Section 3, we show how various types of
constraints on splines can be formulated and solved. We examine the performances
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of the proposed method by numerical example in Section 4. Concluding remarks
are given in Section 5.

We summarize some of the symbols that will be used throughout the paper:⊗
denotes the Kronecker product, and ’vec’ the vec-function, i.e. for a matrixA =
[a1 a2 · · · an] ∈ Rm×n with ai ∈ Rm, vecA = [aT

1 aT
2 · · · aT

n ]T ∈ Rmn (see e.g. [9]).

2 Optimal Smoothing Splines

Let x(t) ∈ Rp (p≥ 1) be vectorized spline curves defined byx(t) = [x1(t) x2(t) · · ·
xp(t)]T . Then arbitrary spline curvesx(t) of degreek in an intervalD = [t0, tm]⊂ R
can be represented as

x(t) =
m−1

∑
i=−k

τiBk(α(t− ti)) (1)

by an appropriate choice of the weighting coefficient vectorτi = [τ1,i ,τ2,i , · · · ,τp,i ]T ∈
Rp called control points [3]. Here,Bk(t) is a normalized, uniform B-spline function
of degreek, m is an integer, andα(> 0) is a constant for scaling the interval between
equally-spaced knot pointsti with ti+1− ti = 1

α . It is noted that employing a higher
degreek of B-splines in (1) yields splinesx(t) of higher degree and thus allows us
to design more complex curves. Also, for fixedk and the interval[t0, tm], increasing
the parameterα (i.e. smaller knot points spacing) gives us more flexibility of spline
design sincem (equivalently the number of control points) increases.

2.1 Normalized Uniform B-Splines

Normalized uniform B-splineBk(t) of degreek is defined by

Bk(t) =

{
Nk− j,k(t− j) j ≤ t < j +1, j = 0,1, · · · ,k
0 t < 0 or t ≥ k+1,

(2)

and the basis elementsNj,k(t) ( j = 0,1, · · · ,k), 0≤ t ≤ 1 are obtained recursively
by the following algorithm:

Algorithm 1 LetN0,0(t)≡ 1 and, fori = 1,2, · · · ,k, compute





N0,i(t) = 1−t
i N0,i−1(t)

Nj,i(t) = i− j+t
i Nj−1,i−1(t)+ 1+ j−t

i Nj,i−1(t), j = 1, · · · , i−1

Ni,i(t) = t
i Ni−1,i−1(t).

(3)

Thus,Bk(t) is a piece-wise polynomial of degreek with integer knot points and is
k−1 times continuously differentiable. It is noted thatBk(t) for k = 0,1,2, · · · is
normalized in the sense of∑k

j=0Nj,k(t) = 1, 0≤ t ≤ 1.
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For the sake of later reference, we introduce(k+1)-dimensional vectorsNk(t)
andhk(t) as

Nk(t) =
[

N0,k(t) N1,k(t) · · · Nk,k(t)
]T

(4)

hk(t) =
[
tk tk−1 · · · 1

]T
. (5)

ThenNk(t) is written as
Nk(t) = Skhk(t), (6)

whereSk ∈ R(k+1)×(k+1) is a matrix whosei-th row consists of the coefficients of
polynomialNi−1,k(t).

2.2 Optimal Smoothing Splines

The control point vectorτi ∈ Rp (p ≥ 1) in (1) are typically determined by the
theory of smoothing splines (see, e.g. [10] for details). Suppose that we are given a
set of data

{(si ,di) : si ∈ [t0, tm], di ∈ Rp, i = 1,2, · · · ,N}, (7)

and letτ ∈ Rp×M (M = m+k) be the weight matrix defined by

τ = [τi, j ]
i=p, j=m−1
i=1, j=−k . (8)

Then a standard problem is to find such aτ minimizing the cost function

J(τ) =
∫ tm

t0

∣∣∣
∣∣∣x(2)(t)

∣∣∣
∣∣∣
2

Λ
dt+

N

∑
i=1

||x(si)−di ||2Wi
, (9)

where ||z||2S = zTSz, Λ = diag{λ1,λ2, . . . ,λp} ∈ Rp×p with smoothing parameter
λi(> 0), ∀i, andWi = WT

i ∈ Rp×p satisfiesI3 ≥Wi ≥ 0, ∀i.
Letting τ̂ ∈ RpM be the vec-function ofτ ∈ Rp×M, i.e. τ̂ = vec τ, the cost

functionJ(τ) can be rewritten as a quadratic functionJ(τ̂) in terms ofτ̂,

J(τ̂) = τ̂TGNτ̂−2τ̂TgN +const. (10)

with

GN = Q⊗Λ +
N

∑
i=1

(
b(si)bT(si)

)⊗Wi (11)

gN =
N

∑
i=1

b(si)⊗Widi . (12)

HereQ∈ RM×M is a Gramian defined by

Q =
∫ tm

t0

d2b(t)
dt2

d2bT(t)
dt2

dt (13)

with b(t) = [Bk(α(t− t−k)) Bk(α(t− t−k+1)) · · · Bk(α(t− tm−1))]T . Note thatGN

in (11) is positive-semidefinite, i.e.GN ≥ 0, sinceΛ > 0, Q≥ 0, b(si)bT(si) ≥ 0
andWi ≥ 0. HenceJ(τ̂) in (10) is convex inτ̂. Thus, if there are no constraints, the
optimal solution is given as a solution of linear algebraic equationsGNτ̂ = gN.
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3 Optimal Splines with Constraints

There are various types of constraints on splinesx(t), t ∈ [t0, tm], e.g. those forx(t)
for some interval oft, for equality and/or inequality, etc. Here we first develop basic
formula for expressing the constraints.

Since each element ofx(t) in (1), i.e. xq(t), q = 1,2, · · · , p, is a piece-wise
polynomial of degreek, we examine the polynomial in each interval[t j , t j+1) for
j = 0,1, · · · ,m−1. By focusing on the interval[t j , t j+1), xq(t) is written as

xq(t) =
j

∑
i=−k+ j

τq,iBk(α(t− ti)). (14)

Using (2), we then get

xq(t) =
k

∑
i=0

τq, j−k+iNi,k(α(t− t j)), t ∈ [t j , t j+1), (15)

and it depends on only thek+ 1 weightsτq, j−k, τq, j−k+1, · · · , τq, j . Moreover, by
introducing a new variableu,

u = α(t− t j), (16)

the interval[t j , t j+1) in t is normalized to[0,1) in u , and we may writexq(t) as
x̂q(u),

x̂q(u) =
k

∑
i=0

τq, j−k+iNi,k(u), u∈ [0,1). (17)

Letting τq
( j) = [τq, j−k, τq, j−k+1, · · · , τq, j ]T ∈ Rk+1 and using (6), we may rewrite

x̂q(u) in (17) asx̂q(u) = NT
k (u)τq

( j) and hence

xq(t) = NT
k (u)τq

( j). (18)

Now we are in a position to derive various types of constraints onx(t). For the
sake of simplicity, we consider the case of cubic splines, i.e.k = 3.

3.1 Constraints over Knot Point Intervals

We first consider the cases of constraints over knot point intervals. As example, we
consider an inequality constraint as

xq(t)≥ cq ∀t ∈ [t j , t j+1] (19)

for a constantcq, q = 1,2, · · · , p of c = [c1, c2, · · · , cp]T ∈ Rp. Note that this
inequality′ ≥′ may readily be replaced with′ ≤′ and equality′ =′.

The constraint in (19) may be realized by imposing the conditionτq,i ≥ cq for
i = j−3, j−2, j−1, j, or in terms of the control point vectorτ̂ as

(E j ⊗vq)
T τ̂ ≥ cq ·14, (20)
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where14 = [1 1 1 1]T ∈R4, E j = [04, j I4 04,M− j−4]T ∈RM×4 andvq = [0T
q−1 1 0T

p−q]T

∈ Rp. This is because, ifτq,i ≥ cq holds, we have from (15)-(17),

xq(t) = x̂q(u) =
3

∑
i=0

τq, j−3+iNi,3(u)

≥
3

∑
i=0

cqNi,3(u) = cq

3

∑
i=0

Ni,3(u) = cq ∀t ∈ [t j , t j+1), (21)

sinceNi,3(u)≥ 0 ∀u∈ [0,1].
The above arguments can be easily extended to larger knot point interval[t j , tl ]

for somel (> j).

3.2 Constraints on Integral Values

Next we consider the case of an equality or inequality constraint on the value of
integral

∫ tm
t0

xq(t)dt. From (16), (17) and (18), we get

∫ tm

t0
xq(t)dt =

m−1

∑
j=0

∫ t j+1

t j

xq(t)dt =
1
α

m−1

∑
j=0

∫ 1

0
x̂q(u)du=

1
α

m−1

∑
j=0

(
τq
( j)

)T ∫ 1

0
N3(u)du.

(22)
Noting thatN3(u) = [N0,3(u), N1,3(u), N2,3(u), N3,3(u)]T andτq

( j) = [τq, j−3, τq, j−2,

τq, j−1, τq, j ]T , we obtain

α
∫ tm

t0
xq(t)dt =

−1

∑
j=−3

τq, j

j+3

∑
i=0

∫ 1

0
Ni,3(u)du+

m−4

∑
j=0

τq, j

3

∑
i=0

∫ 1

0
Ni,3(u)du

+
m−1

∑
j=m−3

τq, j

3

∑
i= j−m+4

∫ 1

0
Ni,3(u)du.

Here, using (6) and (5), we get
∫ 1

0
N3(u)du=

1
24

[
1 11 11 1

]T
. (23)

From the above two equations, it can be shown that the integral value
∫ tm
t0

xq(t)dt is
expressed as a linear function inτ̂,

∫ tm

t0
xq(t)dt = (a⊗vq)

T τ̂, (24)

wherea∈ RM is given by

a =
1

24α
[

1 12 23 24· · · 24 23 12 1
]T

. (25)

Replacingvq in (24) with Ip, the integral value
∫ tm
t0

x(t)dt can be obtained as a linear

function in τ̂, hence
∫ tm
t0

x(t)dt = (a⊗ Ip)
T τ̂.
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3.3 Constrained Splines

As the foregoing development indicates, we can expect that a fairly large number
of constrained spline problems may be treated in the above settings. The formula-
tion is simple and is very well fit for numerical solutions as quadratic programing
problems. Namely, the optimal smoothing splines are obtained by minimizing the
convex quadratic costJ(τ̂) as shown in (10), whereas a number of constraints on the
splines may be expressed as linear constraints onτ̂, either equality or inequality or
both. A general form of problems is

min
τ̂∈RpM

J(τ̂) =
1
2

τ̂TGτ̂ +gT τ̂ (26)

subject to the constraints of the form

Aτ̂ = d, f1 ≤ Eτ̂ ≤ f2, h1 ≤ τ̂ ≤ h2, (27)

for some matrices and vectors of appropriate dimensions. A very efficient numerical
algorithm is available for this purpose [11].

4 Numerical Examples

We examine the design method presented in the previous sections numerically. We
here approximate a probability density function from the histogram of random sam-
ples for the case of cubic splines, i.e.k = 3 andp= 1. Figure 1 shows the histogram
of 100 (= Ns) Gaussian random numbers with zero mean and unit standard devia-
tion. We approximate the density function in the interval[t0, tm] = [−5,+5]. The
data(si ,di), i = 1,2, · · · ,N in (7) is then generated as follows. First,si ’s are taken
as the center of each bins in the histogram ass1 = −5, s2 = −4, · · · ,s11 = 5, and
hence the number of data isN = 11. The datadi is then obtained by rescaling the
histogram, sayHi , i = 1,2, · · · ,11, so that the area covered by the histogram over
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Fig. 1. Histogram of 100 Gaussian random numbers
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Fig. 2. Data points (*), constrained and unconstrained smoothing splines (x(t) and x0(t),
resp.) for histogram from Gaussian probability density functionf (t).
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Fig. 3. Data points (*), constrained smoothing splinesx(t) for the case of 10000 samples, 21
bins (N = 21) andm= 20 for histogram from Gaussian probability density functionf (t).

[t0, tm] is normalized to one, yieldingdi = Hi/100. Note that, in general, the his-
togram is scaled asdi = Hi/Swith S= Ns

tm−t0
N−1 , and the pair(si ,di) can be used for

reconstructing probability density functions.
With k = 3,α = 1 andm= 10 in (1), an optimal smoothing splinex(t)(= x1(t))

is computed based on the criterion (9) withΛ(= λ1) = 0.001andWi = 1/N. Obvi-
ously, we impose the equality and inequality constraints

∫ tm

t0
x(t)dt = 1, x(t)≥ 0 ∀t ∈ [t0, tm], (28)

using the formulation described in Section 3. The results are shown in Figure 2,
where the data points(si ,di) are shown by asterisks *, and the Gaussian probability
density function f (t) and the designed splinex(t) are plotted in black and blue
solid lines respectively. Also we showed in red solid line an optimal smoothing
splinex0(t) obtained without the constraints (28). We see that the curvex(t) closely
approximates the Gaussian curve while maintaining the above constraint on density
functions, which is not the case with the curvex0(t).
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8 H. Fujioka and H. Kano

Obviously, we expect that, as the numbers of samples, bins and basis functions
increase, the approximation improves. In fact we obtained the results as shown in
Figure 3 for the case of 10000 random samples,N = 21andm= 20.

5 Concluding Remarks

We developed a method for designing optimal smoothing splines with equality
and/or inequality constraints. The splines are constituted employing normalized
uniform B-splines as the basis functions, and hence the central issue is to determine
an optimal matrixτ of the so-called control points. Such an approach enables us
to express various types of constraints as linear function ofτ̂(= vec τ), including
those on the splinex(t) and its elements, their integral. The design problem becomes
a convex quadratic programming problem inτ̂, where very efficient numerical al-
gorithms are available. We examined the performances of the design method by
numerical example with equality and inequality constraints. To conclude, the devel-
oped method is effective as well as very useful for various types of problems.
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Abstract: Mixture distribution survival trees are constructed by approximating different 

nodes in the tree by distinct types of mixture distributions to achieve more improvement in 

the likelihood function and thus the improved within node homogeneity. In our previous 

work (Garg et al. 2009), we proposed a mixture distribution survival tree based method 

(where tree nodes were approximated using Gaussian mixture distributions and phase type 

distributions) for determining clinically meaningful patient groups from a given dataset of 

patients' length of stay where partitioning was based on covariates representing patient 

characteristics such as gender, age at the time of admission, and primary diagnosis code. 

This paper extends this approach to patient pathway prognostication i.e. for determining 

importance and effects of various input covariates such as gender, age at the time of 

admission and primary diagnosis code on patients’ hospital length of stay and to examine 

the relationship between length of stay in hospital and or treatment outcome. An application 

of this approach is illustrated using 5 year retrospective data of patients admitted to Belfast 

City Hospital with a diagnosis of stroke (hemorrhagic stroke, cerebral infarction, transient 

ischaemic attack TIA, and stroke unspecified). 

Keywords: Stochastic modeling, Survival tree, Length of stay modelling, Prognostication, 

Clustering, Gaussian mixture distributions, Phase type distributions 

 

1  Introduction 
 

Mixture distribution survival trees are special type of survival trees, which are 

constructed by approximating different nodes in the tree by distinct types of 

mixture distributions to achieve more improvement in the likelihood function and 

thus the improved within node homogeneity. Survival trees can be used as a 

powerful method for partitioning survival data into clinically meaningful patient 

groups for prognostication, i.e., for determining importance, effects of various 

input covariates (such as a patient’s characteristics) and their influence on output 

measures such as patients’ survival, their expected length of stay, discharge 

destination, or treatment outcome (Davis and Anderson 1989, Gao et al. 2004). In 

our previous work (Garg et al. 2009), we proposed a mixture distribution survival 

tree based method where tree nodes were approximated using Gaussian mixture 

distributions and phase type distributions, for into homogeneous groups with 

respect to their length of stay (LOS) where partitioning was based on covariates 
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representing patient characteristics such as gender, age at the time of admission 

and primary diagnosis code. This paper extends this approach to patient pathway 

prognostication i.e. for determining importance and effects of various input 

covariates such as gender, age at the time of admission and primary diagnosis code 

on patients’ hospital length of stay and to examine the relationship between length 

of stay in hospital and treatment outcome. 

