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Extended Abstract

In this work, we propose a functional approach to cluster municipalities into
zones characterized by different criticality levels of atmospheric pollution.
Specifically, we consider air pollutant time series as functional data ([9]) and
propose strategies to cluster them as well as to aggregate them at munici-
pality scale. Our proposal is meant to meet a request of the European Air
Quality Framework Directive (1996/62/CE) that imposes land classification,
so-called “zoning”, to distinguish zones which need further actions from those
which only need maintenance. The national implementations of EU Direc-
tives delegate the air quality assessment responsibility to Italian Regions and
here our proposed approach is applied to Piemonte (Northern Italy) air qual-
ity data of the year 2005.

Data are output of a three-dimensional deterministic modeling system
implemented by the Area Previsione e Monitoraggio Ambientale of the en-
vironmental agency ARPA Piemonte. Main atmospheric pollutant concen-
tration fields (such as CO, SO2, PM10 and NO2) are produced on an hourly
basis over a regular grid that has a horizontal resolution of 4 km and covers
Piemonte, neighboring Italian regions and foreign countries [2]. Hence avail-
able data are not observed but “artificial”, however the European law allows
their use in the air quality assessment. Nevertheless, comparing the output
of the deterministic model with observations provided by the Piemonte moni-
toring network it turns out that concentrations are sometime underevaluated
or overevaluated. Hence, a procedure of kriging with external drift is used
to assimilate observed data in concentration fields (see [10] and [11]), that
are “corrected” before to be used in the clustering. A cross validation anal-
ysis shows that kriging results are satisfactory (for further details see Ghigo
(2009) [6]).

Since municipalities are the reference territorial administrative units for
undertaking actions, we propose to upscale data from a regular grid to mu-
nicipalities. The aggregation at municipality scale can be realized solving the
so-called “change of support problem”, retrieving a value of a random field
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on an area starting from its values on points ([5] and [4]) for every fixed time.
The first simple solution is to integrate over the area, that means to average
the field values weighted by areas over the cells belonging to a certain mu-
nicipality (MeanAreas). Other two alternatives for the aggregation are the
average of the field values weighted by the building percentage (MeanBuilt)
for every cell - a point in the grid represents a cell - and the 90th percentile
over the cell values in a municipality (90perc). The building percentage is
an important indicator of the anthropic activity which could generate more
pollution in a municipality, whereas a wide country area could not contribute
at all. Instead the 90th percentile is chosen as a measure of extreme cases in
a municipality, in a precautionary perspective.

The pre-processing of data and the municipality upscaling procedures are
applied singularly for each pollutant. In order to look at the global air quality
status and to obtain an overall Piemonte zoning, we propose two strategies
to summarize time series (getting pollutants aggregation): evaluating an air
quality index introduced by Bruno and Cocchi [3] and carrying out a Multi-
variate Functional Principal Component Analysis (MFPCA).
Within the BC (Bruno and Cocchi) air quality family an aggregation over
pollutants by the maximum function is proposed, in order to keep information
about critical cases, to obtain BC index time series for all the municipalities.
Considering these time series as functional data, and preserving their tempo-
ral patterns, we can cluster them ([1]) and obtain groups of municipalities,
through a functional cluster analysis where Partitioning Around Medoids al-
gorithm (PAM, [8]) is embedded (see also [7]). PAM allows to have an object
- the so-called “medoid” - representing the cluster, which in this case will be
a curve showing the temporal evolution of the air quality index.
As alternative technique, we explore the Functional Principal Component
Analysis in its multivariate version that allow to consider several pollutants
taking into account their interactions. At a second step, we apply the PAM
algorithm to the scores of the principal components, obtaining groups of
municipalities. In this case the medoids are scores where the temporal com-
ponent is integrated out.

Results obtained by the proposed methodologies are displayed in Figure 1.
Using color gradations (as traffic lights) changing with cluster concentration
mean values allows to better identify different criticality levels. The most
critical group, the red one, lengthens over the main road network: it includes
big towns - as Torino, Alessandria, Novara - and their suburbs, characterized
by industrialization. The orange cluster is formed by piedmont municipali-
ties, whereas mountain municipalities are grouped in the green cluster, that
is the less critical one.
Looking at the six maps it seems that the municipalities clusters obtained
by the two different summary methods and the three different upscaling al-
gorithms are quite similar. The maps (a)-(c) in Figure 1 are the result of
multi-pollutant zoning through BC index: the small number of municipalities
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migrating from a group to another one when we change the upscaling algo-
rithm confirms that these maps are not so different. However, the functional
clustering on BC index time series allows us to look at the representative
temporal evolution in the different zones by medoids.
In the two block average upscaling cases with MFPCA clustering (maps (d)
and (e) in Figure 1), the obtained groups of municipalities are slightly dif-
ferent than in the 90th percentile upscaling case (map (f)). This difference
seems due to the importance of SO2 in the second principal component when
we carry out the MFPCA with MeanAreas and MeanBuilt, while with 90perc
the variability is mostly explained by PM10.

All the results can be considered precautionary. We will furtherly discuss
and compare the results of the different analysis strategies. For this goal, we
also quantify the migration of municipalities among clusters and visualize it
constructing three-color maps of differences. On another hand, policy makers
could choose to adopt one of our proposals as the best strategy taking into
account their knowledge about the land use and their constraints in making
decisions for the different zones.

(a) BC MeanAreas (b) BC MeanBuilt (c) BC 90perc

(d) MFPCA MeanAreas (e) MFPCA MeanBuilt (f) MFPCA 90perc

Fig. 1. Multi-pollutant risk maps obtained through BC index (top) and MFPCA
(bottom). Traffic light colors are associated with criticality of air quality status.
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Abstract. The main result of this paper is the extension of the AMC approach
exposed in [1], to the discrete-time setting. Besides, extension to the tracking
problem is considered. The stability and robustness properties of the adaptive
mixing control scheme are anaylized. It is shown that in the ideal case, when no
disturbances or unmodelled dynamics are present, the tracking error converges to
zero; otherwise the mean-square tracking error is of the order of the modeling error
provided the unmodeled dynamics satisfy a norm-bound condition.
Keywords: Robust adaptive control, Multiple model adaptive control.