An application of the approach to patient pathway prognostication is illustrated 

using 5 years’ retrospective data (Barton et al. 2009) for 1985 patients admitted 

between January 2003 and December 2007 to the Belfast City Hospital with a 

diagnosis of stroke (hemorrhagic stroke, cerebral infarction, transient ischaemic 

attack TIA, and stroke unspecified). All patients were discharged between January 

9th, 2003 and March 11th 2008. No information that identified individual patients 

was supplied. Patients were aged between 24 years and 101 years. Patient’s lengths 

of stay range from is 0 days (admitted and discharge on the same day) to 1425 

days, mean LOS 29.01 days with 52.84 days standard deviation (Barton et al. 

2009). 

 

2 Mixture distribution survival tree construction 
 

A survival tree can be constructed by recursively splitting nodes into daughter 

nodes by one of the covariates based on some splitting criteria either maximizing 

either within node homogeneity or between node separation (Gao et al., 2004). 

Each daughter node is approximated by both GMD and C-PhD with different set of 

components. We used splitting criteria to maximize within node homogeneity 

expressed in terms of Akaike Information criterion (AIC) (Akaike, 1974).  

 

AIC = -2*Log likelihood+2* .df  

 

Where df is the number of free parameters to be estimated. For nodes modeled by n 

component (phase) Coxian phase type distribution (C-PhD), df = 2*n-1 and for a 

node modeled by m component Gaussian mixture distribution (GMD), df = 2*m-1.  

A split with minimum value of AIC is selected. If at a node, there is no split 

providing positive improvement in the AIC, the node is designated as a terminal 

node. 

We used three covariates gender, age at the time of admission and type of stroke 

diagnosed. The covariate ‘age’ has value ‘old’ for those aged 70 or over and it has 

value ‘young’ for those aged below 70 years. Based on the primary ICD-10 

diagnosis code (World Health Organisation, 2007), patients can have any of the 

four values (hemorrhagic stroke, cerebral infarction, transient ischaemic attack 

TIA, and other strokes) for the covariate ‘stroke diagnosed’.  

Figure 1 is the schematic representation of the final mixture distribution survival 

tree for the length of stay data on stroke patients from the Belfast City Hospital. 

The resulting tree has 12 terminal nodes. A node with ‘P’ is modeled by C-PhD 

while a node with ‘G’ is modeled by GMD, i.e., node 9, node 17 and node 19 are 

modeled by GMDs and all other nodes root node (node 1), node 2, node 3, node 4, 

node 5, node 6, node 7, node 8, node 10, node 11, node 12, node 13, node 14, node 
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15, node 16, node 18, node 20 and node 21 are modeled by C-PhDs. Nodes of the 

tree and possible splits of these nodes are listed in Table 1. Bold faced covariates 

were selected for splitting the parent node. Nodes which are better fitted by GMD 

are having AIC shaded yellow. The AIC of root node was 16825.6 and new total 

AIC of all the terminal nodes of the survival tree is 16397.92 with 427.68 total 

improvement in AIC. 

P 1 

P 3 P 4 P 5 P 2 

Hemorrhagic 

Cerebral 
TIA Other strokes 

P 6 P 7 

Young Old 

P 8 G 9 

Young Old 

P 10 P 11 

Young Old 

P 12 P 13 

Young Old 

P 20 P 21 

Male 
Female 

P 14 P 15 

Male 
Female 

Level 1 

Level 2 

Level 3 
P 16 G 17 

Male 
Female 

P 18 G 19 

Male 
Female 

 
Fig. 1. Mixture distribution survival tree for the length of stay data on stroke 

patients from the Belfast City Hospital 

 

3 Pathway prognostication using the mixture distribution 

survival tree 
 

Using the results in Table 1, we can examine the relationship between age, gender, 

diagnosis and LOS. For convenience the tree is divided in to three levels. At level 

1, it is seen that the most significant split is by the covariate ‘stroke diagnosed’ 

(improvement in AIC = 306.2), i.e., there was most significant difference among 

different stroke diagnosis groups. This can also be verified by the mean length of 

stay for each split (see Table 1) Such as patients with a diagnosis of TIA (transient 

ischemic attack) were most likely to have a shorter length of stay (mean LOS 

9.31), while patients with a diagnosis of cerebral infarction were least likely to 

have shorter length of stay (mean LOS 36.66). The second best split at level 1 is 

the covariate ‘age’ (improvement in AIC = 127.2). Young patients were most 

likely to have a shorter length of stay (mean LOS 19.26) while old patients were 

less likely to have shorter length of stay (mean LOS 33.48). The other covariate 

‘gender’ also provided a significant split (improvement in AIC = 10.3); however, it 

was least significant among the three covariates. 

At level 2, for all nodes, the covariate ‘age’ provided the most significant split 

while the covariate ‘gender’ did not provide significant splits for the group of 

patients with diagnosis cerebral infarction and for the group of patients with 

diagnosis TIA. For example, among patients with TIA, young patients were most 

likely to have a shorter length of stay (mean LOS 5.84) while old patients were 

likely to have relatively longer length of stay (mean LOS 11.77). 

At level 3, for all but one group of young patients (young patients with diagnosis of 

other strokes), the covariate gender did not provide prognostically significant 

splits. While at level 3, for groups of old patients with stroke diagnosis 
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hemorrhagic stroke, TIA and other strokes (node 7, node 11 and node 13) the 

covariate gender provided prognostically significant splits). For the group of old 

patients with cerebral infarction (node 9) the covariate gender split is not 

prognostically significant. 

 

Table 1. Mixture distribution survival Tree construction (Nodes and possible splits) 

Coxian-phase type distribution 

 

 

Gaussian mixture 

distribution 

 

 

Improvem

ent in 

AIC Node 

 

Covaria

te 

 

Covariate 

value 

 

Number 

of 

patients 

 

Mean LoS 

 

Standard 

deviation 

(LoS) 

 Loglikeliho

od (Lmax) 

Number 

of phases 
AIC 

Loglikeliho

od 

Numb

er of 

phases 

AIC  

All 

Complet

e 

dataset 

Root node 1985 29.0106 52.8382 -8407.8007 3 16825.60 -8481.625 10 
17021.2

5 
- 

Level 1 

 

Male 933 26.5938 44.0575 -3859.8125 2 7725.625 -3897.236 7 7834.47 
Gender 

Female 1052 31.154 59.4698 -4539.8469 3 9089.694 -4569.59 9 9191.18 
10.2825 

Young 624 19.2564 39.1523 -2316.974 2 4639.948 -2342.454 7 4724.9 
Age 

Old 1361 33.4827 57.4932 -6024.2472 3 12058.49 -6047.846 9 12147.7 
127.159 

Hemorrhag

ic 
154 33.6039 56.4456 -659.05019 3 1328.1 -665.5723 6 1365.14 

Cerebral 655 36.6611 47.6753 -2973.8941 4 5961.788 -2980.867 6 5995.73 

TIA 425 9.31294 19.9516 -1298.6262 2 2603.252 -1316.503 6 2667 

1 

(Root node) 

Diagnos

is 

Other 751 32.5433 65.0453 -3310.1386 2 6626.277 -3297.443 8 6640.89 

306.1832 

Level 2 

 

Male 80 28.2 52.09832 -317.63202 4 649.2640 -328.0819 4 
678.163

8 Gender 

Female 74 39.4459 60.254 -328.16667 3 666.3333 -329.4363 6 692.873 

12.50299 

Young 50 24.56 55.117 -173.39875 4 360.7975 -187.3508 3 390.702 

2 

Hemorrhagic 

Age 
Old 104 37.9519 56.561 -468.82587 4 951.6517 -477.7462 4 977.492 

15.65113 

Male 302 33.70860 49.8833 -1334.898 4 2683.796 -1339.464 5 2706.93 
Gender 

Female 353 39.18697 45.5501 -1635.194 3 3280.388 -1639.346 5 3306.69 
-2.395836 

Young 194 24.0670 42.4506 -785.3629 3 1580.726 -793.676 5 1615.35 

3 

Cerebral 
Age 

Old 461 41.961 48.787 -2173.9068 2 4353.814 -2158.611 5 4345.22 
35.8404 

Male 207 8.7005 22.6817 -607.9547 2 1221.909 -637.5377 4 1297.08 
Gender 

Female 218 9.8945 16.9366 -686.27346 3 1382.547 -690.5091 5 1409.02 
-1.20391 

Young 176 5.83523 11.1641 -455.8639 2 917.7278 -465.3673 4 952.735 

4 

TIA 
Age 

Old 249 11.7711 24.0154 -827.3716 2 1660.743 -823.7194 8 1693.44 
24.78144 

Male 344 30.7413 43.4091 -1490.577 4 2995.154 -1490.229 6 3014.46 
Gender 

Female 407 34.0663 78.7981 -1808.118 2 3622.237 -1864.211 3 3744.42 
8.886526 

Young 204 24.9608 43.76126 -818.1347 4 1650.269 -819.1983 6 1672.4 

5 

Other strokes 
Age 

Old 547 35.3711 71.1697 -2466.8858 2 4939.772 -2543.835 3 5103.67 
36.23604 

Level 3 

 

Male 29 30.5172 69.1114 -108.83289 2 223.6658 -105.682 4 233.364 6 

Hemorrhagic 

Young 

Gender 
Female 21 16.3333 22.8126 -70.172765 2 146.3455 -74.17359 3 164.347 

-9.21382 

Male 51 26.8823 39.2027 -211.39224 4 436.7845 -211.0736 4 444.147 7 

Hemorrhagi

c Old 

Gender 
Female 53 48.6038 67.5821 -253.2813 2 512.5626 -245.9886 7 531.977 

2.30463 

Male 104 24.6731 49.2715 -420.88798 2 847.776 -427.2601 4 876.52 8 

Cerebral 

Young 

Gender 
Female 90 23.36667 32.9415 -361.0516 4 736.1032 -364.2716 4 750.543 

-3.15333 

Male 198 38.4545 49.6696 -903.58419 4 1821.168 -903.381 4 1828.76 9 

Cerebral Old 
Gender 

Female 263 44.6008 47.9429 -1259.34 2 2524.681 -1251.528 6 2537.06 
-0.62756 

Male 88 5.7386 11.3263 -224.74588 2 455.4918 -232.5108 3 481.022 10 

TIA Young 
Gender 

Female 88 5.9318 10.9988 -230.8797 2 467.7595 -231.1457 4 484.291 
-5.52344 

Male 119 10.8908 28.0847 -377.7327 2 761.4654 -401.7215 3 819.443 11 

TIA Old 
Gender 

Female 130 12.5769 19.5270 -444.56883 4 903.1377 -437.3312 4 896.662 
2.615394 

Male 119 30.1092 52.7719 -493.3325 3 996.665 -486.2055 6 1006.41 12 

Other 

strokes 

Young 

Gender 
Female 85 17.7529 24.6624 -322.7928 3 655.5857 -318.6695 3 653.339 

0.265422 

Male 225 31.0756 37.52 -987.5257 4 1989.051 -991.5326 4 2005.07 13 

Other 

strokes Old 

Gender 
Female 322 38.3727 87.1713 -1470.4587 2 2946.917 -1517.217 3 3050.43 

3.802914 
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4 The extended mixture distribution survival tree construction 
 

This mixture distribution survival tree method can be extended to examine the 

relationship between the treatment outcome and patients’ length of stay distribution 

and their interrelationship with patient characteristics by further partitioning each 

group of patients (determined using mixture distribution survival tree method 

above) into subgroups with more homogeneous patient pathways by covariate 

‘treatment outcome’. Although the information about the treatment outcome is not 

available at the time of admission, we can assign the probability to each treatment 

outcome using cohort analysis. The covariate ' treatment outcome ' can have any of 

the two values death or discharge from the hospital.  

 

Table 1. Extended mixture distribution survival Tree construction (Nodes and 

possible splits) 
Coxian-phase type distribution Gaussian mixture distribution 

Node 
Treatment 

outcome 

Number 

of 

patients 

Mean 

LoS 

Standard 

deviation 

(LoS) 
Loglikelihood 

(Lmax) 

Number 

of 

phases 

AIC 
Loglikelihood 

(Lmax) 

Number 

of 

phases 

AIC 
P/D 

Improvement 

in AIC 

All 50 24.56 55.1170 -173.398747 4 360.797494 -187.3508 3 390.7016 P  

Death 17 16.41176 40.62462 -45.164673 2 96.329346 -49.46814 3 114.93628 P 

6 

Hemorrhagic 

Young 

 Discharge 33 28.75758 60.8346 -132.664452 2 271.328904 -124.2443 5 276.4886 P 
-6.860756 

All 51 26.88235 39.2027 -211.392242 4 436.784484 -211.0736 4 444.1472 P  

Death 21 10.90476 14.72576 -66.370745 2 138.74149 -69.28119 4 160.56238 P 

14 

Hemorrhagic 

Old Male 

 Discharge 27 31.88889 38.8476 -120.480944 1 242.961888 -136.397712 3 288.795424 P 
55.081106 

All 53 48.6038 67.5821 -253.281317 2 512.562634 -245.9886 7 531.9772 P  

Death 27 24.14815 35.46903 -107.557149 2 221.114298 -102.7218 4 227.4436 P 

15 

Hemorrhagic 

old Female 

 Discharge 26 74 82.08438 -137.905682 1 277.811364 -138.2828 2 286.5656 P 
13.636972 

All 194 24.067 42.4506 -785.362917 3 1580.72583 -793.676 5 1615.352 P  

Death 14 21.28571 35.22464 -52.239817 2 110.479634 -52.89346 2 115.78692 P 

8 
Cerebral 

Young 

 
Discharge 180 24.28333 42.83745 -754.162206 1 1510.32441 -741.9413 4 1505.8826 G 

-35.6364 

All 461 41.961 48.787 -2173.906849 2 4353.8137 -2158.611 5 4345.222 G  

Death 112 35.66071 46.40227 -506.937452 3 1023.8749 -505.356 6 1044.712 P 

9 
Cerebral Old 

 Discharge 349 43.9828 49.35776 -1663.94776 2 3333.89552 -1646.572 6 3327.144 G 
-5.796904 

All 176 5.83523 11.1641 -455.863901 2 917.727802 -465.3673 4 952.7346 P  

Death 2 57.5 12.5 -9.379398 2 24.758796 -7.889334 1 19.778668 G 
10 TIA 

Young 
Discharge 174 5.24138 9.656117 -439.511915 2 885.02383 -447.4886 5 922.9772 P 

12.925304 

All 119 10.8908 28.0847 -377.732704 2 761.4654 -401.7215 3 819.443 P  

Death 6 21 21.11871 -24.267131 1 50.534262 -21.9243 2 53.8486 P 
16 TIA Old 

Male 
Discharge 113 10.354 28.3061 -351.428756 2 708.85751 -373.1814 3 762.3628 P 

2.073634 

All 130 12.5769 19.5270 -444.56883 4 903.13766 -437.3312 4 896.6624 P  

Death 5 48 32.98484 -24.356002 1 50.712004 -24.57493 1 53.14986 P 

17 

TIA Old 

Female 

 Discharge 125 11.16 17.344691 -416.933111 2 839.86622 -410.8084 5 849.6168 P 
12.559434 

All 119 30.1092 52.7719 -493.332527 3 996.66505 -486.2055 6 1006.411 P  

Death 11 34.4545 33.29036 -49.936044 1 101.87209 -47.59397 2 105.18794 P 

18 

Other strokes 

Young Male 

 Discharge 108 29.66667 54.34628 -441.546035 4 897.09207 -434.9861 6 903.9722 P 
-2.299104 

All 85 17.7529 24.6624 -322.792848 3 655.5857 -318.6695 3 653.339 G  

Death 11 6.090909 6.273386 -30.874764 1 63.749528 -35.8078 1 75.6156 P 

19 Other 

strokes 

Young 

Female Discharge 74 19.48649 25.87613 -287.535163 3 585.070326 -290.6527 3 597.3054 P 
4.519146 

All 225 31.0756 37.52 -987.525677 4 1989.0514 -991.5326 4 2005.0652   

Death 53 37.79245 46.98388 -245.501788 1 493.00358 -245.7851 3 507.5702 P 

20 
Other strokes 

Old Male 

 Discharge 172 29.00581 33.81026 -741.08819 4 1496.176 -742.574 4 1507.148 P 
-0.128602 

All 322 38.3727 87.1713 -1470.458696 2 2946.9174 -1517.217 3 3050.434 P  

Death 89 44.21348 151.97 -395.257131 2 796.51426 -385.6987 5 799.3974 P 

21 

Other strokes 

Old Female 

 Discharge 233 36.14163 40.76418 -1062.77177 3 2135.5435 -1064.076 4 2150.152 P 
14.859584 

 

Each terminal node of the survival tree of Figure 1 is further partitioned into 

daughter nodes by the covariate 'treatment outcome'. We grow the tree if the split 
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maximizes node homogeneity by minimizing the value of AIC and if at a node, 

there is no split providing significant improvement in AIC, the node is designated 

as a terminal node.  

Figure 2 is the schematic representation of the extended mixture distribution 

survival tree for the length of stay data on stroke patients from the Belfast City 

Hospital. The resulting tree now has 19 terminal nodes. Only two terminal nodes 

(node 9 and node 26) are approximated by GMD and all other terminal nodes are 

approximated by C-PhD. Table 2 lists terminal nodes of the survival tree of figure 

1, and possible splits of these nodes by the covariate ‘treatment outcome’. Bold 

faced splits were selected for splitting the parent node. Parent nodes are 

represented by pale blue rows with treatment outcome “all”. The column P/G 

specifies which distribution among C-PhD and GMD provides better fit. The total 

improvement in AIC is 115.655 and the new AIC of all the terminal nodes is 

16282.27.  

P 1 

P 3 P 4 P 5 P 2 

Hemorrhagic 

Cerebral 
TIA Other strokes 

P 6 P 7 

Young Old 

P 8 G 9 

Young Old 

P 10 P 11 

Young Old 

P 12 P 13 

Young Old 

P 20 P 21 

Male Female 

P 14 P 15 

Male 
Female 

Level 1 

Level 2 

Level 3 
P 16 G 17 

Male Female 

P 18 G 19 

Male Female 

P 23 P 22 

Death 
Discharge 

P 25 P 24 

Death 
Discharge 

P 27 G 26 

Death 
Discharge 

P 29 P 28 

Death 
Discharge 

P 31 P 30 

Death Discharge 

P 33 P 32 

Death 
Discharge 

P 35 P 34 

Death 
Discharge 

 
Fig. 2. Extended mixture distribution survival tree for the length of stay data on 

stroke patients from the Belfast City Hospital 

 

5 Pathway prognostication using the extended mixture 

distribution survival tree 
 

The extended mixture distribution survival tree method can effectively be used to 

examine the relationship between LOS and treatment outcome at discharge and 

their interrelation with patient characteristics such as age, gender and diagnosis.  

The extended mixture distribution survival tree clusters the length of stay data into 

19 clinically meaningful patient groups, each representing a distinct patient 

pathway within the system. We can see that in seven patient groups (i.e., the 

terminal nodes in Figure 1), the covariate ‘treatment outcome’ has prognostic 

significance, i.e., patients with different treatment outcomes follow different 

patient pathways, while, there is homogeneity among patient pathways followed by 

the other five patient groups. The treatment outcome is prognostically most 

significant among the group of old male patients diagnosed with Hemorrhagic 

stroke. This also reflects with the difference in mean LOS. Among this group of 
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patients, those are expected to discharge are likely to have longer length of stay 

(mean LOS 31.9) than those die in the course of their treatment (mean LOS 10.9). 

The Treatment outcome has prognostic significance for all groups of female 

patients while it has prognostic significance in only two groups of male patients 

(node 14 and node 16). All young patients with Hemorrhagic stroke followed 

homogeneous patient pathways. Treatment outcome does not have prognostic 

significance among all groups of patients diagnosed with cerebral infraction, while 

treatment outcome is prognostically significant in all groups of patients with TIA. 

Patients diagnosed with TIA and discharged from hospital are more likely to have 

shorter length of stay (mean LOS 5.24, 10.35, 11.16 respectively for node 27, node 

29 and node 31) than those patients with TIA who died in the hospital (mean LOS 

57.5, 21 and 48 respectively for node 26, node 28 and node 30). 

 

6 Conclusion 
 

Mixture distribution survival tree have advantage of achieving the improved within 

node homogeneity. Therefore, mixture distribution survival tree based analysis is a 

more effective method for prognostication of survival data and for clustering 

survival data into groups of patients following homogeneous patient pathways. It is 

a powerful method for determining the relationship between input covariates and 

outcome measures and their interrelations. It provides better understanding of 

heterogeneity of patient pathways stratified by covariates representing patient 

characteristics such as age, gender, diagnosis and outcome measures such as 

treatment outcome, destination at discharge. We can also use the model to estimate 

the length of stay of a patient based on his/her characteristics (age, gender, 

diagnosis) available at the time of admission. We can extend this approach by 

further growing the tree by partitioning the terminal nodes into subgroups with 

more homogeneous patient pathways based on covariates representing outcome 

measures. Although the information about the treatment outcome is not available at 

the time of admission, we can assign the probability to each treatment outcome 

using cohort analysis. This information can be used for estimating bed 

requirements for each group of patients (following homogeneous patient pathways) 

and capacity planning for the whole care system. As future work we will also 

assess the use of other mixture distributions in order to achieve further 

improvement in within node homogeneity. Presently we are developing application 

of our model for capacity planning in a stroke care unit.  
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Abstract. There are different kinds of tumours that can appear in childhood:
nephroblastoma, clear cell sarcoma, neuroblastoma etc. The chosen therapy de-
pends upon the diagnosis of the radiologist which is done with the help of MRI
(Magnetic resonance images). Our research is the first mathematical approach on
MRI of renal tumours (n=80). We are using transversal, frontal and sagittal images
and compare their potential for differentiation of the different kind of tumours by
use of Statistical Shape Analysis. We determine the key points or three dimensional
landmarks of the renal tumours by using the edges of the platonic body (C60). Fur-
thermore we use a combination of Neural Networks and Statistical Shape Analysis
to consider all kinds of linear transformations and compare the results to the one
obtained by the traditional test of Ziezold test for the determination and differen-
tiation of the mean shape.
Keywords: Neural Networks, Statistical Shape Analysis, Mean Shape, Renal tu-
mours.

1 Introduction

In a wide variety of disciplines it is of great practical importance to measure,
describe and compare the shapes of objects. In general terms, the shape of an
object, data set, or image can be defined as the total of all information that
is invariant under translations, rotation and isotropic rescaling. The field of
shape analysis involves hence methods for the study of the shape of objects
where location, rotation and scale can be removed. The two- or more di-
mensional objects are summarised according to key points called landmarks.
This approach provides an objective methodology for classification whereas
even today in many applications the decision for classifying according to the
appearance seems at most intuitive.
Interest in shape analysis began in 1977. D.G. Kendall[7] published a note in
which he introduced a new representation of shapes as elements of complex
projective spaces. K.V. Mardia[10] on the other hand investigated the dis-
tribution of the shapes of triangles generated by certain point processes, and
in particular considered whether towns in a plain are spread regularly with
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equal distances between neighbouring towns. The full details of this elegant
theory which contains interesting areas of research for both probabilists and
statisticians where published by D. Kendall[8] and F. Bookstein[1]. The de-
tails of the theory and further developments can be found in the textbooks
by C.G. Small[14] and I.L. Dryden & K.V. Mardia[4].
The renal tumour is limited by spleen or liver , the rest of the kidney, the
spine and retroperitoneal vessels. In Giebel(2007)[2] it was shown that every
landmark has another meaning for differentiating the tumours. Giebel et al.
[3] showed that none of the landmarks has a special influence for the deter-
mination of the mean shape according to the test of Ziezold (2003)[17].
In this paper, the edges of the platonic body (C60) define the landmarks.
We use a combination of Neural Networks and Statistical Shape Analysis
and compare the results to the one obtained by the traditional test of Ziezold
test for the determination and differentiation of the mean shape.

2 Wilms’ tumours

Nephroblastoma (Wilms’ tumour)[15] is the typical tumour of the kidneys
appearing in childhood. Therapy is organised in therapy-optimizing studies
of the Society of Paediatric Oncology and Haematology (SIOP). Indication
of preoperative chemotherapy is based on radiological findings. The pre-
ferred radiological method are sonography and MRI. Both methods avoid
radiation exposure, which is of great importance in childhood. Preoperative
chemotherapy is performed without prior biopsy[12].
Information of the images of magnetic resonance tomography, especially the
renal origin of a tumour and the mass effect with displacement of other or-
gans, is needed for diagnosis. Next to nephroblastomas other tumors of the
retro peritoneum exist, which are difficult to differentiate [13]. Renal tumours
in childhood are classified into three stages of malignancy (I, II, III). Typical
Wilms tumors mostly belong in stage II. In stage II different subtypes of
nephroblastoma tissue exist[6].
In our sample of tumours, four different types of retroperitoneal tumours are
represented: nephroblastoma, neuroblastoma, clear cell carcinoma, and renal
cell carcinoma. Renal cell carcinomas are very rare in childhood. They rep-
resent the typical tumours of adult patients. They have no high sensitivity
for chemotherapy. Clear cell sarcomas are very rare in childhood and are
characterised by high malignancy. Neuroblastomas are the typical tumours
of the sympathetic nervous system and suprarenal glands. Infiltration of the
kidney is possible.
The tumour grows with encasement of vessels. Because of the high impor-
tance of radiological diagnosis for therapy, it is of great interest to find mark-
ers for a good differentiation of tumours. MRI produces 2D-images. From the
two dimensional data a three dimensional object has to be computed.Image
1 shows an example of the raw data.
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Fig. 1. 2D-image of the tumour

3 Mean Shape

To compare the standardised and centred sets of landmarks, we have to define
the mean shape of all the objects and a distance function which allows us to
evaluate how ”near” every object is from this mean shape.
The term ”mean” is here used in the sense of Fréchet (1948)[5]. If X denotes
a random variable defined on a probability space (Ω,F ,P) with values in a
metric space (Ξ, d), an element m ∈ Ξ is called a mean of x1, x2, ..., xk ∈ Ξ
if

k∑

j=1

d(xj , m)2 = inf
α∈Ξ

k∑

j=1

d(xj , α)2. (1)

That means that the ”mean shape” is defined as the shape that garantees the
smallest possible variance for a group of objects. For computing the mean
shape we use the algorithm of Ziezold (1994)[16].
In the special case of oncology there is no theoretical medical reason to select a
specific group of landmarks for differentiation. All landmarks in this research
have thus to be selected by an explorative procedure.
The test of Ziezold (1994)[16] is a statistical test which allows to determine
if a given object belongs to a set of objects defined by their mean shape.
We have used this test to see if given Wilm’s tumoursw can be differentiated
from the mean shape of the neuroblastomas and vice versa.

4 Elements of neural networks

Neural networks have been developed originally in order to understand the
cognitive processes. Nowadays there are a lot of applications of neural net-
works as a mathematical method in various quite different disciplines. The
term ”neural networks” points to the model of a nerve cell, the neuron,
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and the cognitive processes carried and driven by the network of interacting
neurons. A neuron perceives chemical and physical excitement from the en-
vironment by its dendrites. The neuron is processing this incoming data and
sending the information to other neurons via axons and synapses. McCul-
loch and Pitts implemented the biological processes of a nerve cell for the
first time in a mathematical way [9]. Nerve cells have to access and process
incoming data in order to evaluate target information. Therefore the corre-
sponding neural networks are called supervised neural networks.
An unsupervised neural network has no target and is similar to a cluster
algorithm. The data consist of n variables x1, . . . , xn on binary scale. For
data processing, the ith variable xi is weighted with wi. Normalised with
|wi| ≤ 1, multiplication of xi with wi determines the relevance of xi for a
target y. The value wi reflects the correlation between the input variable
and the target, the sign indicating the direction of the influence of the input
variable on the target. Weighting the input variables for a target variable
is similar to discriminant analysis.The critical quantity for the neuron is the
weighted sum of input variables

q :=
n∑

i=1

wi · xi = w1 · x1 + ... + wn · xn . (2)

For a target y with binary scale, a threshold S is needed. Crossing the thresh-
old yields 1 and falling below the threshold yields 0. Hence the activation
function F can be written as

F (q) =
{

1, if x > S
0, if x ≤ S

(3)

In comparison to discriminant analysis, for neural networks the threshold
S has to be assigned, depending on properties of the target; it can not be
derived from the data in a straightforward manner. Neural networks usually
include no assumption about the data, they are a purely numerical method.

With the input (2) of the activation function, we obtain y = F (q) as

y = 1, if
n∑

i=1

wi · xi > S

y = 0, if
n∑

i=1

wi · xi ≤ S

Multi-layer neural networks are able to solve all logical functions for separat-
ing groups.

5 Multi-layer perceptrons

In general a given target may be reached only up to a certain error. Given
a certain measure E(ỹ, y) for the distance between the given target state y
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and the state ỹ computed by the neural network, the learning of the neural
network corresponds to the minimisation of E(ỹ, y). The following training
algorithm is inspired by Rumelhart, Hinton and Williams [11]. The total
error measure over all states of a given layer is defined as

Etotal(ỹ, y) :=
1
2

N∑

k=1

(ỹk − yk)2 . (4)

It will be used below to reset the weights in each layer of the neural network.
The processed state ỹ of the neural network is computed by the following

steps.
First the critical parameter for the first layer is computed from n weighted
input values as

∑n
i=1 wi · xi. We consider a hidden output layer with m

neurons. For j = 1, . . . , m, let gj be the activation function of the j-th
neuron of the hidden layer, with an activation value of hj , given as

hj = gj(
n∑

i=1

wi · xi) . (5)

Usually for all neurons of a given layer a common activation function g =
g1, . . . , gm, e.g. a sigmoid function, is used.
Next, the output of the previous (hidden) layer becomes the input of the next
layer, and the activation proceeds analogously to the previous layer. Let f be
the activation function of the pre-final (here the second) output layer. Then
the pre-final critical value is

q = f(
m∑

j=1

uj · hj) . (6)

Finally, the pre-final critical value q is interpreted by a final activation func-
tion F yielding

ỹ = F (q) (7)

as a final state value computed from the neural network with the given weights
of the input variables from input and hidden layers. Now the neural network
performs a training step by modifying the weights of all input layers. The
learning mechanism the weights is determined by the target distance measure

E =
1
2

n∑

i=1

(yi − ỹi)2 .

The weights of both layers are changed according to the steepest descent, i.e.

∆wi =
∂E

∂wi
(8)

∆uj =
∂E

∂uj
(9)
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With a learning rate α, which should be adapted to the data, the weights are
changed as follows:

wnew
i = wold

i − α ·∆wi (10)

unew
j = uold

j − α ·∆uj (11)

The necessary number of iterations depends on the requirements imposed by
the data, the user, and the discipline.
For simplicity, we consider now an 1-layer perceptron network, which is suffi-
cient for our purpose of minimising the variance. Every landmark is weighted
in every direction.

k∑

j=1

d(xj , m)2 = inf
α∈Ξ

k∑

j=1

d(xj , α)2. (12)

In contrast to the former application of neural networks we are using a metric
function instead of a binary variable. The difference between the weighted
objects and the approximated mean shape is used instead of the difference
between the reality and the approximation E.

6 Results

To get 3D landmarks we construct a three dimensional object of the tumour
from the 2D MRI. Then we take the intersection between the surface of the
tumour and the vectors going from the centre to the edges of the platonic
body C60 as landmarks as is shown in figure 2.

Minimising the variance in one of the groups does not lead always to an

Fig. 2. 3D-Landmarks as cut points between the edge of a platonic body and the
surface of the tumor

optimal differentiation between the different types of tumors. The neuronal
network uses in fact a different metric to minimising the variance. Every
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landmark is weighted in every direction. For a sample of 74 comparable tu-
mors (69 nephroblastoma and 5 neuroblastoma the u0-values are computed
for comparing our nephroblastomas to the mean shape of neuroblastomas.

The range of the u0-values computed by the MLP lies between 0 and 188.
If use the the test of Ziezold[16] with the Euclidean distance instead of the
distance applied in MLP, we get an u0-value of 112. For a randomised sample
(n = 1000), we get a p-value of 0.080.
If we compare our neuroblastomas to the mean shape of nephroblastomas,
we get an u0 value of 72 with a p-value of 0.116 in a randomised sample
(n = 1000).
Figure 3 shows the mean shape of the nephroblastomas (red) and of the
neuroblastomas (green).