1 Introduction

All real systems are subjected to uncertainty due to unmodeled dynamics,
unknown system parameters, disturbances, and process changes. A practical
control design must be able to maintain performance and stability robustly
in the presence of these uncertainties. When model uncertainties are suffi-
ciently small, modern linear time invariant (LTI) control theories, e.g., H∞
and µ-synthesis, ensure satisfactory closed-loop objectives. However, changes
in operating conditions, failure or degradation of components, or unexpected
changes typically lead to a large parametric uncertainty, with the result that
a single fixed LTI controller may no longer achieve satisfactory closed-loop
behavior, let alone stability. The approach taken in this work is a novel mul-
tiple model adaptive control approach called adaptive mixing control (AMC),
shown in Fig. 1. Each of the N candidate controllers C1, . . . , CN is tuned
to a small subset of the parameter uncertainty. The set of candidate con-
trollers is sufficiently rich such that for every admissible plant there exists
at least one controller that achieves the performance objective. By moni-
toring the plant’s input/output data, the robust adaptive supervisor system
‘mixes’ the candidate controllers. The supervisor comprises two subsystems:
the online parameter estimator and the mixer. The online parameter estima-
tor generates real-time estimates θ(t) of the unknown parameter vector θ∗,
and the mixer determines the participation level each candidate controller
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Fig. 1. AMC architecture

based on θ(t). The AMC approach, developed in a continuous-time setting
in [1], is here analized in discrete-time: we also extend the adaptive control
objective to include the tracking problem, whereas [1] dealt with the regula-
tion problem. We establish that the closed-loop states remain bounded when
the scheme is applied to the true plant with multiplicative uncertainty and
bounded disturbance. When the true system matches the nominal model and
in the absence of an external disturbance, the tracking error e1 and input up

converge to zero.
The paper is organized as follows: preliminary definition and notation are

exposed in section II. Section III deals with the problem formulation and the
main theorem. The key results used in the stability and robustness analysis
of the adaptive mixing control scheme are stated in the appendix (the proofs
are omitted for lack of space).

2 Notation and Preliminaries

For A ∈ R
m×n, the transpose of A is denoted by AT . If y : Z

+ → R
n, then

the l2δ norm of y is:

‖yk‖2δ ,

(

k
∑

i=0

δk−iyT (i)y(i)

)1/2

(1)

where 0 < δ ≤ 1 is a constant, provided that the sum in (1) exists. By ‖yk‖2

we mean ‖yk‖2δ with δ = 1, and we say that y ∈ l2e if ‖yk‖2 exists ∀k ∈ Z
+.

Let y ∈ l2e, and consider the set

S(µ) =

{

y :
k+N−1
∑

i=k

yT (i)y(i) ≤ c0µN + c1, ∀k,N ≥ 0

}

(2)

for a given constant µ, where c0, c1 ≥ 0 are some finite constants independent
of µ. We say that y is µ-small in the mean square sense (m.s.s.) if y ∈ S(µ).
Let H(z) and h(k) be the transfer function and impulse response, respectively,
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of some LTI system. If H(z) is a proper transfer function and analytic in
|z| ≥

√
δ for some δ ≥ 0, then the ‖·‖2δ system norm of H(z) is defined as

‖H‖2δ , 1√
2π

{

∫ 2π

0

∣

∣

∣
H(

√
δejω)

∣

∣

∣

2

dω

}1/2

. The induced l∞ system norm of

H is given by ‖H‖1 , ‖h‖1.

3 Problem Formulation

The objective is to design a controller for the uncertain plant

yp = G(z, θ∗)(up + d), G(z, θ∗) = G0(z, θ∗)(1 + ∆m(z)) (3)

G0(z, θ∗) =
N0(z, θ∗)

D0(z, θ∗)
=

θ∗T
b αm(z)

zn + θ∗T
a αn−1(z)

(4)

where G0(z, θ∗) represents the nominal plant; the vector θ∗ , [θ∗T
b θ∗T

a ]T ∈
Ω ⊂ R

2n contains the unknown parameters of G0(z, θ∗); αn−1(z) , [zn−1 zn−2 · · · z 1];
∆m(z) is an unknown multiplicative perturbation; and d is a bounded distur-
bance, i.e., |d(k)| ≤ d0, ∀k ∈ Z+. We make the following plant assumptions:

P1. D0(z, θ∗) is a monic polynomial whose degree n is known.
P2. Degree (N0(z, θ∗)) = m ≤ n − 1.
P3. ∆m(z) is proper, rational, and analytic in |z| ≥

√
δ0 for some known

δ0 > 0.
P4. θ∗ ∈ Ω for some known compact convex set Ω ⊂ R

2n.

It should be emphasized that both unstable and nonminimum phase plants
are admissible despite requirements P1-P4. The control objective is to choose
the plant input up so that the plant output yp follow a certain class of refer-
ence signals ym. We include tracking by using the internal model principle
as follows: the reference signal ym ∈ l∞ is assumed to satisfy

Qm(z)ym(k) = 0 (5)

where Qm(z), known as the internal model of ym, is a known monic polyno-
mial of degree q with all roots in |z| ≤ 1. Qm(z) is assumed to satisfy

P5. Qm(z), Zp(z) are coprime.

The parameter set Ω is divided into N smaller subsets Ω1, . . . , ΩN . The
parameter partition P ,

{

Ωi ⊂ R
2n
}

i∈I , where I denotes the index set

{1, . . . , N} is developed such that each parameter subset Ωi is compact and
P covers Ω, i.e., Ω ⊂ ∪i∈IΩi. For each subset Ωi a LTI controller with
rational transfer function Ci(z) is synthetized such that the control law
up = −Ci(z)(yp − ym) yields a stable closed-loop system that meets the
performance requirements in the subset Ωi. Given the family of N candidate
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controllers C , {Ci(z)}i∈I , a multicontroller C(β) is constructed from C. The
multicontroller is a dynamical system capable of generating each candidate
control laws, as well as a mix of candidate control laws. The multicontroller
depends on the mixing signal β = [β1, . . . , βN ]

T ∈ [0, 1]N which determines
the participation level of the candidate controllers. For fixed values of β the
multicontroller up = −C(z;β)(yp − ym) has the transfer function:

P̂ (z;β)

L̂(z;β)Qm(z)
=

p0(β)zr+q−1 + p̄T (β)αr+q−2(z)

zr+q−1 + l̄T (β)αr+q−2(z)
(6)

The mixer implements the mapping β : Ω 7→ Bθ ⊂ [0, 1]N . The following
property of β and of the multicontroller C(β) are assumed

M1. β(θ) is Lipschitz in Ω.
C1. The elements p0(β), p̄(β), and l̄(β) are Lipschitz respect to β.
C2. For all θ∗ ∈ Ω, let β∗ , β(θ∗); then C(z;β∗) internally stabilizes the

plant G(z; θ∗).

Property M1, together with C1 ensures that if θ is tuned slowly then
the closed-loop system will vary slowly. Property C2 ensures that C(β(θ))
is a certainty equivalence stabilizing controller. Construction of the multi-
controller involves interpolating the candidate controllers over the parameter
overlaps. Numerous controller interpolation approaches have been proposed
in the context of gain scheduling. These methods interpolate controller poles,
zeros, and gains [2]; solutions of the Riccati equations for an H∞ design [3];
state and observer gains [4]; controller output blending, i.e., u =

∑p
i=1 ui.