Fig. 3. Mean Shape: Red: 60 landmarks of the mean shape of the nephroblastoma,
Green: 60 landmarks of the mean shape of the neuroblastoma

7 Conclusion

The neuroblastoma can be differentiated quite well from the mean shape of
the nephroblastoma, especially if we use the Euclidian distance as metric.
Shape Analysis is useful to make a decision in spite of different size, location
etc. The test used for differentiating the existing kind of tumours does not
need any assumptions in regard to distributions and the size of the sample.
For improving our results we will try to use approriate non-Euclidean trans-
formations in the neural networks. A possible approach is to use a supervised
2-layer neural network with weighted landmarks. We will minimise the vari-
ance to estimate a ”mean shape” in one of the groups instead of minimising
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the mistake between output and reality. Indeed, we have seen that a small
variance does not always allow an optimal differentiation between the groups.
Not every transformation leads to a better differentiation of tumours. If the
size or location of tumours plays a role in differentiation, it could be wrong
to centre or standardise the objects.
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Abstract. Roughly speaking, there is one single model of pattern recognition
support vector machine (SVM), with variants of lower popularity. On the con-
trary, among the different multi-class SVMs (M-SVMs) published, none is clearly
favoured. Although several comparative studies between M-SVMs and decomposi-
tion methods have been reported, no attention had been paid so far to the com-
bination of those models. We investigate the combination of M-SVMs with low
capacity linear ensemble methods that estimate the class posterior probabilities.
Keywords: Ensemble methods, M-SVMs, Capacity control.

1 Introduction

Most of the statistical models developed for pattern recognition are based on
a principle that does not change fundamentally with the number of categories.
Things are more complex in the case of SVMs. Those machines were initially
devised to compute dichotomies [2], and the first articles dealing with their
use for polytomy computation report results obtained with decomposition
methods [10]. M-SVMs were introduced later [11]. Since then, a few M-SVMs
have been proposed and evaluated, with the attention of the community
focusing on four models exhibiting distinct properties. Several comparative
studies between M-SVMs and decomposition methods have established that
in practice, each model has its advantages and drawbacks (see for instance
[7]). The behaviours observed are different, in accordance with what was
predicted by the theory. To the best of our knowledge, nobody has tried
so far to take benefit of that phenomenon by combining different M-SVMs.
To fill this void, we deal with the combination of M-SVMs subject to two
constraints: the sample complexity of the combiners must be low, to avoid
overfitting, and the outputs must be class posterior probability estimates.

We propose to combine the post-processed outputs of M-SVMs with lin-
ear ensemble methods which differ with respect to their objective function.
They satisfy the aforementioned constraints and experimental results illus-
trate their potential. The organization of the paper is as follows. Section 2
provides a general introduction to the M-SVMs and characterizes the four
main models. Section 3 deals with the description and statistical analysis of
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the linear combiners. Experimental results are exposed in Section 4, and we
draw conclusions in Section 5. For lack of space, simple proofs are omitted.

2 Multi-class SVMs

We consider discrimination problems where X is the description space and
Y = [[ 1, Q ]] is the set of categories. M-SVMs are kernel machines: they operate
on a class of functions induced by a positive semidefinite function/kernel [1].
Let κ be a kernel on X 2 and let

(
Hκ, 〈·, ·〉Hκ

)
be the RKHS spanned by κ [1].

Let H̄ =
(
Hκ, 〈·, ·〉Hκ

)Q and H =
((

Hκ, 〈·, ·〉Hκ

)
+ {1}

)Q. By construction,
H is the class of vector-valued functions h = (hk)16k6Q on X such that:

∀k ∈ [[ 1, Q ]] , hk(·) =
mk∑
i=1

βikκ (xik, ·) + bk

where the xik are elements of X (the βik and bk are scalars), as well as the
limits of these functions as the sets {xik : 1 6 i 6 mk} become dense in X , in
the norm induced by 〈·, ·〉Hκ

. It springs from Mercer’s theorem [1] that there
exists a map Φ from X into a Hilbert space

(
EΦ(X ), 〈·, ·〉

)
such that H defines

a multivariate affine model on Φ (X ). Functions h can then be rewritten as

h(·) = (〈wk, ·〉+ bk)16k6Q

where the vectors wk belong to EΦ(X ). H̄ can then be seen as a multivariate
linear model on Φ (X ), endowed with a norm ‖ · ‖H̄ given by:

∀h̄ ∈ H̄,
∥∥h̄

∥∥
H̄ =

√√√√ Q∑
k=1

∥∥h̄k

∥∥2

Hκ
=

√√√√ Q∑
k=1

‖wk‖2 =

√√√√ Q∑
k=1

〈wk, wk〉.

Definition 1 (M-SVM). Let ((xi, yi))16i6m ∈ (X × [[ 1, Q ]])m and λ ∈ R∗+.
A Q-category M-SVM is a classifier obtained by minimizing over the hyper-
plane

∑Q
k=1 hk = 0 of H a penalized convexified empirical risk of the form:

JM-SVM (h) = ‖ξM-SVM‖p
M-SVM + λ

∥∥h̄
∥∥2

H̄

where ξM-SVM is a vector of slack variables associated with the constraints
of good classification, which are linear, and ‖·‖M-SVM is either the `1 norm
(p = 1) or the norm induced by a symmetric positive definite matrix (p = 2).

In chronological order, the four main M-SVMs are the machines of We-
ston and Watkins (WW) [11], Crammer and Singer (CS) [3], and Lee, Lin
and Wahba (LLW) [8], and the M-SVM2 [6]. Their characteristics are sum-
marized in Table 1 (in the sequel, when no confusion is possible, the subscript
identifying the machine, i.e., instantiating M-SVM, is omitted).
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M-SVM ξM-SVM (constraints of good classification) ‖·‖M-SVM p

WW ∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} ,

(
hyi (xi) − hk (xi) > 1 − ξik

ξik > 0
`1 1

CS
∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , hyi (xi) − hk (xi) > 1 − ξi

∀k ∈ [[ 1, Q ]] , bk = 0, ∀i ∈ [[ 1, m ]] , ξi > 0
`1 1

LLW ∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} ,

(
hk (xi) 6 − 1

Q−1
+ ξik

ξik > 0
`1 1

M-SVM2 ∀i ∈ [[ 1, m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , hk (xi) 6 − 1
Q−1

+ ξik M 2

Table 1. Specifications of the four main M-SVMs

While the CS-M-SVM has one slack variable per training example, the
other three have Q − 1. In that second case, ξ is the vector of RQm whose
component of index (i − 1)Q + k is ξik, with the ξiyi being equal to 0. The
matrix M is such that the quadratic form ξT Mξ defining ‖ξM-SVM2‖2M-SVM2

is given by ξT Mξ =
∑m

i=1

∑m
j=1

∑Q
k=1

∑Q
l=1 δi,j (δk,l + 1) ξikξjl, where δ is

the Kronecker symbol. The following observations illustrate the differences
between these machines. The implementation of the training algorithm of
the CS-M-SVM is the easiest one, the LLW-M-SVM was the first M-SVM
with a Fisher consistent loss and the M-SVM2 is the first soft margin M-SVM
for which a generalized radius-margin bound applies.

3 Linear ensemble methods

We make the hypothesis that N classifiers g(j) =
(
g
(j)
k

)
16k6Q

, (1 6 j 6 N),

are available to perform the classification task of interest. For all n in N∗, let
Un be the polytope given by: Un =

{
u = (up)16p6n ∈ Rn

+ :
∑n

p=1 up = 1
}

.
The outputs of the classifiers are supposed to be nonnegative and sum to one,
i.e., to belong to UQ. We first describe the ensemble methods considered, and
then characterize their sample complexity as a function of N and Q.

3.1 Class of functions and training algorithms

Let g̃ be the function from X to UN
Q obtained by appending the component

functions of the N classifiers g(j): g
(j)
k is its component function of index

(j − 1)Q + k.

Definition 2 (multivariate linear model). We consider the multivariate
linear model parameterized by the matrix B ∈MQ,NQ (R) such that

∀x ∈ X , ḡ(x) = (ḡk(x))16k6Q = Bg̃(x)

s.t. ∀u ∈ UN
Q , Bu ∈ UQ.
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The transposes of the rows of B are denoted βk, so that ḡk(x) = βT
k g̃(x),

and β = (βk)16k6Q ∈ RNQ2
. The general term of B is written with three

indices, i.e., βkjl (βkjl is the component of βk of index (j − 1)Q + l). Let
dm = {(xi, yi) : 1 6 i 6 m} be a training set. Let tk denote the one of Q
coding of category k: tk = (δk,l)16l6Q. We consider combiners obtained by
solving convex programming problems of the form:

Problem 1 (Linear ensemble methods).

min
B

m∑
i=1

`LEM (tyi
, Bg̃ (xi))

s.t. ∀u ∈ UN
Q , Bu ∈ UQ

where the loss function `LEM is convex.

Proposition 1 makes the optimization computationally tractable.

Proposition 1. Irrespective of the nature of `LEM, there is an optimal so-
lution of Problem 1 which belongs to the polytope VN,Q given by:

β ∈ RNQ2

+

∀j ∈ [[ 1, N ]] , ∀l ∈ [[ 1, Q− 1 ]] ,
∑Q

k=1 (βkjl − βkjQ) = 0∑Q
k=1

∑N
j=1 βkjQ = 1

.

We focus on two natural choices for `LEM that give rise to class posterior
probability estimates: the quadratic loss and the cross-entropy loss. Let G̃
be the matrix of Mm,NQ (R) whose rows are the vectors g̃ (xi)

T . Let IQ

denote the identity matrix of size Q and ⊗ the Kronecker product. For all
k in [[ 1, Q ]], let Yk = (δyi,k)16i6m and let Y = (Yk)16k6Q ∈ {0, 1}Qm. The
objective function (empirical risk) corresponding to the quadratic loss is:

JQuad (ḡ) =
1
2
βT

{
IQ ⊗

(
G̃T G̃

)}
β −

{
Y T

(
IQ ⊗ G̃

)}
β.

The standard expression of the cross-entropy loss `CE is:

∀(x, y) ∈ X×Y, `CE (ty, ḡ (x)) = −
Q∑

k=1

{δy,k ln (ḡk (x)) + (1− δy,k) ln (1− ḡk (x))} .

This loss function can be used here since UQ ⊂ [0, 1]Q. We take benefit of
the fact that the component functions sum to one to substitute to `CE a
simplified expression, so that the objective function becomes

JCE (ḡ) = −
m∑

i=1

Q∑
k=1

δyi,k ln
(

βT
k g̃k (xi)
δyi,k

)
.

It is well known that the combination of the one of Q coding of the desired
outputs with these two loss functions leads to the selection of a function that
generates estimates of the class posterior probabilities (see [9] for a proof).
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3.2 Sample complexity of the linear ensemble methods

For β ∈ VN,Q, let gβ = (gβ,k)16k6Q be the function from UN
Q to UQ such that

gβ(u) =
(
βT

k u
)
16k6Q

. Let Gβ = {gβ : β ∈ VN,Q}. We identify the capacity
of the combiners with that of Gβ . In [4], we prooved that for large mar-
gin multi-category classifiers, the appropriate generalizations of the Vapnik-
Chervonenkis dimension are the γ-Ψ -dimensions. Their use involves the ap-
plication of margin operators. Here, a suitable γ-Ψ -dimension is an extension
of the Natarajan dimension and the operator needed is the ∆ one.

Definition 3 (∆ operator). Let G be a class of functions from X to RQ.

∀g ∈ G, ∀x ∈ X , ∆g(x) = (∆gk(x))1≤k≤Q =
1
2

(
gk(x)−max

l 6=k
gl(x)

)
1≤k≤Q

.

For the sake of simplicity, ∆gk is used in place of (∆g)k. Let ∆G = {∆g : g ∈ G}.

Definition 4 (Natarajan dimension with margin γ). Let G be defined
as above. For γ ∈ R∗+, sn = {xi : 1 6 i 6 n} ⊂ X is said to be γ-N-shattered
by ∆G if there is a set I(sn) = {(i1(xi), i2(xi)) : 1 6 i 6 n} of couples of
integers satisfying 1 6 i1(xi) < i2(xi) 6 Q and a vector vb = (bi) in Rn such
that, for each vector vy = (yi) in {−1, 1}n, there is gy in G satisfying

∀i ∈ [[ 1, n ]] ,
{

if yi = 1, ∆gy,i1(xi)(xi)− bi > γ
if yi = −1, ∆gy,i2(xi)(xi) + bi > γ

.

The Natarajan dimension with margin γ of ∆G, N-dim(∆G, γ), is the maximal
cardinality of a subset of X γ-N-shattered by ∆G, if this maximum exists,
and +∞ otherwise.

An upper bound on N-dim(∆Gβ , γ) is provided by Theorem 1.

Theorem 1.

∀γ ∈ R∗+, N-dim (∆Gβ , γ) 6

(
Q

2

)
NQ

4γ2
. (1)

The proof of Theorem 1 is based on two lemmas.

Lemma 1. Let γ ∈ R∗+ and n ∈ N∗. If sn = {ui : 1 6 i 6 n} ⊂ UN
Q is γ-N-

shattered by ∆Gβ, then there exists a subset sp of sn of cardinality p =
⌈

n

(Q
2)

⌉
such that for every partition of sp into two subsets sp,1 and sp,2,∥∥∥∥∥∥

∑
ui∈sp,1

ui −
∑

ui∈sp,2

ui

∥∥∥∥∥∥
2

>
2p√
Q

γ. (2)
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Proof. Let (I (sn) , vb) witness the γ-N-shattering of sn by ∆Gβ . According
to the pigeonhole principle, there is at least one couple of indices (k1, k2) such
that there are at least p points in sn for which (i1(ui), i2(ui)) is (k1, k2). For
the sake of simplicity, the points in sn are reordered in such a way that the p
first of them exhibit this property. The corresponding subset of sn is denoted
sp. This means that for all vector vy = (yi) in {−1, 1}n, there is a function
gβy in Gβ characterized by the vector βy = (βy,k)16k6Q ∈ VN,Q such that:

∀i ∈ [[ 1, p ]] ,
{

if yi = 1, ∆gβy,k1(ui)− bi > γ
if yi = −1, ∆gβy,k2(ui) + bi > γ

.

By definition of Gβ and the margin operator ∆, this is implies:

∀i ∈ [[ 1, p ]] ,

 if yi = 1, 1
2

(
βT

y,k1
ui − βT

y,k2
ui

)
− bi > γ

if yi = −1, 1
2

(
βT

y,k2
ui − βT

y,k1
ui

)
+ bi > γ

. (3)

Consider now any partition of sp into two subsets sp,1 and sp,2. Consider any
vector vy in {−1, 1}n such that yi = 1 if ui ∈ sp,1 and yi = −1 if ui ∈ sp,2.
It results from (3) that there exists gβy in Gβ such that:

1
2

(βy,k1 − βy,k2)
T

 ∑
ui∈sp,1

ui −
∑

ui∈sp,2

ui

−
∑

ui∈sp,1

bi +
∑

ui∈sp,2

bi > pγ.

Conversely, consider any vector vy such that yi = −1 if ui ∈ sp,1 and yi = −1
if ui ∈ sp,2. There exists gβy in Gβ such that:

1
2

(βy,k2 − βy,k1)
T

 ∑
ui∈sp,1

ui −
∑

ui∈sp,2

ui

 +
∑

ui∈sp,1

bi −
∑

ui∈sp,2

bi > pγ.

Thus, whatever the sign of
∑

ui∈sp,1
bi −

∑
ui∈sp,2

bi is, by application of the
Cauchy-Schwarz inequality, there is a vector βy in VN,Q such that:

1
2
‖βy,k1 − βy,k2‖2

∥∥∥∥∥∥
∑

ui∈sp,1

ui −
∑

ui∈sp,2

ui

∥∥∥∥∥∥
2

> pγ. (4)

For β ∈ VN,Q, max16k 6=l6Q ‖βk − βl‖2 is reached when one of the vectors
is the null vector and the other one concentrates all the mass on as few
components as possible. A situation of this kind is obtained by choosing any
couple (k0, j0) in [[ 1, Q ]]× [[ 1, N ]] and defining the vector β as follows

∀k ∈ [[ 1, Q ]] , ∀j ∈ [[ 1, N ]] , ∀l ∈ [[ 1, Q ]] , βkjl = δk0,kδj0,j .

In that case, for all k in [[ 1, Q ]]\{k0}, ‖βk0 − βk‖2 =
√

Q. Thus, ‖βy,k1 − βy,k2‖2 6√
Q, and a substitution in (4) concludes the proof.
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Lemma 2. For all n ∈ N∗, all subset sn = {ui : 1 6 i 6 n} of UN
Q can be

partitioned into two subsets s1 and s2 satisfying∥∥∥∥∥ ∑
ui∈s1

ui −
∑

ui∈s2

ui

∥∥∥∥∥
2

6
√

Nn. (5)

Proof. Let σ = (σi)16i6n be a Rademacher sequence: the σi are i.i.d. Bernoulli
random variables with parameter p = 1

2 . ∀ (i, j) ∈ [[ 1, n ]]2 , Eσ [σiσj ] = δi,j .

Eσ

∥∥∥∥∥
n∑

i=1

σiui

∥∥∥∥∥
2

2

=
n∑

i=1

n∑
j=1

uT
i ujEσ [σiσj ] =

n∑
i=1

‖ui‖22 6 n max
u∈UN

Q

‖u‖22 .

The points of UN
Q whose `2-norm is maximum are its vertices. The value of

their `2-norm is
√

N . Thus, Eσ ‖
∑n

i=1 σiui‖
2

2
6 Nn. This implies that there

exists a vector v = (vi)16i6n ∈ {−1, 1}n such that ‖
∑n

i=1 viui‖2 6
√

Nn.
Setting s1 = {ui ∈ sn : vi = 1} and s2 = sn \ s1 then concludes the proof.

With Lemmas 1 and 2 at hand, the proof of Theorem 1 is straightforward.

Proof. Let sn = {ui : 1 6 i 6 n} be a subset of UN
Q γ-N-shattered by ∆Gβ .

According to Lemma 1, there is at least a subset sp of sn of cardinality

p =
⌈

n

(Q
2)

⌉
satisfying (2) for all its partitions into two subsets sp,1 and sp,2.

Since, according to Lemma 2, there is at least one of these partitions for
which (5) holds true, 2p√

Q
γ 6

√
Np, which implies (1) since n 6

(
Q
2

)
p.

4 Experimental results

The problem considered is protein secondary structure prediction. It consists
in assigning to each residue of a protein sequence its conformational state:
α-helix, β-strand or coil (Q = 3). The four main M-SVMs and the two
combiners resulting from using the quadratic and cross-entropy losses are
assessed on the P1096 data set [5]. The experimental protocol differs from the
one used in [5] in two respects. The outputs of the M-SVMs are normalized:

∀j ∈ [[ 1, 4 ]] , ∀k ∈ [[ 1, 3 ]] , g
(j)
k (·) =

exp
(
h

(j)
k (·)

)
∑3

l=1 exp
(
h

(j)
l (·)

)
and an additional level of cross-validation is introduced so as to train the M-
SVMs and the combiners on different data. Table 2 summarizes the results
obtained. Prediction accuracy is described by means of three standard mea-
sures giving complementary indications: the recognition rate Q3, Matthews’
correlation coefficients Cα/β/coil, and the segment overlap measure Sov.

The comparison of the performance of the M-SVMs considered individ-
ually and in the framework of a combination shows a gain induced by the
combination which is statistically significant with confidence at least 0.95.
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WW CS LLW M-SVM2 Combiner Quad Combiner CE

Q3 66.9 66.5 66.7 66.7 67.7 67.6

Cα 0.52 0.50 0.51 0.51 0.54 0.54

Cβ 0.42 0.40 0.40 0.42 0.44 0.43

Ccoil 0.46 0.44 0.46 0.44 0.47 0.48

Sov 56.0 55.7 56.2 56.0 58.1 57.9

Table 2. Relative prediction accuracy of the M-SVMs and the linear combiners on
the 1096 sequences (268575 residues) of the P1096 data set

5 Conclusions and ongoing research

We have introduced linear combiners for M-SVMs. Their low sample com-
plexity should prevent them from overfitting and they provide estimates of
the class posterior probabilities. We are currently performing a large scale
study of their performance, focusing on the quality of these estimates, used
to derive emission probabilities in a hidden Markov model.
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Abstract. We analyse the salaries of about 700.000 employees who worked in Lux-
embourg between 1940 and 2006 with the aim of detecting groups of typical salary
trajectories with respect to some covariants like sex, workstatus, residentship and
nationality. We use the proc traj SAS procedure from Bobby L. Jones to classify
the workers and descriptive statistical methods like the CHAID procedure or multi-
nomial logistic regression to get a caracterisation with respect to the covariants of
the different groups.

Keywords: Finite mixture models, Salary trajectories, CHAID, Multinomial lo-
gistic regression, Proc-Traj procedure, Economic modeling.

1 Introduction

Knowing the salary structure in a country is of great importance for a host
of economic applications, for instance for an analysis of its pension system.
We highlight the evolution of salaries in Luxembourg. To this end, we use
the recent statistical group based trajectory model of D. Nagin [8]. We
estimate model parameters from a single database, provided by the general
social security inspection office (IGSS) and containing annual salaries of all
wage earners in the Luxembourg private sector. As a result we divide up
the population into nine groups, each with its own mean salary trajectory in
time and its relative weight in society.
In a second part of the paper we give a socioeconomic description of the nine
groups and adress the question of the prediction of group membership for
a given individual. These kind of results are of great interest for insurance
companies and banks who like to know the evolution of the career of their
customers to be better able to advice them on the possibilities of money
investments in a pension fund for instance.
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2 A statistical method based on clustering

Longitudinal data are the empirical basis of research on various subjects in
the social sciences and in medicine. The common statistical aim of these var-
ious application fields is the modelisation of the evolution of an age or time
based phenomenon. In the 1990s, the generalized mixed model assuming
a normal distribution of unobserved heterogeneity [1](Bryk and Raudenbush
1992), latent growth curves modeling (Muthén 1989 [7]) and the nonparamet-
ric mixture model, based on a discrete distribution of heterogeneity (Jones,
Nagin and Roeder 2001 [5]) have emerged. We choose this variation of the
generalized mixed model because of the growing interest in this approach
to answer questions about atypical subpopulations (see Eggleston, Laub and
Sampson 2004 [3]).

The SAS procedure Proc Traj, programmed by Daniel Nagin and Bobby
Jones[5], allows to estimate the parameters of a semiparametric mixture
model for longitudinal data that are either normal (censored) distributed
or follow a Poisson or Bernoulli distribution. The subgroup trajectories can
be modeled by polynomials up to the fourth degree. The procedure enables
to calculate the posterior probability of group membership in terms of risk
factors that are stable in time. Moreover, time-dependent covariates can
influence the trajectories and cause different effects in different subgroups.

Nagin’s nonparametric mixed model [8] starts from a set of individual
trajectories and tries to divide the population into a number of homogeneous
sub-populations and to estimate a mean trajectory for each of these sub-
populations.

Consider a statistical variable Y defined on a population of size N . Let
Yi = yi1, yi2, ..., yiT denote a longitudinal sequence of measurements on indi-
vidual i over T periods.

Let P (Yi) dennote the probability of Yi. The purpose of the analysis is
to find r trajectories of a given type, in general polynomials of degree 4,
P (t) = β0 + β1t + β2t

2 + β3t
3 + β4t

4. Let P j(Yi) denote the probability of
obtaining the observed data for individual i given membership in group j and
πj the probability of an individual chosen at random to belong to the group
number j.

We try to estimate a set of parameters Ω = {βj
0, β

j
1, β

j
2, β

j
3, β

j
4, πj ; j =

1, ..., r} which maximises the probability of Yi. The ideal number of groups
r is also an outcome of the analysis. For a given group, conditional inde-
pendence is assumed for the sequential realisations of the elements of Yi, yit,
over the T periods of measurment. The likelihood L of the sample is then
given by

L =
1
σ

N∏

i=1

r∑

j=1

πj

T∏

i=1

φ

(
yit − βjxit

σ

)
,

where φ denotes the density function of the standard normal distribution.
These equations are too complicated to hope to obtain an algebraic solution.

320



Analysis of the salary trajectories in Luxembourg 3

Bobby L. Jones (Carnegie Mellon University) has programmed a SAS proce-
dure based on a quasi-Newtonian maximum search method (Dennis, Gay &
Welsch 1981[2]). The estimated standard deviations are obtained by invert-
ing the observed information matrix.
Nagin’s model also allows to determine to wich group a given individual be-
longs. The posterior probability P (j/Yi) for an individual i to belong to
group number j is indeed given by the Bayes theorem:

P (j/Yi) =
P (Yi/j)π̂j∑r

j=1 P (Yi/j)π̂j

A large posterior probability estimate for a small group requires that Yi be so
strongly consistent with the small group that P (Yi/j) for that group is very
large in comparison to its companion probabilities for the big groups (Nagin
2005).

3 The IGSS database

The analysis relies on a file containing the salaries of all employees of the
private sector in Luxembourg. The data cover the period from 1940 to 2006.
Since the file contains the careers of those started to work from the beginning
of the forties onwards, it is not complete during the first years, but becomes
so gradually. In particular it includes all the employees of the private sector
in Luxembourg from the beginning of the seventies till 2006.

This file originates from the General Inspectorate of Social Security (IGSS).
The main variables are the net annual taxable salary, measured in constant
euros (2006 euros), sex, age at first employment, residence and nationality
(Luxembourg national living in Luxembourg, foreigner living in Luxembourg
and commuters) and the type of employment contract (blue or white collar
worker). Initially, the file consisted of about 7 000 000 lines showing the
salaries of some 718 054 workers. Many careers are incomplete for many
reasons. Moreover, for immigrant workers, we know only the part of their
careers made in Luxembourg and know nothing about what they have done
in their country of origin. Finally, the percentage of employees who quit
prematurely with a disability pension or take pre-retirement or quit early
for family reasons (women stopping work or interrupting their work to look
after their children for example) is around 50 per cent. The domestic em-
ployment (which includes the commuters working in Luxembourg) has ex-
perienced strong growth since the mid-eighties, with an average increase of
3.5% annually and an increase of more than 110 000 jobs between 1986 and
2001 (compared to 20 000 jobs in the period 1975-1985) (Source: STATEC).
The development of the financial and the growing needs of the public sector
are key drivers of this evolution. Today, the services sector represents more
than three-quarters of total employment. These changes are not without con-
sequences in terms of professional status, so that changes in careers before
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the 80s are necessarily significantly different from those of twenty-five years.
We have therefore decided to pay interest careers of individuals who began
working in Luxembourg between 1982 and 1986 and who have worked for
at least 20 years. The final file used for our analysis includes data from 22
203 employees and private workers. Note that in Luxembourg, the maximum
contribution ceiling on pension insurance is 5 times the minimum wage, or
7 577 (Euro 2006) per month. Wages in our data are also limited by that
number.

4 The mean salary trajectories in Luxembourg

We used the SAS procedure Proc Traj, programmed by Daniel Nagin and
Bobby Jones, to determine the mean salary trajectories of 22 203 people who
began working between 1982 and 1987 in the private sector in Luxembourg
and who worked for at least twenty years.

We established the trajectories for models with between 4 and 20 groups.
As the salary trajectories form more or less a continuum in the continuous
functions from [1000, 4000] with values in the interval [1200, 7577], the BIC
adjustment criterion for determining the ideal number of groups is not well
suited. Indeed, BIC increases with the number of groups. This is quite nor-
mal, since it just shows that if one assumes more groups, one can necessarily
represent reality with more details. On the other hand, one creates smaller
groups and an explanatory model more complicated to use. After discussion
with the IGSS, we decided to retain a 9 groups solution, for it gives a good
representation of the career development in Luxembourg. Solutions with
more groups add essentially parallel paths to those present in our model.

To test the stability of trajectories in time, we also established the tra-
jectories for the first 15 years of the careers (careers starting between 1985
and 1992) and for full career of 40 years (careers starting between 1960 and
1967). The trajectories of the first 15 years are very close to the first 15
years of trajectories of 20-year careers. The sizes of the groups vary between
2 and 6% compared to the ones we found and the changes are due to gains
or losses to groups with similar salaries. Since moreover the macroeconomic
situation has not changed dramatically during the last twenty years, we are
fairly confident that the trajectories remain valid, except in cases of severe
economic shock that could certainly change the situation completely. The
only thing that might change over the coming years is the percentage of com-
muters in the different groups. Since the total number of employees increased
faster than the population can do this percentage will continue to grow in
all groups. The trajectories of the complete careers are also quite similar to
ours, except that they show a clear decline of the wages during the steel crisis
for the trajectories representing the high wages.
Figure 1 below shows the average salary trajectories in our 9 groups.
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Fig. 1. Salary trajectories of the 9 groups

5 Partition of the labour force

We have investigated the nine groups obtained here above by means of nu-
merous data analysis techniques in order to get a description of each of them.
The details of the undertaken tasks can be found in [4]. Summerising our re-
sults, we can conclude that the different group trajectories are differentiated
mainly by two factors: the starting salary, strongly related to the age at first
employment (and therefore to the academic degree) of the employee and the
dynamics of his career. There are actually three different types of dynamics:
Groups 2, 5 and 8 show “flat” careers, meaning that people from these groups
have almost no increase in their salary after the first five years of their career;
groups 3 and 7 show a “normal” salary increase of about one per cent per
year and groups 1, 4 and 6 show “dynamic” careers, in which wages increase
much over time. The ninth group of trajectories is somewhat apart, since it
contains the high salaries that exceed the ceiling of 7 577 contained in our
data set. Taking this limitations into account, their path resembles that of
the normal dynamics. Another interesting discovery is that in most of the
groups workers of Luxembourg nationality have, on average, a more dynamic
career than foreign workers and commuters. A difference between men and
women can also be shown, but only in the groups with lower salaries. Due
to lack of information, it is unfortunately impossible to give a more detailed
socioeconomic descriptions of the nine groups. We hope to get more variables
about the population in our dataset in the future to be able to obtain a better
characterisation of the nine groups.
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6 Group membership predictions

Bayes’ formula allows to compute the probability of individual i to belong
to group number j. It gives the possibility to classify correctly almost all
persons, without any ambiguity about group membership. In analysing our
full sample, we find indeed an average probability of belonging to one of
the groups varying between 92.41 % (group 3) and 99.23 % (group 9). The
median probability varies even between 99.12 % (group 3) and 100 % (groups
6 and 9). The practical disadvantage of the Bayes’ formula is that we need
the salaries of the first twenty years of the career. Hence, it is just useful
for people who have already completed more than half of it. Analysing the
distribution of salaries in the different groups, we find that in many groups
the first three to five years show a relatively high dispersion usually paired
with a bi- or even trimodal distribution. After the first years however the
salary distribution becomes a normal law with a fairly low dispersion. Figure
2 shows the distribution of the salaries in the first twenty years of their career
for the people belonging to group 1. It should hence be possible to correctly

Fig. 2. Salary evolution during the 20 first year of the career for group 1

predict the group membership if we know the salaries of the first years of the
career plus some socioeconomic information. That’s what we will try in the
sequel.
We tried to predict membership of a given person to one of the nine groups
by means two statistical classification methods, the CHAID algorithm (Chi-
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squared Automatic Interaction Detector) and multinomial logistic regression.
The CHAID algorithm is a technique of decision tree type, published in
1980 by Gordon V. Kass citeKass. It can be used to detect interactions
between variables or for prediction purposes. Its a mainly visual and easily
interpretable method.
Trying to predict group membership of the entire sample using only the
variable “sex”, “status”, “nationality and residence” and “age at first job
in Luxembourg” gives a very bad result. Only 38.3 % of the individuals
are correctly classified. The only group that is correctly predicted is group
9 (72.1 %). Moreover, we observe that classification faults are done to the
benefit of nearly all groups.