As in gain scheduling, interpolation methods may not satisfy the point-wise
stability requirement C2 (cf. the counter example of [4]) that should be pre-
viously verified. Otherwise, there also exist theoretically justified methods,
which can be used to construct the multicontroller in order to assure property
C2 [4].

The adaptive mixing law approach replaces θ∗ with its estimate θp. Be-
cause of the presence of multiplicative uncertainty ∆m(z) and disturbance d,
we use a robust online parameter estimator.

θp(k) = Pr
Ω

(θp(k − 1) + Γǫ(k)φ(k)) , ǫ(k) =
z(k) − θT

p (k − 1)φ(k)

m2
s(k)

(7)

m2
s(k) = 1 + φT (k)φ(k) + nd(k), nd(k + 1) = δ0nd(k) + u2

p(k) + y2
p(k)(8)

where Pr stands for the projection operator that forces the estimated param-
eters to stay within a specified convex set in the parameter space, 0 < Γ < 2,

z(k) = zn

Λp(z)Fη(z)yp(k), φ(k) =
[

αT
m(z)

Λp(z) Fη(z)up(k) − αT
n−1

(z)

Λp(z) Fη(z)yp(k)
]T

,

Λp is a Hurwitz polynomial of degree n, and Fη a proper stable minimum-
phase filter. The adaptive law (7)-(8) guarantees:

E1. ǫ(k), ǫ(k)ms(k), θp(k) ∈ l∞.
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E2. ǫ(k), ǫ(k)ms(k), |θp(k) − θp(k − 1)| ∈ S
(

η2

m2
s

)

if ∆m, d 6= 0.

E3. ǫ(k), ǫ(k)ms(k), |θp(k) − θp(k − 1)| ∈ l2 if ∆m, d = 0.

Theorem 1. Let the unknown plant be given by (3)-(4) with internal model
(5) and satisfying the plant assumptions P1-P5. Consider the adaptive mix-
ing controller with the multicontroller C(β(θ)) given by (6) and satisfying
assumptions C1-C2; mixer satisfying M1; and robust adaptive law given by
(7)-(8). Then the following results hold

1. If ∆m, d = 0, then up(k), e1(k) , yp(k) − ym(k) → 0 as k → ∞.
2. If ∆m, d 6= 0, there exists µ∗ > 0 such that, if c(∆2

1 + ∆2
2) < µ∗ where

∆1 =
∥

∥

∥

N0∆mFη

Λp

∥

∥

∥

2δ0

, ∆2 =
∥

∥

∥

N0(1+∆m)Fη

Λp

∥

∥

∥

1
d0 and c > 0 a finite constant,

then the adaptive mixing control scheme guarantees up, e1, ∆up, ∆e1 ∈
l∞ and

∑k−1
i=0 |e1(i)|2 ≤ c0µ

2k + c1, where µ2 = c(∆2
1 + ∆2

2).

Proof - For lack of space, only the main points of the proof are given.
Case (1):

Step 1. Following the guidelines used in [5] for the stability proof of the
discrete-time Adaptive Pole Placement Control (APPC) we can manipulate
the control law and the normalized estimation error equations to obtain

x(k + 1) = A(k)x(k) + b1(k)ǫm2
s(k) + b2ym1(k) (9)

up(k) = CT
1 (k)x(k) + d11(k)ǫm2

s(k) + d12ym1(k) (10)

yp(k) = CT
2 (k)x(k) + d21(k)ǫm2

s(k) + d22ym1(k) (11)

where x , [yf (k + n̄ + q − 2), . . . , yf (k), uf (k + n̄ + q − 2), . . . , uf (k)]
T
, uf =

u/Λ, yf = y/Λ, Λ a Hurwitz polynomial, n̄ = max {n, r}, ym1 , P̂
Λ ym ∈ l∞.

Step 2. We will establish the exponential stability of the homogeneous
part of (9). It can be demonstrated that for each frozen time k

det(zI − A(k)) = R̂pΛ̄q · L̂Qm + P̂ ẐpΛ̄q = A∗(z, k)Λ̄q(z) (12)

where A∗(z, k) is the characteristic polynomial of the closed-loop formed by
the estimated plant and the controller. Λ̄q is a Hurwitz polynomial, and
thanks to C2, A∗(z, k) is Hurwitz at each frozen time k, so that the matrix
A(k) has stable eigenvalues at each frozen time k. Let’s note that p0, p̄, l̄ are
function of β, θp, which are function of time k

∆p0 =
∆p0

∆β

∆β

∆θp
∆θp, ∆p̄ =

∆p̄

∆β

∆β

∆θp
∆θp, ∆l̄ =

∆l̄

∆β

∆β

∆θp
∆θp (13)

The first factors ∈ l∞ if C1 holds, the second factors ∈ l∞ if M1 holds, and
∆θp ∈ l2 thanks to E3. We conclude that ∆p0, ∆p̄, ∆l̄ ∈ l2. In addition p0,
p̄, l̄ ∈ l∞. This imply ‖∆A‖ ∈ l2 and, using Theorem 3 in the Appendix, we
conclude that the homogeneous part of (9) is exponentially stable (e.s.).
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Step 3. From Theorem 2 of Appendix we have, considering (9)

‖(yp)k‖2δ ≤ c
∥

∥(ǫm2
s)k

∥

∥

2δ
+ c, ‖(up)k‖2δ ≤ c

∥

∥(ǫm2
s)k

∥

∥

2δ
+ c (14)

for some δ > min
{

λ2
0, δ0

}

, where λ0 ∈ (0, 1) is the exponential convergence

rate of the omogenous part of (9). We define the fictitious signal m2
f (k) ,

1 + φT (k)φ(k) + ‖(yp)k−1‖2
2δ + ‖(up)k−1‖2

2δ. Since δ > δ0 we can verify that
|φ|, |ms| < mf . Besides using (14)

m2
f ≤ c + c

∥

∥(ǫm2
s)k−1

∥

∥

2

2δ
≤ c + c ‖(ǫmsmf )k−1‖2

2δ ∀k ≥ 0

Using the Discrete-Time Bellman-Grownwall Lemma [6],

m2
f ≤ c + c

k−1
∑

i=0





∏

i<j<k

(

1 + δk−1−jǫ2m2
s(j)

)

δk−1−iǫ2m2
s(i)





Using the fact that geometric mean is less than aritmetic mean, and ǫms ∈
l2 ∩ l∞, we obtain

m2
f ≤ c + c

k−1
∑

i=0

(

δk−1−iǫ2m2
s(i)

(

1 +
c

k − 1 − i

)k−1−i
)

≤ c + cec
k−1
∑

i=0

δk−1−iǫ2m2
s(i) ≤ c (15)

where we used again the fact that ǫms ∈ l2 ∩ l∞. We conclude that mf ∈ l∞
and ǫm2

s ∈ l2 ∩ l∞. Using the boundedness of mf , we can establish the
boundedness of all signals in the closed-loop plant: φ, up, yp, e1 ∈ l∞.

Step 4. Manipulating the the control law and the normalized estimation
error equations, and using the characteristic polynomial equation and the
Discrete-time Swapping Lemmas 1 and 4 [5], we can arrive to

e1 =
Λ

A∗ υ, υ = L̄Qm
1

Λ̄q
(ǫm2

s) − L̄(r1 − r2) + r3 − r4 − r5 − r6 (16)

where r1, r2 are defined as in Swapping Lemma 1 with W = Qm/Λ̄q, r3 is
as defined in Swapping Lemma 4 with f = Qm/Λup and r4, r5, r6 are as
defined in Swapping Lemma 4 with f = e1, Λ0 = Λ. Due to up, yp, e1 ∈ l∞
and ∆l, ∆p, ∆θa, ∆θb ∈ l2, it follows that r1, r2, r3, r4, r5, r6 ∈ l2. Since
ΛL̄Qm/(A∗Λ̄q) is e.s., we conclude that e1 ∈ l2. Besides, we can prove that
∆e1 is bounded, which implies that e1 → 0 as t → ∞.

Case (2):
Step 1. Following the same steps of the ideal case, we can arrive to

expressions (9)-(11). The modelling errors due to ∆m, d do not appear
explicitly in (9)-(11). The difference with respect to the ideal case is that

ǫ, ǫms,∆θp ∈ S(
η2

m2
s

) (17)
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Step 2. Like the ideal case A(k) has stable eigenvalues at each frozen

time k. Besides, ‖∆A‖ ∈ S( η2

m2
s
). From the form of η(k) it follows that

|η(k)| ≤ ∆1 ‖(up)k‖2δ0

+ ∆2 (18)

with ∆1, ∆2 as defined in Theorem 1. Let’s note that |η(k)| /ms ≤ ∆1 +∆2:
therefore, ǫ, ǫms, ∆θp, ∆A ∈ S(µ2), with µ2 , c(∆2

1 + ∆2
2). The conclusion

is that A(k) is e.s. provided that c(∆2
1 + ∆2

2) < µ∗ for some µ∗. This last
condition may not be satisfied, even for small ∆1 unless d0 is small enough:
one way to satisfy the condition is to opportunely design the filter Fη(z). We

continue supposing the condition satisfied, so that Φ(k2, k1) ≤ β0λ
k2−k1

0 for
some β0 > 0, 0 < λ0 < 1 and k2 ≥ k1 > 0.

Step 3. As in the ideal case, let δ > min
{

λ2
0, δ0

}

: we can show, using the
Diecrete-time Bellman-Gronwall Lemma and the fact that ǫms ∈ S(µ2)∩ l∞,
that for δ < 1/(1+µ2) we can again arrive to (15), and conclude that mf ∈ l∞
and ǫm2

s ∈ S(µ2) ∩ l∞.
Step 4. A bound for the tracking error e1 is obtained by expressing e1 in

terms of signals that are guaranteed by the adaptive law to be of the order
of the modelling error in the mean square sense. The tracking error equation
has exactly the same form as in the ideal case and is given by

e1 =
Λ(z)zn−1Qm(z)

A∗(z, k)
ǫm2

s +
Λ(z)αT

n−2

A∗(z, k)
ν0 (19)

where ν0 is the output of proper stable transfer functions whose inputs are
elements of ∆θp multiplied by bounded signals. Because ∆θp, ǫm2

s ∈ S(µ2),
it follows that e1 ∈ S(µ2).

4 Conclusions

We have presented the adaptive mixing control approach in a discrete-time
setting. A key contribution is the stability and analysis of the adaptive mixing
scheme. For the nominal and noiseless case, it was shown that the adaptive
mixing control scheme drives the plant states to zero. In the presence of
unmodeled dynamics and bounded disturbances that satisfy specified bounds,
it was shown that the closed-loop state remains bounded and the tracking
error is of the order of the modeling error.

Appendix

Theorem 2. Consider the LTV system given by

x(k + 1) = A(k)x(k) + B(k)u(k), x(0) = x0 (20)

y(k) = CT (k)x(k) + D(k)u(k)
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If the state transition matrix Φ(k2, k1) of (20) satisfies

‖Φ(k2, k1)‖ ≤ β0λ
k2−k1

0 (21)

for some β0 > 0, 0 < λ0 < 1, and u ∈ l2e, then for any δ ∈ (δ1, 1], where
δ1 > λ2

0 is arbitrary, we have

(i) |x(k)| ≤ cβ0√
δ−λ2

0

‖uk‖2δ + ǫk

(ii) ‖xk‖2δ ≤ cβ0√
δ−1(δ−δ1)(δ1−λ2

0
)
‖uk‖2δ + ǫk

(iii) ‖yk‖2δ ≤ c0 ‖uk‖2δ + ǫk

where c0 = cβ0√
δ−1(δ−δ1)(δ1−λ2

0
)
supk ‖C(k)‖ + supk ‖D(k)‖, c = supk ‖B(k)‖,

and ǫk is a term exponentially decaying to zero due to x0 6= 0.

Theorem 3. We are interested in studying the stability of linear systems of
the form

x(k + 1) = A(k)x(k) (22)

Let the elements of A(k) in (22) be bounded functions of time and assume
that |λi(A(k))| ≤ σs, ∀i, ∀k ≥ 0, where 0 ≤ σs < 1. If any one of the
conditions

(a) ‖∆A(k)‖ ≤ µ
(b)

∑k+N−1
i=k ‖∆A(i)‖2 ≤ µ2N + α0, that is ‖∆A(k)‖ ∈ S(µ2)

is satisfied for some α0, µ ∈ [0,∞) and ∀k,N ≥ 0, then there exists a
µ∗ > 0 such that if µ ∈ [0, µ∗), the equilibrium state of (22) is uniformly
asymptotically stable (u.a.s.) in the large (that is equivalent to e.s.). Besides
if the following condition holds

(c) ‖∆A(k)‖ ∈ l2

the equilibrium state of (22) is uniformly asymptotically stable (u.a.s.) in the
large.
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Abstract. A chemostat is a fixed volume bioreactor in which microorganisms are
grown in a continuously renewed liquid medium. We propose a stochastic model
for the evolution of the concentrations in the single species and single substrate
case. It is obtained as a diffusion approximation of a pure jump Markov process,
whose increments are comparable in mean with the deterministic model. A specific
time scale, related to the noise intensity, is considered for each source of variation.
The geometric structure of the problem, usable by identification procedures, is
preserved both in the drift and diffusion term. We study the properties of this
model by numerical experiments.
Keywords: Chemostat, Diffusion approximation, Jump Markov process, Monte
Carlo.