If we consider the socioeconomic variables and the first 6 years of salary,
the CHAID algorithm can correctly classify 54 % of the individuals. Groups
2 (63.3 %), 3 (63.9 %), 5 (59.5 %) and 7 (57.6 %) are fairly well predicted, the
allocation to the group 9 starts to be good (89.3 %). The second method we

Fig. 3. Results of the CHAID procedure with 6 years of salary

used for classification is the multinomial logistic regression. The results are
quite similar to those discussed above. Trying to predict group membership
of the entire sample using only the variable “sex”, “status”, “nationality
and residence” and “age at first job in Luxembourg” gives a very bad result.
Only 35.0 % of people are correctly classified and group 9 is the only correctly
predicted group (61.8 %). The pseudo R-square of Cox and Snell, which gives
the percentage of the total variability explained by the model is 0.563.
If we consider the socioeconomic variables and the first 6 years of salary,
the multinomial logistic regression correctly classifies 53.9% of individuals
and the pseudo R-square of Cox and Snell is 0.851, which is a fairly good
result. Groups 2 (61.1%), 3 (59.7%), 5 (68.9%) are fairly well predicted, the
allocation to the group 9 begins to be good (85.9%).
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Fig. 4. Results of the multinomial logistic regression with 6 years of salary

7 Conclusion

We have established a classification of the careers in the private sector in
Luxembourg into nine groups by means of Nagin’s semiparametric mixture
model and given a socioeconomic description of the groups. He have seen that
the problem of the correct classification of a person in one of nine groups
of salary trajectories is a rather complex problem. Considering only the
socioeconomic variables, the results are very bad. Add a few years of salary
greatly improves the situation and can give a correct result. For the future
we try to get some additional socioeconomic variables and to program a
classification software that will achieve a good result by combining these
variables with the first years of salary.
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Abstract: Models of chance operations, random equations, stochastic processes, 

and chaos systems have inspired composers as historical as Wolfgang Amadeus Mozart. 
As these models advance and new processes are discovered or defined, composers 
continue to find new inspirations for musical composition. Yet, the relative artistic merits 
of some of these works are limited. This paper explores the application of extra-musical 
processes to the sonic arts and proposes aesthetic considerations from the point of view of 
the artist. The scope of the discussion is limited primarily to music composition based on 
mathematical models. Musical examples demonstrate possibilities for working 
successfully with algorithmic and generative processes in sound, from formal decisions to 
synthesis. 

Keywords: Algorithmic and generative composition, aesthetics, random and 
stochastic processes, chaos systems, sound synthesis 

1. Introduction 
In many ways, the Western classical music tradition is steeped in numerical 
methods. Numbers define musical intervals, which then form systems in the 
earliest examples of Western counterpoint. Numerical systems identify chords 
and harmonies within the Western tonal (as opposed to contrapuntal) system, as 
well. Classically trained musicians continue to learn these systems and to express 
the music theory of Western classical systems in these methods. 

Although there are the odd examples of musical numerical games 
emerging from history (e.g., Mozart’s “Musical Games”), numerical systems 
came to the fore in the 20th century with the serializing of musical attributes such 
as pitch, duration, and timbre. The Second Viennese School freed music from the 
Western system of dissonance, consonance, and tonal center, allowing set 
operations to determine musical content through numeric representations of the 
twelve equal-tempered pitches in Western music. 

Once the numbers of music were freed from the harmonic system, 
composers could look beyond the simple set operations of the Second Viennese 
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School into other sources of numerical patterns, systems, rules, and models. With 
the advent of computers and ultimately computer music, it seems hardly 
surprising that composition with any kind of numerical system would become 
more commonplace. And, once audio itself was digitized, the numbers 
representing music - sound itself, in fact - expanded beyond the restrictions of 
Western music notation of pitch and duration. 

Despite this, the application of extra-musical models and systems to the 
numbers of sound and music is relatively new to music-making. As a result, 
composers are still exploring the true potential of using scientific or mathematical 
models to provide numbers to translate to music. The results can be surprising 
and occasionally dissatisfying. This paper seeks to address some arenas where 
pieces can fail to achieve the promise suggested by scientific or mathematical 
inspirations. Thus, this paper is a qualitative study of musical practices with 
extra-musical numbers.  

In order to make useful formalizations of musical practice through 
qualitative assessment, the domain of practice must be defined and limited to a 
particular mode of artistic work. Specifically, this paper deals with what many 
composers call algorithmic music or generative music. Furthermore, the music 
addressed is intended to be experienced as music is experienced in the Western 
classical tradition, not as a scientific display or as a functional part of another 
entity. In most cases, this requires music to be experienced in the concert hall 
paradigm. Finally, there are many numerical systems, patterns, and models that 
can create the data needed for translation to musical ideas. This paper deals 
specifically with music drawing on algorithms or processes borrowed from 
mathematics and science. So, firstly, this paper defines the music by the historical 
context, intended reception, audience, and compositional methods. 

Secondly, to draw conclusions of the effectiveness of a musical strategy 
pre-supposes a system of judgment, a basis on which music is to be compared. It 
is unethical to apply all systems of judgment to all systems of music. Therefore, 
this paper then defines the means by which a work is judged to be successful and, 
more importantly, how the musical experience is then critiqued. 

Based on the constraints of compositional domain, the categories of 
human/model/computer interaction, and a critical system of comparisons, this 
paper then proposes some crucial questions and considerations a composer can 
make when creating algorithmic or generative music. Ultimately, this paper offers 
some conclusions regarding successful practice. However, it does not do so to set 
requirements or rules for good music, only to identify similarities between 
successful examples of algorithmic and generative composition. 

328



 Aesthetic Considerations in Algorithmic and Generative Composition 

2. What is Algorithmic and Generative Composition? 
Perhaps the trickiest navigation on which this paper is based is the definition of 
the domain it is examining. Musicians are not scientists, and the vocabulary they 
use shifts and crosses meanings and often implies methods of practice that may 
seem entirely independent of the name given. Therefore, it is not enough to 
simply say this paper addresses algorithmic and generative composition. 

Here the phrase “algorithmic and generative composition” includes many 
labels practitioners use to be more specific about their musical approach. For the 
most part, this music requires the use of computers for its generation; though, 
technically, there are early examples of these compositions that were calculated 
by hand or on very primitive machines. This phrase is also used to include the 
sub-domains of computer synthesis and computer-assisted composition. 
However, one may prefer to reserve the word algorithmic for certain types of 
compositional process, where the word algorithm is more precisely defined by the 
field of computer science. For this reason, generative composition is also 
included in order to accommodate a means of creating music with processes that 
may not fall within the more carefully circumscribed definition of algorithm. 

2.1. Auditory Display vs. Musical Work 
There is currently a multi-disciplinary practice arising from the field of data 
visualization, where sonic specialists and scientists work together to enhance 
graphical data visualization with the multi-modality and sensory advantages of 
hearing. The International Community for Auditory Display, or ICAD, is focused 
on bringing the advantages of a listening environment to the visual 
representations of large or complex data sets. 

Though some of the auditory displays result in surprising or even 
somewhat pleasant sounds, the primary purpose of these examples is functional 
and even scientific. There is little room (in fact, it would be detrimental) for the 
specialists to alter outcomes for aesthetic purposes. Furthermore, the issues and 
concerns of these examples address scientific or mathematical problems, not the 
dilemmas faced by the contemporary musical artist working from the Western 
history of art- and music-making. 

2.2. Sound Art vs. Composition 
Finally, there are arenas of music-making that extend from other domains of 
artistic expression, including the visual arts and theatre. Although algorithmic and 
generative techniques have been applied in these circumstances, it is important to 
specify that this paper deals with the most normative and traditional definition of 
composition. 

Unlike works where the artistic aims are beyond the sound alone (e.g., 
visual support, theatrical/narrative goals, political art, socio-historical 
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commentary), composers of these works intend them to be experienced and 
attended to in the concert hall paradigm. That is not to say that conclusions or 
discussions offered here cannot apply to these domains. Simply: to come to some 
conclusions, it is necessary to exclude the exceptions, however interesting, at the 
start. 

The concert hall paradigm assumes the context of the Western classical 
tradition musical performance, and any experimentation within that paradigm 
relates to the presuppositions of the tradition. The paradigm expects a degree of 
scrutiny and attendance to sonic detail. It assumes that a work has a consistent 
identity, even if unique performances of that work may differ. A work within the 
concert hall paradigm will have a fixed duration, and the audience is expected to 
attend to the piece in its entirety without distraction. 

Works that occur in gallery spaces, for example, that are continuous and 
ongoing and expect the audience to wander through at unexpected and 
uncontrollable intervals do not fall into this category of composition. Other works 
that function as background material, either to visual media, theatre performance, 
a narrative, or even a commercial environment, do not exist within the concert 
hall paradigm. 

To summarize: this paper addresses algorithmic and generative music, 
which includes any systems from the strictly algorithmic to more open-ended 
generative processes. More importantly, it presupposes an artistic or aesthetic 
endeavor and not simply the act of demonstrating data for informational 
purposes. Finally, it is meant to be experienced within the concert hall paradigm, 
which relies on a general type of audience within certain traditional conventions 
including concerts and/or sound recordings associated with Western classical 
music performance. 

Some of the composers who have works falling into these categories 
include Lejaren Hiller, Iannis Xenakis, Brian Ferneyhough, David Cope, Eduardo 
Reck Miranda, Julio d’Escrivan, and Hans Tutschku. 

2.3. Exception to a common (mis)understanding 
There is an unspoken understanding among some composers that “algorithmic 
composition” results in a specific style of music within the field of computer 
music. Perhaps this exists because some composers engaging in “automatic 
composition” have used the phrase “algorithmic composition” synonymously. 
The result of some pieces, though called music, approaches scientific auditory 
display and often does not withstand musical scrutiny. Many composers who may 
rely on mathematical or numerical systems will deny their inclusion in the field 
of algorithmic and generative music on this basis alone. The use of the phrase in 
this paper supposes, perhaps naïvely, that this connotative definition can be 
overlooked for the greater issue at hand. Even the author puts aside her usual 
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reservations and is including her own work as algorithmic composition in this 
case. 

3. What is “successful”? 
Given that the domain represented in this discussion is algorithmic and generative 
composition within the concert hall paradigm, then the metric for the relative 
success or failure of a work can be determined by the genre itself. There are 
works throughout history whose success is measured by endurance, impact, 
innovation, or similar features. These works are accepted as part of a canon in a 
tradition, perhaps what Goehr [4] would call a musical museum, despite any 
individual’s personal preference for these works. 

This paper will review some of these canonic works and some newer 
examples that, nonetheless, offer examples of musical success to some degree. 
The newer works were chosen by positive answers to: 

 
• Does the work stand on its own without recourse to scientific or 

extra-musical explanation? 
• Does the work withstand intense and attentive musical scrutiny? 
 
Additionally, this paper will comment on the published methodologies of 

composers self-identified as algorithmic composers. 
In the following examples, there appears to be three main aspects that 

determine the relative success of an algorithmic composition. Firstly, there is a 
correlation between successful works and the degree to which the composer 
intervenes, influences, adds to, or shapes the composition. Alternately, successful 
works can also be the result of human performer intervention, e.g., algorithmic 
compositions performed on acoustic instruments by experienced performers. 

Secondly, works that tend to stand without the aid of explanation or 
background have complex mapping paradigms of the data to musical parameters. 
Again, there is a correspondence between the success of a work and the 
obfuscation of the underlying process.  

The third characteristic of a successful work is whether or not care has 
been taken in orchestration or design of timbre. At the same time, timbral 
considerations are intricately linked to decisions made by the composer in 
instrumentation and mapping. For this reason, timbre may not be considered as a 
third aspect. However, its immediate effect on the reception of the work makes it 
necessary to address it separately. 
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3.1. Human Intervention 
Perhaps the most telling evidence of the need for human intervention comes from 
the evident bias against the term algorithmic composition since it can mean 
automatic composition (without human intervention), as mentioned earlier. Many 
composers who may rely on mathematical or numerical systems will deny their 
inclusion in the field of algorithmic and generative music on this basis alone. 

History tends to support this bias in musical examples. A very compelling 
example comes from a work that is often regarded to be musically weak but is 
nonetheless historically important. Namely, Analogique A + B (1959) by Iannis 
Xenakis demonstrates very clearly that composer intervention and further human 
performance and interpretation result in more successful outcomes. In two parts, 
Analogique A and Analogique B, Xenakis implements the same Markov process 
in different media. One utilizes short, electronic sine tones arranged and recorded 
on tape. The other is translated into quantized notes according to Western music 
notation and scored for strings. Although the process is the same, the electronic 
version allows Xenakis greater freedom in both pitch and duration, since sounds 
could be arbitrarily generated. However, it is the string version that was more 
successful as a musical work. 

In many cases, limiting material to a musical scale can reduce the 
complexity and interest of a governing algorithm. Yet, paradoxically, the acoustic 
version (Analogique A) is a stronger work. The first impression may be that the 
more familiar and acoustic timbre of the strings makes the version more 
successful. Yet, taken on its own, Analogique B does provide a rich timbral 
experience, as Xenakis’ method of composition is a precursor to the common 
practice of granular synthesis today. Rather, the effect that human performance, 
hence human intervention, of the given musical material is far more salient than 
the sound source. 

In a musicological investigation, a fully automated version of Analogique 
B was created using current software that was unavailable to Xenakis. The 
experiment attempted to show that newer technologies facilitate the philosophies 
and aesthetics of Xenakis [6]. The result of the program was surprising; rather 
than demonstrating the benefit of technology, it revealed that Xenakis made 
subjective decisions while piecing together the electronic sounds. So, as 
Analogique A was stronger than Analogique B as a result of the human 
interpretation in performance, the original Analogique B was stronger than the 
computer-generated version because all vestiges of human intervention were 
removed in the latter. 

There is strong precedent for composer intervention (or interference, 
depending on the point of view) within algorithmic composition. Composers such 
as Di Scipio [3], Ariza [1], Gogins [5], and Xenakis [8] refer to integrating their 
feedback into systems, trial and error methods of fine-tuning systems, or 
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“bending” by the composer in the process of writing algorithmic music. 
Essentially, the composer can make crucial decisions at various stages of the 
composition. For some interactive systems, composers make subjective judgment 
calls and guide algorithms. In other cases, composers will tweak systems several 
times before getting the musical material they need. And, whether the composer 
is “fudging” the output of a system or perturbing a steady state, composers will 
interfere and introduce error into the output of an algorithmic system. The 
resulting complexity of these composers’ works, especially the musicality of 
them, makes the case for composer intervention. 

3.2. Complexity of mapping 
The second, obvious attribute contributing to the success or failure of a work is 
the complexity of the mapping of the system or data output to the musical 
parameters. To accurately measure complexity is to pursue a study beyond the 
scope of this paper. Additionally, most composers do not publish their processes 
to the degree to which it would be necessary to quantify the complexity of their 
individual mapping. However, by looking at common student practices compared 
to those of established composers, the extreme ends of the spectrum can be 
identified. 

Students learning the practice of algorithmic composition must learn a 
variety of skills relevant to the multi-disciplinary field. For example, they may 
need to learn the mathematics behind a particular equation or iterated function. 
They may then need to learn computer science skills that enable them to realize 
the mathematics in an environment that can lead to music or sound production. 
Finally, they must learn the art of composing and music-making, which is 
inherently a critical and subjective domain learned and advanced only by 
continual practice. To some degree, it is this last aspect that students cannot learn 
quickly, though some may have better natural instincts than others. Therefore, it 
is this final objective that students fail to realize in their short careers as students. 
As a result, student works in the algorithmic domain may show advanced 
understanding of scientific or mathematical systems and may exhibit 
sophisticated implementation of the systems in programming environments. Yet, 
students tend to fail dramatically in making music from these skills. 

The fundamental difference between the student work and the established 
composer is the way the algorithms are translated into music. A student does not 
have the experience or depth of musical understanding to do much more than the 
most straightforward mapping of data to sound. For example, a two-dimensional 
system may be very simply translated into pitch and duration values, or pitch and 
instrument assignment. 

Unfortunately, the use of MIDI led many early algorithmic composers to 
realize their ideas in this simple way. The resulting works have a primitive 
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quality and quickly lose any interest or novelty. In some cases, the mapping of 
output to musical parameter was so simple and the music was so automatic, that 
the results would be more accurately described as auditory display. 

The fundamental problem with this note-based approach to algorithmic 
composition is that it is inherently simple. Despite the complexity of the 
stochastic or chaotic system, the output is directly mapped to obvious musical 
qualities, making the reception unchallenging and less engaging. Though the 
systems exhibit compelling qualities, the results fall flat when translated to the 
temporal domain in the form of sound. 

More seasoned composers searched for a way to complicate the 
relationship of the systems to output. For example, Bidlack [2] utilized a note-
based approach to algorithmic composition realized in MIDI. In order to 
complicate the mapping while working within the same constraints, Bidlack 
implemented multi-dimensional systems (Lorenz and Hénon-Heiles) so that the 
third and fourth dimensions could be utilized for duration and loudness in 
addition to pitch. Additionally, it appears that Bidlack chose timbres without 
recourse to a deterministic system, an example of composer intervention. 

However, even more successful works exhibited a complexity of mapping 
to the degree that any sign of the original algorithm is hidden beneath the 
immediacy of musical material. The listener hears music, not an algorithm. 
Complex patterns may emerge or dissipate, but they seemingly follow an internal 
musicality, not deterministic rules. 