1 Introduction

1.1 The chemostat

The chemostat (chemical environment is static) is a laboratory device used
to study the growth of microorganisms like yeast or bacteria. It consists in
a growth chamber populated with one or more species in a liquid medium
of fixed volume that is continuously renewed, see Figure 1.1. The inflow
contains the nutrient used by the bacteria to grow and reproduce while the
outflow eliminates the biomass together with the substrate. It was initially
designed to measure the specific growth rate of the species under study, by
maintaining constant the concentration in nutrient of the medium.

We consider here the single species B which uses the substrate S as its
nutrient to grow and reproduce. The experimental conditions are determined
by the substrate concentration in the influent Sin and by the dilution rate D.
Washout occurs when the dilution rate is so fast that the increase of biomass
within the growth chamber is not sufficient to balance the output. The quan-
tities of interest chosen to caracterize the system will be the concentrations
of the substrate and of the biomass at each time. This state can only vary
throught the effect of the two mechanic actions (inflow and outflow) and the
biological transformation, which is the increase of biomass by the uptake of
substrate.
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2 M. Joannides and I. Larramendy

Fig. 1. Operating principle of a chemostat: the growth chamber is provided with
a sterile liquid medium with a constant substrate concentration. The biomass is
partly evacuated with the outflow

1.2 Deterministic model

The system is classically described by an ordinary differential equation based
on a mass–balance principle (Bastin and Dochain[1]). We denote by bt and
st the respective concentrations of the biomass and of the substrate. Writing
the balance for each component of the system yields the ODE

ḃt = µ(st) bt −D bt (1)

ṡt = −k µ(st) bt +DSin −Dst , (2)

where µ(st) is the (bounded) specific growth rate of the species with limiting
factor S and k is a stoichiometric coefficient. Numerous models have been
proposed for the specific growth rate, among which the Monod model (un-
inhibited growth) and the Haldane model (inhibited growth) are the most
commonly used. They read respectively

µ(s) = µmax
s

KS + s
and µ(s) = µmax

s

KS + s+ s2

Ki

where the parameters µmax,Ks and Ki are to be estimated by statistical
procedures. This dynamical system has been extensively studied with re-
spect to many experimental conditions and growth models. To emphasize
the geometric structure of the system, we write the vector form(

ḃt
ṡt

)
= r(bt, st)

(
1
−k

)
+D

(
0
Sin

)
−D

(
bt
st

)
. (3)

with reaction kinetics r(st, bt) = µ(st) bt, that exhibits the three vector fields
corresponding to the three sources of variations.

To conclude this introduction, we notice that this deterministic descrip-
tion is based on the hypothesis that there are no stochastic fluctuations, or
at least that they can be neglected. Moreover, it is also questionable whether
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On geometry and scale of a stochastic chemostat 3

a space continuous formulation is still appropriate as far as washout is con-
cerned. Indeed, the population of microorganisms in the apparatus could
become so small that the concentration cannot any more be considered as
varying continuously.

2 Pure jump model

Although the deterministic approach is widespread, there is a need to take
in account the stochastic fluctuations inescapable when living organisms are
involved. Various attempts to introduce a noise component in system (3) have
been proposed, see e.g. Stephanopoulos et al.[12] or Imhof and Walcher[7].
This can be done by adding a diffusion coefficient to (3), or by adding a
noise term to its discretized version. However, the geometric structure of the
problem should be preserved by the perturbed system. Moreover, we should
have in mind the discrete nature of the real state. For theses reasons, we
propose to modelize the phenomenon by a pure jump Markov process with
three types of transitions associated with the three sources of variation. For
each type of transitions, the mass balance should be true in mean and at a
given scale. More precisely, let (Bt, St)t≥0 be the pure jump Markov process
whose transitions are described by

P[(Bt+h, St+h) = (b′, s′) | (Bt, St) = (b, s)] =

hKb r(b, s) + o(h) if (b′, s′) =
1
Kb

(1,−k)

hK inD + o(h) if (b′, s′) =
1
K in

(0, Sin)

hKoutD + o(h) if (b′, s′) =
1

Kout
(−b,−s)

1− h [Kb r(b, s) +D (K in +Kout)] + o(h) if (b′, s′) = (b, s)
0 otherwise

where Kb, K in and Kout are scaling constant. This means that the process
evolves only by jumps when an event E∆ occurs, for ∆ ∈ {b, in, out}, cor-
responding respectively to the biological transformation, the inflow and the
outflow. The rates λ∆(b, s) and the sizes y∆(b, s) of the jumps at a state
(b, s) are given by the following table

E∆ Eb Ein Eout

λ∆(b, s) Kb r(b, s) K inD KoutD

y∆(b, s)
1
Kb

(1,−k)
1
K in

(0, Sin)
1

Kout
(−b,−s)

We also set to 0 the rates leading to a non admissible transition, that is a
state outside the positive orthant.
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2.1 Semimartingale representation

The generator of the process described above reads

Af(b, s) =
∑

∆∈{b,in,out}

λ∆(b, s) [f((b, s) + y∆(b, s))− f(b, s)] , (4)

for any f in its domain. For such an f , we have a semimartingale represen-
tation thanks to the Dynkin’s formula

f(Bt, St) = f(B0, S0) +
∫ t

0

Af(Bs, Ss) ds+Mf
t

where Mf
t is a martingale. This formula remains valid for a wider class of

function, even unbounded, provided some integrability condition holds, see
e.g. Hamza and Klebaner [6] or Theorem 1.19 of Klebaner[8]. Since the
specific growth rate is bounded, there exists C > 0 such that∑

∆∈{b,in,out}

λ∆(b, s) |y∆(b, s)| ≤ C (1 + |(b, s)|) .

By Theorem 1.19 of Klebaner applied to the components of the identity
function, we get the semimartingale representation for the process itself

Bt = B0 +
∫ t

0

[r(Bs, Ss)−DBs] ds+MB
t

St = S0 +
∫ t

0

[−k r(Bs, Ss) +DSin −DSs] ds+MS
t

which is the integral form of the SDE(
dBt
dSt

)
=
[
r(Bt, St)

(
1
−k

)
+D

(
0
Sin

)
−D

(
Bt
St

)]
dt+

(
dMB

t

dMS
t

)
. (5)

We see that the dynamics of our process is the sum of the drift appearing
in (3) and of a martingale term carrying the stochastic perturbation.

3 Diffusion approximation

When the scaling parameters Kb,K in and Kout are ”reasonably” large, the
process evolves by small but frequent jumps. In that case a diffusion approx-
imation can be considered (Ethier and Kurtz[2]). Replacing the increments
of f in (4) by a Taylor’s expansion and dropping the terms of order greater
than two gives, for x = (b, s)

Ãf(x) :=
∑

∆∈{b,in,out}

λ∆(x)
[
∇f(x)∗ · y∆(x) +

1
2
y∗∆(x) ·Hf (x) · y∆(x)

]
= ∇f(x)∗·

∑
∆∈{b,in,out}

λ∆(x) y∆(x)+
1
2

∑
∆∈{b,in,out}

λ∆(x) y∗∆(x)·Hf (x)·y∆(x)
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where Hf (x) denotes the Hessian matrix of f . Ã is the generator of a diffusion
process X̃t = (B̃t, S̃t) which is solution of the SDE:

dX̃t =
∑

∆∈{b,in,out}

λ∆(X̃t) y∆(X̃t) dt+
∑

∆∈{b,in,out}

√
λ∆(X̃t) y∆(X̃t) dW∆

t

with independent standard brownian motions W b, W in and W out. Expand-
ing the sums yields the vector form

(
dB̃t
dS̃t

)
=
[
r(B̃t, S̃t)

(
1
−k

)
+D

(
0
Sin

)
−D

(
B̃t
S̃t

)]
dt

+

√
r(B̃t, S̃t)
Kb

(
1
−k

)
dW b

t +

√
D

K in

(
0
Sin

)
dW in

t +

√
D

Kout

(
B̃t
S̃t

)
dW out

t .

(6)

This last form is much comparable with (3). The trajectories are continuous
(almost surely) and the drift term is the same. Moreover the geometric struc-
ture is preserved by the diffusion term. Indeed, the stochastic perturbation
in the diffusion term appears as a sum of three independent gaussian noises,
each one acting along a vector field corresponding to a source of variation.
Finally, the scaling parameters can be reinterpreted as noise intensity on the
sources. Of course, it is possible to rewrite (6) as an SDE driven by a single
two–dimensional brownian motion. However this would break the geometric
understanding of the dynamics given by (6).

It should be noted that this diffusion model should be used away from
the axis. In particular, studying extinction time would not make sense, see
Pollett[10]. Finally, we observe that the diffusion coefficient vanishes as the
scaling parameters tend to infinity, so that we get back the deterministic
model.

4 Simulation algorithms

The pure jump model is classically simulated with the stochastic simulation
algorithm, a.k.a Gillespie algorithm (Gillepsie [4]), described below :

1. Initialization: let (b, s)← (b0, s0) and t← 0
2. while t < Tmax

• compute global rate: λ(b, s) =
∑
∆∈{b,in,out} λ∆(b, s)

• compute next time event (exponential): t← t+ E(λ(b, s))
• jump: (b, s)← (b, s) + y∆(b, s) , where y∆ is chosen with probability

λ∆
λ (b, s).
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For large scaling parameters, all rates may be so fast that the procedure
described above becomes unnecessarily slow. A number of variants have
been proposed to speed up the procedure (review in Wilkinson[13]), mostly
based on the approximation

(Bt+h, St+h) ' (Bt, St) +
∑

∆∈{b,in,out}

N∆ y∆(Bt, St)

where N∆ denotes the number of event E∆ that have occured within [t, t+h[.
We introduce

Assumption (i): The step size h is supposed to be small enough so that
the rates λ∆ do not vary significantly in the interval.

In that case, N∆ are Poisson variables of respective parameters λ∆(Bt, St)h.
This leads to the Poisson timestep method, described by the algorithm:

1. Initialization: let (b, s)← (b0, s0) and t← 0
2. while t < Tmax

• For ∆ ∈ {b, in, out}, draw N∆ ∼ P(λ∆(b, s)h)
• Commit events: (b, s)← (b, s) +

∑
∆∈{b,in,out}N∆ y∆(b, s)

• Increment time: t← t+ h

The timestep can also be adaptive, as in the tau–leap method, see Gillsepie[5].
Still following Gillespie[3], we note that the diffusion process introduced

above via a Taylor expansion, appears also as a numerical approximation of
the jump process. Indeed, consider now

Assumption (ii): The timestep h is sufficiently large so that many events
have occured within [t; t+ h[.

We can then use the normal approximation of the Poisson law, to get

P(λ∆(b, s)h) ' λ∆(b, s)h+
√
λ∆(b, s)

√
hN∆(0, 1)

and

(Bt+h, St+h) ' (Bt, St) + h
∑

∆∈{b,in,out}

λ∆(b, s) y∆(b, s)

+
√
h

∑
∆∈{b,in,out}

√
λ∆(b, s)N∆(0, 1) y∆(b, s)

which is nothing else but a Euler discretization scheme applied to the SDE (6).
As a result, numerical solutions of (B̃t, S̃t) obtained by such a scheme will
have approximately same behaviour as (Bt, St) sampled with time step h.
However, the choice of the time step remains problematic since it has to
meet the two antagonist requirements (i) and (ii).

The numerical simulations presented below use a Monod model for the
growth rate. Table 1 shows the values of the parameters. We use the Euler–
Maruyama scheme to simulate the solutions of the SDE involved, see Kloeden
and Platen[9].
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k µmax KS D Sin Kb K in Kout

10 3 h−1 6 g/l 0.12 h−1 0.5 g/l 107 105 105

Table 1. Parameter values
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Fig. 2. Evolution of the biomass concentration for the deterministic model bt, the
diffusion–approximation B̃t and the jump process Bt.
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Fig. 3. Evolution of the substrate concentration for the deterministic model st, the
diffusion–approximation S̃t and the jump process St.
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5 Conclusion

In this paper we have presented a way to account for randomness in a simple
chemostat, while preserving the geometric structure. Stochasticity is first
introduced with a pure jump Markov process whose infinitesimal increments
agree with the classical deterministic model at a specific time scale. Us-
ing integrability conditions, we obtained the stochastic differential equation
satisfied by this process.

Even if the fundamental structure of the system is discrete, it is reason-
able to describe it by a process with continuous trajectories. We therefore
introduced the diffusion approximation of the jump process, still preserving
the geometry. The constants corresponding to the specific time scales can
then be interpreted as the intensities of the independent noises affecting each
source of variation. Numerical experiments showed that the approximation
is safe provided that the system is far from ”washout”. It is expected that
the geometry of the process will lead to efficient statistical procedures.
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Abstract: The iterative schemes play a dominant role on evaluating parameters in Statistics. 
The target of this paper is to consider the first order Autoregressive Model, so important in 
Econometrics, as a “sequential approach” and construct the appropriate confidence intervals. 
A simulation study for different sample sizes provide evidence that the method performs 
rather well when the sample size is small. The normality is also investigated, in cases with 
small sample size. 
Keywords: Sequential design, Optimal Design, Autoregressive Model 

 
1  Introduction 
 

The sequential procedures, especially when the optimal experimental design is 
adopted, arise the question if Fisher’s information matrix is valid, as the 
observations are not independent, Ford et. al. (1985). Moreover when the 
sequential design approach is adopted, two lines of though are considered: a fully 
sequential design, or an equal batch sequential approach, Kitsos (1989). The fully 
sequential design has been defined as that one, were the number of observations, at 
each stage, coincide with the number of the parameters involved. Therefore for the 
Autoregressive model one observation is devoted at each stage.  
From an Econometric point of view, see Pindyck and Rubinfeld (1988) among 
others, it is rather difficult to consider an experimentation adopting the model, but 
for the Statistical Signal Process point of view, it can be certainly accepted, as of 
practical use. 
Therefore, in this paper, we face the Autoregressive model for both lines of though, 
as we believe both are complementary. 