One example, Olivine Trees (1994) by Eduardo Miranda, demonstrates 
that complexity of the application of the algorithm can be manufactured not 
simply by the number of dimensions or parameters the algorithm controls, but by 
the time scale on which it is controlled. Miranda uses cellular automata to control 
grains of sound (reminiscent of the Xenakis example above). In his own 
description, Miranda likens the blending of these small grains to that of 
impressionistic painting [7]. The composer is inspired by the artistic potential of 
the system and reflects it in a sophisticated approach to implementation. In 
addition to CA, Miranda uses other processes and composers’ tools to further 
influence the sound of the piece. In this sense, Miranda not only obfuscates his 
mapping, but he introduces a free reign of composerly intervention. 

3.3. The Importance of Timbre 
From the first works of electroacoustic music composition, timbre was the 
primary material of music. Pitch, rhythm, loudness, silence – these were the 
brushes, but timbre was the paint. The fascination with electroacoustic means of 
making music was the palette it provided. 

As more composers began working with the new tools, new foci entered 
the domain of practice. As a result, later music relied less on timbre as its primary 
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material. This was especially true for algorithmic composers whose primary 
material was the system or algorithm itself. 

Yet, this attitude has been a detriment to the field of algorithmic 
composition. Timbre is an immediate attribute that anyone can perceive, 
regardless of his or her musical sophistication. It does not take a musical 
education to be aware of badly synthesized sounds, nor to grow fatigued with 
poor orchestration. Therefore, the most successful algorithmic compositions are 
examples of excellent instrumental or sound design choices. 

It is difficult to address the timbre problem without addressing the human 
factor or the complexity question. Therefore, timbre can really be seen as a 
consequence of those aspects.  

For example, if human intervention happens at the performance stage, i.e., 
live instrumentalists realize a work, then timbre is a consequence of the acoustic 
instruments. As a result, it has the richness, variety, and familiarity these 
instruments have in the culture. Likewise, if the mapping of a system is to the 
microsound level or to sound synthesis, then the complexity and interest of the 
system used is mapped into timbre, resulting in rich and interesting sounds. 

However, since timbre is the immediate attribute first perceived in a work, 
it warrants separate consideration. Recognizable timbres can improve or ruin a 
work. In the case of works by Lejaren Hiller, notably the Quartet No. 6 for 
Strings (1973), the natural instrument timbres performed by live humans create 
music that stands on its own, regardless of its algorithmic roots. Hiller augments 
his timbral possibilities with the extended playing techniques developed in the 
20th century. In comparison, much more algorithmically complex works that were 
realized with MIDI and commercial synthesizers now sound dated and awkward. 

In the earlier examples, both Xenakis and Miranda synthesize complex 
timbres through algorithmic processes applied to granular synthesis. However, 
there are many different ways in which algorithmic processes can enhance 
timbre. Chaos and stochastic systems have enhanced spectral (frequency domain) 
synthesis as well as physical modeling synthesis methods. These systems applied 
to acoustic science in this way are effective tools for sound design. 

This aspect is an extension of the notion of complexity; an algorithm 
applied to the microsound of digital synthesis is rarely perceptible in its original 
form. Rather, algorithmic systems generate interesting and complex timbres in 
and of themselves, without immediate recognition. 
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4. Conclusion 
Given a restricted domain of music that is made using algorithms and/or 
generative processes, it is possible to identify three aesthetic considerations 
common to the most successful works of the genre. 

First, an algorithmic or generative system is rarely sufficient on its own. In 
the most enduring examples, the composers had significant input to the musical 
material, reserving some musical parameters for subjective judgment and 
development. Additionally, many influential composers intervened and modified 
their systems, either by perturbing them or by bending the outcomes. 

Secondly, the systems used must be mapped complexly to musical 
parameters. Though it is not always the case, this usually means that the 
algorithms are not easily detected or identified. 

Works that fail to reach these first two points, namely employ a lack of 
human intervention and simplistic mapping systems, create results similar to 
scientific, auditory display. Though informative in its own right and occasionally 
interesting sonically, this rarely withstands aesthetic scrutiny. 

Thirdly, and intricately dependent on the first two points, the choice of 
timbre in an algorithmic work plays a significant and immediate role in the 
relative success of a work. Timbre is dependent on the first two points, because in 
one possible instantiation, acoustic instruments realize musical material generated 
by systems. In this case, human performative interpretation fundamentally 
changes the reception of a work. In some other cases, systems operated on the 
microsound level, the level of sound synthesis. This complex mapping of system 
to musical parameter often results in rich, varied, and interesting timbres. 
However, timbre can be the result of many other compositional decisions. And, 
its impact in the reception of a work is quite large. Therefore, it requires separate 
consideration. 

Pieces that were used as examples include works by Iannis Xenakis, 
Lejaren Hiller, and Eduardo Reck Miranda, while the methodologies published 
by Rick Bidlack, Agostino Di Scipio, Christopher Ariza, and Michael Gogins 
supported these conclusions. 
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works. The paper concentrates on the past developments. It aims to give a well-founded 
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1  Introduction 
 

The so-called moving-seasonal time series construction methodology of 
climatology time series in the Czech Republic was thoroughly described in 
Helman (2008). Here, only its main features are pointed out. 
First, we have to distinguish between input time series and derived time series. The 
input time series are represented by monthly time series of average temperatures 
(in degrees Celsius) and precipitation amounts (in millimetres) from 
44 measurement stations in the Czech Republic (i.e. 88 time series altogether) in 
the period between 1961 and 2008. The detailed description of measurement 
stations geography can be found in Helman (2009). The elevation of the selected 
measurement stations ranges from 158 metres above sea level (Doksany station) to 
1322 metres above sea level (Lysá hora station). The southernmost station is that of 
Lednice (48°47'34''), the northernmost station is Bedřichov (50°48'54''). The Czech 
Republic “far west” region is represented by the station in the town of Aš 
(12°10'47'') and the easternmost station is located at Lysá hora (18°26'52''). The 
input data were gained from the database of the Czech Hydrometeorological 
Institute CLIDATA. Other valuable information about this rich source of data, as 
well as additional references to resources in English, can be found e.g. in 
Helman (2006). 
Employing a combination of standard statistical methods, we use these input time 
series for the construction of derived time series that we call “moving-seasonal” 
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time series. At the final stage of this work we analyse possible statistical 
significance of linear trends included in the moving-seasonal time series.  
 
2  The Construction of Moving-Seasonal Time Series: 

Methodology 
 

The first step is splitting the input time series into a certain number of parts. The 
main objective is to decide how to set up the combination of the length of the 
moving interval (part) in years (LMI) with the size of the movement in years (SM). 
For example, the selection of LMI = 5 and SM = 3 will split the time series 
beginning in the year 1775 into a sequence of the following time series: 
1775–1779, 1778–1782, 1781–1785, etc. Reasons for the combination set-up of 
LMI = 10 and SM = 1 consistent with this work were given in Helman (2009).  
The second step is the calculation of seasonal factors for each calendar month 
(twelve readings) for each particular time interval defined by LMI and SM. This 
calculation is done on the assumption of the additive decomposition of the time 
series analysed, which can be generally expressed as: 

ttttt CSTy ε+++= , 

where yt is the value of an indicator that is to be modelled in time t, Tt is a trend 
component, St is a seasonal component, Ct is a cycle component and εt is a random 
(error) component. For more precise description, see again Helman (2008), where 
an explanation of presuming additive instead of multiplicative decomposition can 
also be found. Average seasonal factors are given by the equation 

∑
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where i indicates an ordinal number of years, m is the number of years, j represents 
the sequence of particular periods within a year, r is the number of partial periods 
within a year (r = 12 for monthly time series), yij is the value of input time series 
and Tij quantities are an estimate of the trend component (most often obtained by 
an application of moving averages). These average seasonal factors do not meet the 
requirement that their total within each year equals zero – we will adjust them by 
proper standardization: 
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For the sake of simplicity, we will call these values “seasonal factors”. These 
seasonal factors can be interpreted in the same units as the values in the analyzed 
time series. 
The third and the last step in constructing the moving-seasonal time series consists 
in selecting seasonal factor values from each time interval for each particular 
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calendar month, twelve moving-seasonal time series arising for every measurement 
station. 
 

 

 

 

 

3  The Construction of Moving-Seasonal Time Series: Results 
 

1056 moving-seasonal time series in total (44 measurement stations, 12 months 
and two climatology elements) were constructed for analytical purposes. 
Furthermore, many graphs on the basis of two criteria were drawn, the following 
two criteria having been applied: 
1) a comparison of seasonality developments according to the measurement 
stations’ location (“spatial comparison” based on the branch offices of the Czech 
Hydrometeorological Institute that can be found at portal.chmi.cz1); 168 graphs 
(12 calendar months, seven branch offices, two climatology elements); 
2) a comparison of seasonality developments according to the measurement 
stations elevation (“elevation comparison”); 192 graphs (12 calendar 
months, eight2 groups of the measurement stations, two climatology elements). 
As an example of these graphs, see Figures 1 and 2 (some comments will be given 
below). 
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Fig. 1. Moving-seasonal time 
series, Praha branch office (P), 

Fig. 2. Moving-seasonal time 
series, elevation 200-299, 

                                                 
1 http://portalh.chmi.cz/http://portal.chmi.cz/portal/dt?menu=JSPTabContainer/ 
P5_0_O_nas&last=false 
2 Elevation below 200 metres (3 stations), 200-299 m (10), 300-399 m (7), 400-499 
m (10), 500-599 m (3), 600-699 m (3), 700-799 m (5) and above 800 m (3). 
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temperature, August precipitation, January 

To understand properly the information involved in the moving-seasonal time 
series, it is necessary to bear in mind that these time series represent only the 
development of the seasonal component. This means that they tell us nothing at all 
about the other components and they may be used, for instance, as a supplement to 
the trend analysis. It is also important to remember that each single value of the 
moving-seasonal time series refers to a ten-year period of time, so it is rather 
contentious to speak about random fluctuations when analysing these particular 
series (their values should be considered as somehow “solid”). 
All 12 moving-seasonal time series corresponding to 12 months for precipitation 
measured at Holešov station can be seen in Figure 3. In order to read this graph 
properly it is important to become aware of the fact that a total of these 12 time 
series for each time period (i.e. in each point on the x-axis) is zero (seasonal factors 
within each ten-year period counteract their mutual effects). It has also to be 
considered whether a particular moving-seasonal time series (a period/month in 
this case) is above or below zero on the y-axis. The value of a moving-seasonal 
time series equalling zero (on the y-axis) indicates that a corresponding calendar 
month was about the average among other months in a certain period of time 
(x-axis). In this sense of the word, it is shown in Figure 3 that June, August, July 
and May were the above-average months in the period between 1961 and 2008. 
The below-average months were December, March, February and January3. The 
remaining months – November, April, September and October (having crossed the 
zero-line on the y-axis) can perhaps be marked as the average months (strictly 
speaking, they were above-average in some phases of the whole 1961 – 2008 
period and below-average in others). Noteworthy developments can be seen, for 
example, in the September series: at the beginning of the 1961 – 2008 
period, September was the 6th driest month, at the end, however, it became the 
2nd wettest month. Again, this is valid only in comparison with other months (time 
periods in particular) and shows nothing about absolute value (nor its 
development) of precipitation measured. 
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3 January not for the complete period 1961 – 2008. 
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Fig. 3. Moving-seasonal time series, precipitation, Holešov 

Trends in moving-seasonal time series will be dealt with below. It is clear now that 
the positive trend in above-average months shows strengthening of the seasonal 
component on the one hand, and the positive trend in below-average months, on 
the other hand, testifies to the seasonal component’s weakening. Alternatively, the 
negative trend in above-average months shows the seasonal component’s 
weakening. The seasonal component strengthens, on the contrary, when it appears 
in below-average months. 
Thus, in Figure 1, for example, we can see the positive (linear) trend of 
temperatures (Praha branch office) in August. This is an above-average month 
(positive values on the y-axis) which – together with the positive trend – indicates 
strengthening of the seasonal component in average monthly temperatures time 
series. In Figure 2, neither positive nor negative (linear) trend can be seen. In 
addition, there is another type of trend (an oscillation wave) observable in all the 
measurement stations. 
 

4  Trends in Moving-Seasonal Time Series: Temperature 
 

Table 1 shows the statistics of linear trends in temperature moving-seasonal time 
series. Before we make some comments on the findings, we will summarize the 
basic facts once again:  
1) in this work, the period between 1961 and 2008 is being analysed,  
2) moving-seasonal time series reflect development trends in the input time series 
seasonal component, and thus the trends in moving-seasonal time series show 
nothing about those in input time series, 
3) the negative/positive linear trend in above-average months denotes an opposite 
effect on the negative/positive linear trend in below-average months. 

Table 1. Trends in moving-seasonal time series, temperature 
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Below-average months   Above-average months Trends in moving-seasonal time series 
for temperature December January February  June July August 

number of significant linear trends α = 5% 18 18 1   5 19 44 
number of significant linear trends α = 10% 22 25 5   9 24 44 
             
number of positive directions 4 44 23   25 33 44 
number of negative directions 40 0 21   19 11 0 
             
Average directions according to elevation 
(metres above sea level)            
<200 (3 stations) -0.021 0.026 -0.003   -0.001 0.006 0.027 
200-299 (10 stations) -0.023 0.017 0.002  -0.003 0.012 0.030 
300-399 (7 stations) -0.015 0.021 0.005  -0.004 0.006 0.025 
400-499 (10 stations) -0.014 0.017 -0.003  -0.001 0.004 0.025 
500-599 (3 stations) -0.030 0.014 -0.008  0.001 0.014 0.036 
600-699 (3 stations) -0.011 0.018 0.003  -0.006 0.005 0.024 
700-799 (5 stations) -0.019 0.014 0.003  -0.003 0.004 0.030 
>800 (3 stations) -0.001 0.019 0.008   -0.003 0.007 0.032 
             
Average directions according to location 
(branch offices from the east to the west)            
Ostrava (O, 9 stations) -0.022 0.018 0.000   0.000 0.019 0.032 
Brno (B, 8 stations) -0.028 0.013 -0.003  0.003 0.012 0.037 
Hradec Králové (H, 3 stations) -0.022 0.015 -0.002  0.002 0.009 0.031 
Praha (P, 7 stations) -0.015 0.022 0.001  -0.004 0.003 0.027 
České Budějovice (C, 4 stations) -0.005 0.014 0.003  -0.002 0.000 0.025 
Ústí nad Labem (U, 6 stations) -0.013 0.026 0.003  -0.010 0.002 0.023 
Plzeň (L, 7 stations) -0.010 0.015 0.006   -0.005 -0.003 0.020 

 

Three above-average (warm) months and three below-average (cold) months were 
selected. Unambiguous results were obtained in August; all 44 moving-seasonal 
time series contained statistically significant positive trends. This means that 
August was getting warmer (in comparison with other months within each year) 
during the monitored period. Moreover, this effect seems to be a little stronger in 
the east of the Czech Republic than in the west. 
January statistics represent other conclusive results as all 44 time series showed 
positive linear trends but only 25 were statistically significant at α = 10%. Still, we 
can say that January tended to be less below-average in the course of time. 
Nevertheless, neither the connection with elevation nor with a location was found. 
No conclusions4 for February and June can be made; only a few statistically 
significant linear trends were found and the distribution of positive and negative 
trends is almost even. 
No relationship between linear trends in temperature moving-seasonal time series 
and the elevation of measurement stations can be detected either. 
The analysis of temperature moving-seasonal time series with linear trends leads us 
to the following conclusion. The monthly seasonality (year cycle) of average 
temperature time series changed in the period 1961 – 2008. According to the 
research findings, the extent of this change is affected by the location (east 

                                                 
4 Collective for all measurement stations. 
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vs. west) of particular measurement stations. (Further follow-up analysis 
is, however, necessary.) 
 
5  Trends in Moving-Seasonal Time Series: Precipitation 
 

Table 2 shows the statistics of linear trends in precipitation moving-seasonal time 
series. The structure of this table is almost the same as that of Table 1. The only 
difference is that March (instead of December) was chosen as a representative of 
below-average months. 