Linear filter Input/Output (I/O) relations are well developed, adopting for the 
discrete time system, convolution representation of a linear system. Let ,  1tX t   

be a random discrete time random process with mean t EXt  , and covariance  

Cov( , ) {( )( )}t t t tt t E X X      . 

Let  be the Kronecker δ-response of a discrete time linear filter. For the output 

process  (described by the convolution integral) we consider 
kh

tY

  t t kY X k  , (1) 

in the sense that, for an event  , from the underlying probability space , holds 
 ( )  ( )t t kY X k    , (1a) 

with probability one. 
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Now, consider that tX  is an autocorrelated discrete time two-sided random 

process, with mean μ and variance 2  with causal-δ-response  

 ,  0,  1k
th k    . (2) 

The expected value of  is (as  is weakly stationary), tY tY

 
1

 ,  
1t t kEY h t  


   

  . (3) 

The output variance is 

 

2 2

0

2 2

2
2

Var   

 ( )

,  .
1

t k t k k t k
t t k

t t k k t

t k t k

k

Y h h h h

k k

 

     




 

 
 

 
 

 

  

2 

 


 

 



  

At , 0k 

 2
2

1

1Y 



. (4) 

Therefore, from (4) as 1  , the output variance grows with no bound, but with 

1   the variance exists (and the process is weakly stationary). Therefore the 

existence of the variance is a problem, as well as its size, as “large” variance offers 
“small” information. From (1) and (2), we have that 

 

1 1
0 0

1
1 0

  

  

.

t t
t t t k t k

t t

t t
t t k t

t t

t

Y Y X X

X X X

X

   

  

 

   
 

 


 

   

k  

 

  

t

  

 
Hence,  
 1t tY Y X   . (5) 

This presentation provides evidence that tX  process represents “the new added 

information” to . If we are restricted to independent identically distributed (iid) 

(and not just uncorrelated) the relation (5) is called the first-order autoregressive 
model for the model, in contrast to the introduced term ordinary convolution 
representation (also known as moving- average model). 

tY

Relation (5) is the link between signal processing, econometric model and general 
statistical linear models. Indeed, the econometric approach is the other one which 
still faces practical problems due to the first-order autoregressive, and provides 
Least Square Estimates for the “unknown parameter”   based on the following 
line of thought. 
Consider the first-order autoregressive model 
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                                             1t tY Y t   ,                                      (6) 

where the errors t ’s are identically independently distributed from the 2(0, )N  , 

with  being the normal distribution as usually. ( , )N  

The conventional Least Square Estimate of θ, for 1  , is   
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where a stochastic ( initial value) , it is assumed to come from 0y
2

21
(0, ),  1N 





  

and is independent of t ’s. Recall (4): if the variance is “large” the constructed 

confidence intervals might be also “large” and therefore of no, practical, interest. 
Therefore we need a line of thought that might overpass these theoretical and 
practical problems, and we proceed as in the next section. 
 
2 Fully sequentially designs 
 

The distribution of ̂  could be used to provide inference about θ, but unfortunately 

it is not known, but only in limit. However, when   is not close to zero, the 

asymptotic distribution (normal) does not approximate well the true distribution in 
finite samples. Moreover we can consider (7) as a ratio estimate, which results 
problems on the existence of the moments. One of the excellent (dichotomous) 
theorem in Magnus (1986, Theorem 7) provides a simple criterion were the sth-
moment of a general ratio estimate of the form (7) exists or not, and a practical 
result to this theoretical consideration can be that for the LSE (7) the moments 
exist up to and including the order 2n  . 
With the above discussion it is clear that investigation is needed on how 
appropriate confidence intervals can be evaluated. 
The experiment design approach has a reasoning to be considered the model (6) 
due to (5), and the line of thought described in the first part of section 1. 
For the particular values of θ near to 1  the influence to the design, is essential 
and therefore to the process. This paper tries to answer these questions, adopting a 
theoretical line of thought, as well as a realistic on, through 1000 simulations, in 
this section. We are also considering if the nominal level influences the 
construction of the confidence interval. 
Recall the autoregressive model and the LSE (7). Actually, if we set 1t tX Y   the 

sample information can be evaluated as 

                                      2
12

1

1
I  

n

n t
t

y
 



  2

1
Jn .                                      (8) 

That certainly means: we have considered the observations being independent, 
although there are not, and Fisher’s information measure remains the same, Kitsos 
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(1989), Ford et. al (1985).  This result is due to statistical general linear model 
approach for model (6), see Seber (1977) among others. Moreover, as we are 
considering one observation at the end points, each time, we are ‘experimented’ at 
the interval [0, xi-1], and therefore a D-optimal design is constructed each time. In 
such a case the limiting design will be a D-optimal one, Kitsos (1989). This 
particular case, D-optimality, among the optimality criteria is the only one 
providing limiting results, and applied to construct an optimal design: choose as 
the next observation, that one, which minimizes the (generalized) variance. For the 
binary response problems, considering a quadratic response, Fornius (2008) 
constructed a sequential c-optimal design, but there is not a limiting result for it.  
For the particular Autoregressive model we can think in terms of the following 
well known result: we design, each time, at the end point, and therefore the linear 
model provides D-optimal estimates, each time. If the whole experimentation (or 
procedure) is D-optimal is another story and needs particular investigation. 
Fisher’s information nI  is a typical quantity to investigate if it is maximum, and 

therefore the inverse, the covariance minimum. But the D-optimal design for the 
autoregressive model is obtained if and only if we design at the end point.  
Lai and Siegmund (1983) proven that 

 1 2 ˆI ( ) (0,1)L
n n N   ,  

i.e. 

 1 2 2ˆJ ( ) (0, )L
n n N    . 

Therefore, a  confidence interval can be evaluated as (1 )%a
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with RSS being the Residual Sum of Squares, i.e. 

 .  2
1

1 1

ˆRSS   
n n

t n t
t t

Y Y 
 

  
The confidence interval evaluated by (9) it would be exact in case that in (6) 1tY   

are fixed in advance or selected independently of the other . A simulation study 

based on  experiments was performed, for different nominal levels, 
, 

tY

1000N 
0.2a0.05a   , different sample sizes, 10,5n   observations, with  

and . The skewness (s), kurtosis (κ), the Mean Square Error (MSE), the estimated 

coverage C and the average 

0y  0.0

  were evaluated for different true θ, even beyond the 
interval ( 1 . The results are performed in Table 1 and Table 2, the first line is 

referred to , the second to 

,1)

10n 


5n  , and provide evidence, we believe that the 
theoretical approach it is not completely applicable to small size data sets. 
 