Table 2. Trends in moving-seasonal time series, precipitation 
Below-average months   Above-average months Trends in moving-seasonal time series 

for precipitation January February March  June July August 
number of significant linear trends α = 5% 11 23 44   31 28 31 
number of significant linear trends α = 10% 15 27 44   32 28 32 
             
number of positive directions 21 24 44   5 39 10 
number of negative directions 23 20 0   39 5 34 
             
Average directions according to elevation 
(metres above sea level)            
<200 (3 stations) -0.087 -0.045 0.194   -0.123 0.622 -0.045 
200-299 (10 stations) -0.058 -0.071 0.261  -0.239 0.378 -0.542 
300-399 (7 stations) 0.048 0.041 0.435  -0.408 0.343 -0.230 
400-499 (10 stations) -0.009 0.022 0.334  -0.125 0.423 -0.151 
500-599 (3 stations) -0.114 -0.039 0.468  -0.443 0.523 -0.139 
600-699 (3 stations) 0.163 0.210 0.756  -0.547 0.480 -0.258 
700-799 (5 stations) 0.010 0.070 0.584  -0.354 0.470 -0.417 
>800 (3 stations) 0.032 0.276 0.699   -0.747 0.248 -0.869 
             
Average directions according to location 
(branch offices from the east to the west)            
Ostrava (O, 9 stations) -0.035 0.014 0.464   -0.429 0.056 -0.822 
Brno (B, 8 stations) -0.196 -0.203 0.319  -0.284 0.369 -0.155 
Hradec Králové (H, 3 stations) 0.007 0.090 0.573  -0.450 0.873 -0.590 
Praha (P, 7 stations) -0.056 0.099 0.310  -0.256 0.724 -0.195 
České Budějovice (C, 4 stations) 0.101 0.100 0.610  -0.591 0.338 0.071 
Ústí nad Labem (U, 6 stations) 0.114 0.191 0.457  -0.315 0.609 -0.176 
Plzeň (L, 7 stations) 0.126 0.048 0.354   -0.043 0.320 -0.286 

 

Unambiguous results in the area of precipitation moving-seasonal time series were 
obtained in the March series. Distinctive, statistically significant positive linear 
trends in all forty-four moving-seasonal time series were detected. This shows that 
monthly precipitation sums in March were becoming less below-average in 
comparison with other months in each year during the period 1961 – 2008. This 
trend tends to be a little stronger for higher elevations. 
Convincing results were achieved in June measurements as well. 31 linear trends 
were statistically significant at 5% level and 39 linear trends were negative. This 
can be interpreted as weakening of the seasonal component (i.e. decrease in 
monthly precipitation sums in comparison with other months) in June in each year 
throughout the period. If we presumed hypothetically that no change in the 
seasonal component during the remaining ten months would take place (it is 
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impossible, though; see Table 2), this change in June moving-seasonal time series 
would correspond to the change in March moving-seasonal time series. The June 
results again tend to be more distinctive with rising elevation. 
No conclusions can be drawn from the development of the seasonal component in 
January and February as only a small number of statistically significant trends were 
detected, negative and positive trends being almost evenly distributed. 
No relationship between linear trends in precipitation moving-seasonal time series 
and the location of measurement stations can be seen either. 
The analysis of precipitation moving-seasonal time series with linear trends leads 
us to the following conclusion. The monthly seasonality (year cycle) of 
precipitation sums time series changed in the period 1961 – 2008. According to the 
research findings, the extent of this change is affected by the elevation of particular 
measurement stations. (Further follow-up analysis is, however, necessary.) 
 

6  Conclusions 
 

Average monthly temperatures and precipitation sums time series for the period 
1961 – 2008 taken from 44 measurement stations in the Czech Republic were used 
as the input time series for the construction of moving-seasonal time series. A total 
of 1056 moving-seasonal time series were constructed. Having divided them 
according to two criteria – the elevation (eight groups) and location of 
measurement stations (seven groups), 360 graphs were made. 
Linear trends for the constructed moving-seasonal time series were 
calculated, giving some interesting results. 
The end results for temperature moving-seasonal time series are as follows. The 
monthly seasonality (year cycle) of average monthly temperatures time series 
changed considerably in the period 1961 – 2008 (a lot of statistically significant 
linear trends were found). Among the months presented here, the most distinctive 
changes were recorded in January and August. Some facts, proving that the extent 
of this change was affected by the location (east vs. west) of measuring 
stations, were also found. 
A relevant conclusion also follows from the analysis of precipitation 
moving-seasonal time series. The monthly seasonality (year cycle) of precipitation 
sums time series changed in the period 1961 – 2008 as well. Among the months 
presented in this work, the most distinctive changes were identified in March and 
June. Some data, showing that the extent of this change was affected by the 
elevation of measuring stations, were also found. 
 
This paper was supported by the grant project of Internal Grant Agency of the 
University of Economics, Prague, No. F4/21/2010. 
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Abstract. We briefly recall some essential notions on interest rates and zero-
coupon bonds. We then define a sound mathematical framework to study a model
of the short rate in which the parameters are allowed to vary according to an un-
derlying semi-Markov process. We give some properties of the short rate in our
model. We follow by studying the notion of risk-neutral martingale measures in
this context. Finally, we discuss the pricing of interest-rate derivatives. In par-
ticular, we show that the price of a zero-coupon bond has to satisfy a system of
integro-differential equations that is influenced both by the market price of risk and
by the market price of regime switch risk.
Keywords: Semi-Markov, Regime-switching, Vasicek model, Interest rates, Marked
point processes, Semimartingales, Martingale measures, Integro-PDE.

1 Introduction

Modelling the uncertainty about the future behavior of interest rates has be-
come a very active topic of research. Some classical continuous-time models
include the Vasicek model (see Vasicek [15]), the Hull and White model (see
Hull and White [8]) or the CIR model (See Cox et al. [2]).

Regime switching models of interest rates have gained some interest in
the literature. The idea is to model the fact that the economic environment
is not constant through time and that this should be reflected in the model
via a change of the value of the parameters. Some papers that deal with this
are Landén [11] and Wu and Zeng [16].

Most of the existing literature focuses on homogeneous Markov switch-
ing models. However, many authors have shown that markets exhibit some
characteristics that are not well captured by homogeneous Markov switching
models (let us cite Hong and Li [7], Easly and O’Hara [5] and [6], Diebold
and Rudebusch [3] and Durland and McCurdy [4]). An interesting extension
that better fits the data is the class of semi-Markov regime switching models.
These are flexible and more general than homogeneous Markov models. Our
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paper deals with such a model, specifically a semi-Markov switching exten-
sion of the Vasicek model of the short rate of interest. The aim is to provide
a sound mathematical framework for this model and to derive equations that
allow to price interest-rate derivatives in this framewok.

2 Basic notation

We consider a financial market defined on a probability space (Ω,F ,P) car-
rying a filtration Ft and a brownian motion W . We suppose that it is defined
for all times t ∈ [0, T ].

We recall some notions about interest rate theory (see Björk [1] for more
on this subject).

Definition 1. A zero coupon bond with maturity T (also called a T-bond)
is a contract which guarantees the holder a payment of one unit of currency
at time T . We denote by p(t, T ) the price of a T-bond a time t. We suppose
that p(t, T ) is a strictly positive adapted process for all t ∈ [0, T ].

Definition 2. The instantaneous forward rate with maturity T contracted
at t is defined by

f(t, T ) = −∂ log p(t, T )
∂T

Definition 3. The instantaneous short rate at time t is defined by

r(t) = f(t, t)

Our paper will provide a model for the evolution of the short rate rt. For
the moment, we simply assume that rt is adapted to the filtration Ft. Given
the short rate, the money account process or risk free asset (that will serve
as numeraire) is defined by

Bt = exp
{∫ t

0

r(s)ds
}

This allows us to introduce risk neutral martingale measures that will be
useful in the pricing of interest rate derivatives.

Definition 4. A risk neutral martingale measure will be a measure P∗ equiv-
alent to P and such that for every T , the quantity

p(t, T )
Bt

is a P∗-martingale.
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A semi-Markov regime switching extension of the Vasicek model 3

3 Semi-Markov regime switching model

We define the set E ⊂ R by E = {1, ....,m} for a fixed m ∈ N and we define
E as the sigma-algebra of all the parts of E.

For each n ∈ N, let (Xn, Tn) be a pair of random variables taking values
in E × R+. We suppose that the process (X,T ) = {Xn, Tn;n ≥ 0} is a
homogeneous Markov renewal process with state space E. The associated
semi-Markov kernel is denoted by Qij(t). We denote by P the transition
matrix of the embedded Markov chain.

Remark 1. Given the number of states is finite, the number of jumps in a
finite time interval is almost surely finite (for a proof see Pyke [13]).

We impose some regularity conditions on the Markov renewal process:

• No fictitious transitions are allowed i.e. Pii = 0.
• No instantaneous transitions are allowed i.e. Qij(0) = 0.
• All states in E ”communicate” at all times i.e. Qij(t) > 0 ,∀t > 0.

Definition 5. Let us define st by

st := sup(n ≥ 0 : Tn ≤ t)

with n ∈ N and t ∈ R+ and Yt as

Yt := Xst

Process Y is called a semi-Markov process with kernel Q.

Definition 6. We define Ft as the completed filtration generated by process
Yt and Wt i.e., Ft = σ(Ys,Ws, N,N ∈ N , s ≤ t) where N is the collection of
all null sets.

The aim is to use Y with the usual tools of stochastic calculus. A step in
that direction is made with the following result.

Lemma 1. Yt is a semimartingale.

Proof. It is easy to show that Y is an adapted càdlàg finite variation process.

We denote the set of all possible jumps of Y by Z i.e. Z = {zij =
i−j; i, j ∈ E, i 6= j}. Given there are m states, the set Z comprises m(m−1)
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elements. Let Zn denote the size of the nth jump of Y . The jump measure
of Y is the random integer-valued measure µ on (0,∞)× Z defined by

µ =
∞∑

n=1

11(Tn,Zn)

We can write

Yt = Y0 +
∫ t

0

∫
Z

zµ(ds, dz)

This can be written as

Yt = Y0 +
∑

zij∈Z

zijNt(zij)

where
Nt(zij) =

∑
n≥1

11{Tn≤t}11{Zn=zij}

Proposition 1. The P-compensator associated with the jump measure µ is
given by

ν(ds, {zij}) = λs(zij)ds (1)

where the intensity λs(zij) is defined as

λs(zij) =
∑
n≥0

11{Tn<s≤Tn+1}
Pj,ig(j, i, t− Tn)

1−
∑

i 6=j Qj,i(t− Tn)
11{Xn=j}

where g(j, i, t − Tn) is the density of the waiting time distribution between
state j and i calculated at time t− Tn.

Proof. This follows from the general theory of marked point processes and
properties of semi-Markov processes (for more details see [12]).

Remark 2. It follows that the intensity associated with process Nt(zij) is
simply λt(zij).

We introduce the backward recurrence time Kt. This process represents
the time continuously spent in a state since the last regime switch. We can
write

Kt = t− TNt(Z) = t−
∑

zij∈Z

∫ t

0

Ks−dNs(zij)

We now turn to our model of the short rate. Under P, the short rate is
supposed to have the following dynamics:

drt = (a(Yt)− b(Yt)rt)dt+ σ(Yt)dWt (2)
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where we define a(Yt), b(Yt) and σ(Yt) by

a(Yt) =
m∑

i=1

ai11{Yt=i}

b(Yt) =
m∑

i=1

bi11{Yt=i}

σ(Yt) =
m∑

i=1

σi11{Yt=i}

for some given constants (a1, ..., am), (b1, ..., bm) and (σ1, ..., σm) (all the σi’s
are strictly positive).

Proposition 2. Equation 2 is well defined.

Proof. The proof is exactly similar to that in Hunt [9], proposition 3.

Remark 3. Equation 2 is an extension of the well-known Vasicek model (see
Vasicek [15]) where we allow for the parameters of the model to switch be-
tween different states and the switching is controlled by a semi-Markov pro-
cess Y .

In the classical Vasicek model, rt is a mean-reverting process. In our
setting, we have

Proposition 3. For Tn ≤ t < Tn+1, rt|FTn
∼ N(µ, σ2) where

µ = rTne
−b(YTn )(t−Tn) +

a(YTn
)

b(YTn)
(1− e−b(YTN

)(t−Tn))

σ2 =
σ2(YTn

)
2b(YTn)

(1− e−2b(YTn )(t−Tn))

Proof. This is a direct application of Itô’s formula and of the properties of
semi-Markov processes.

Remark 4. Proposition 3 tells us that for Tn ≤ t < Tn+1, rt starts in rTn
but

moves away from this value as time goes by and that the process tends to
locally mean revert around value a(YTn )

b(YTn ) until the next jump.

4 Martingale measures and derivative pricing

LetNt represent the multivariate point process (m(m−1)-dimensional) whose
components are given by (Nt(zij))zij∈Z . Let λt be the multivariate intensity
associated to process Nt whose components are given by (λt(zij))zij∈Z .

We discuss the existence of risk neutral measures by following this version
of the Girsanov theorem.
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Theorem 1. Let θ be a progressively measurable process such that∫ t

0

θ2sds <∞

Consider the multivariate point process Nt previously defined with (P,Ft)-
intensity λt. Consider a predictable multivariate process (ψt(zij))zij∈Z such
that P-a.s. and for t ∈ [0, T ]

∑
zij∈Z

∫ t

0

ψs(zij)λs(zij)ds <∞

Define the process L by:

Lt = exp
{
−1

2

∫ t

0

θ2sds+
∫ t

0

θsdWs

} ∏
zij∈Z

exp
{∫ t

0

(1− ψs(zij))λs(zij)ds
}Nt(zij)∏

n=1

ψTn
(zij)


And suppose that for all finite t:

EP[Lt] = 1

Define a probability measure Q on F by

dQ = LtdP

Then, every measure Q equivalent to P has the structure above. Further-
more, let WQ

t be defined as

dWQ
t = dWt − θtdt

then WQ
t is a Q-brownian motion. We denote by NQ

t the multivariate
point process Nt whose Q-intensity given by λQ

t (zij) := (ψt(zij)λt(zij))zij∈Z .

Proof. For a proof see [10].

It follows from theorem 1 that under any risk neutral measure Q, we have
the following dynamics for processes rt, Yt and Kt:

drt = (a(Yt) + θtσ(Yt)− b(Yt)rt)dt+ σ(Yt)dW
Q
t (3)

Yt = Y0 +
∑

zij∈Z

zijN
Q
t (zij)

Kt = t−
∑

zij∈Z

∫ t

0

Ks−dN
Q
s (zij)

Specifying a risk neutral measure requires the knowledge of θ, the market
price of risk but also the m(m− 1) other parameters i.e. the ψt(zij)’s. These
represent the market price of regime switch risks for jumps from state j to
state i.
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Remark 5. It is clear from equation 3 and proposition 3 that the distribution
of rt|FTn

under Q is the same as that in proposition 3 with a(YTn
) replaced

by a(YTn) + θTnσ(YTn).

Suppose a measure Q has been chosen. As far as pricing is concerned, it
is well known that the price Pt at time t of a contingent claim whose payoff
is given by an FT measurable square integrable random variable H is given
by

Pt = EQ[e−
∫ T

t
rsdsH|Ft] (4)

Remark 6. Equation 4 implies that we treat Yt as an observable variable as
argued in Silvestrov and Stenberg [14].

The process (rt, Yt) does not -in general- satisfy the Markov property but
process (rt, Yt,Kt) does and so we can write:

Pt = EQ[e−
∫ T

t
rsdsH|rt, Yt,Kt]

In particular the price of a zero-coupon T -bond is given by

Pt = EQ[e−
∫ T

t
rsds|rt, Yt,Kt] = f(t, r, y, k)

This leads to the following result

Theorem 2. The price f(t, r, y, k) of a zero-coupon bond is given by the
solution to the following system of integro-differential equations (one for each
possible state i)

rf = Lf + Sf ∀(t, r, k) ∈ [0, T ]× R+
0 × R+

0

where (with the subscript on f indicating the partial derivatives)

Lf = ft(t, r, i, k) + fk(t, r, i, k) + (a(i) + θσ(i)− b(i)r)fr(t, r, i, k) +
1
2
frr(t, r, i, k)σ2(i)

Sf =
∑
j 6=i

(f(t, r, j, 0)− f(t, r, i, k))λQ
t (zji)

with boundary condition:

f(T, r, i, k) = 1 ∀i ∈ E ∀r, k ∈ R+
0

Proof. This follows from Feynman-Kac theory and the fact that (rt, Yt,Kt)
is a Markov process.

Remark 7. In theorem 2, we clearly see the impact of the market price of
risk and the market prices of regime switch risk on the price of a zero-coupon
bond.
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