3 Discussion 
 

From the above Tables it is easily realized that the choice of nominal level has an 
influence on the results: In both case the evaluated coverage probabilities are 
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unsatisfactory as are less than the expected, but in Table 2 is even worse due to the 
choice of the nominal level. But certainly are not that bad, with nominal level 0.05 
so that to provide any evidence that the confidence interval evaluation as in (9) 
should not be adopted. As far as the normality concerned the results are 
unsatisfactory when the parameter it in not within the interval ( 1,1) . The MeaN 

Square Error (MSE) is, as it was expected, larger when the sample size is reduced 
to , from . But still with such a small sample size the results are not 
disappointed. Therefore although the data was selected “sequentially”, i.e. not 
independently, the ratio estimates evaluated, provide evidence, that we can ignore 
the sequential nature of the design, see also Kitsos (1989), and evaluate the 
(parametric) Fisher’s information 

5n  10n 

 
Table 1. Simulation Study for the sequential model (4), a=0.05 
  C MSE s κ   

-1.5 .919 .03 3.88 21.07 -1.44 
 .968 .27 1.13 5.79 -1.29 

-1.0 .947 0,09 1.39 5.47 -.84 
 .969 0.27 0.08 10.00 -.82 

-0.5 .970 0.09 0.63 3.27 -0.42 
 .979 0.25 -0.09 6.06 -0.39 

0.0 .967 0.10 -0.06 2.56 0.00 
 .970 0.25 0.22 4.92 0.02 

0.5 .965 0.10 -0.58 3.01 0.41 
 .973 0.33 -0.68 4.95 0.79 

1.0 .955 0.09 -1.29 5.45 0.85 
 .975 0.61 -0.14 4.98 0.38 

1.5 .968 0.03 -3.96 22.21 1.45 
 .857 0.29 -1.23 6.02 1.29 

 
 

Table 2. Simulation Study for the sequential model (4), .20a   

  C MSE s κ   
-1.5 .773 0.04 4.78 31.35 -1.36 

 .764 0.25 1.56 6.98 -0.88 

-1.0 .778 0,09 1.12 4.64 -.85 
 .851 0.27 0.65 4.83 -.80 

-0.5 .868 0.08 0.61 3.43 -0.42 
 .862 0.27 -0.48 7.83 -0.39 

0.0 .856 0.09 -0.11 2.73 0.00 
 .904 0.24 0.09 5.50 0.00 

0.5 .839 0.09 -0.65 3.37 0.41 
 .866 0.25 -0.28 4.83 0.38 

1.0 .827 0.07 -1.38 5.84 0.87 
 .838 0.27 -0.51 4.84 0.81 

1.5 .770 0.03 -3.28 19.39 1.44 
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Abstract: In order to optimize operation of inexpensive non-laser 3D Structured Light 

Scanner adapted for fast Human Foot 3D Imaging, sequence of robust algorithms was 

designed, implemented and tested. During multi-frame image acquisition, sequence of 

Averaging and Median filters was used to reduce camera noise of different origin. A number 

of Robust Color Edge detectors used in the step of 3D calculations were evaluated and 

compared. The least amount of outliners was obtained in the algorithm evaluating Color 

Edge position by using scalar product in the RGB space after grey component elimination. 

Resulted cloud of 3D points was additionally processed by a sequence of logical operators 

and robust Median and Gaussian filters in order to eliminate 3D outliners.  Processed cloud 

of 3D Points was overlapped onto 2D color image of the human foot (combined from a 

relevant frames of multi-frame image), thus creating true color presentation of the Human 

Foot. After visual inspection on the 2D monitor (for different view angles), created cloud of 

3D points was converted to standard STL file and routed to 3D Printer for individual insole 

production. Accuracy and fitness of created insoles were evaluated and found accurate 

enough for chosen application.    

Keywords: Image Processing, 3D Imaging, 3D Scanner, Insole, Point Cloud, 3D Point 

Cloud, Structured Light Technique, Outliners Elimination, Robust Algorithms, Median 

Filters 

 

1  Introduction 
 

According to many specialists in podiatric medicine, problems, such as pain in the 

feet, knees, ankles, back and neck may be solved by usage of simple devices such 

as foot devices (insoles) matched individually to the patient. Mass production of 

"typical insoles" is inexpensive, but not satisfactory enough for many patients. 

Individual insole production in podiatry clinics by using plaster/foam templates is 

expensive (requires large amount of working hours of the qualified specialists) and, 

in some extent, inconvenient (dust in surgery clinic during mold treatment).   
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In order to overcome the mentioned above problems, it was proposed to measure 

3D shape of the human foot by using any appropriate 3D scanner (3D scanning is a 

simple, clean and fast process) and to produce individual insole by routing 

measured XYZ points to CNC (or desktop CNC, 3D printer) positioned remotely 

(*). 

State-of –the-art laser 3D scanners [1], [2], [3] can provide high XYZ accuracy, but 

their design requires usage of high precision mechanical elements, which leads to 

slow scan and to forbiddingly high price. Even more serious problem is that laser 

scanners are considered as not well suited for usage in the clinic because of danger 

of eye damage due to uncontrolled laser ray reflections.  

Non-laser structured light 3D scanners exhibit lower XYZ accuracy and have well-

known ambiguity problem in the real-life situations [3].  Time-sharing utilized in 

some inexpensive 3D scanners [4] solves ambiguity problem, but, practically, time 

sharing leads to forbiddingly slow scan. 

The newly designed compact structured light 3D scanner device [10] utilizes 

special color edge pattern. The pattern consists of a sequence of colored, white and 

black strips, creating unique and non-unique color edges. This multi-strip pattern 

solves ambiguity problem and enables fast scan with reasonable XYZ resolution. 

 

2  Robust Image Acquisition 
 

Acquisition software of the device [10] was designed to grab a set of at NS series of 

2D images; each series consisting of NF frames (2D images). Color slide 

containing multi-strip pattern was mechanically shifted after specific series 

acquisition completion. Typical NS value was set to 4. Values of NF varied from 1 

to 100. 

In order to lower the price, inexpensive USB CMOS camera was used for images 

acquisition. Preliminary tests revealed that CMOS camera noise and electronic 

distortions were  such significant that in order to enable reliable color strips 

detection NF mush be higher than 5. Practically, total number of frames was near 

50, which (together with delays required for proper operation of mechanical parts 

of the scanner) results in total acquisition time about 2-3 seconds. On acquisition 

start beep sound is heard, signaling that patient is asked not to move his foot until 

next beep, signaling that acquisition is finished.  

On the pre-process stage (immediately after acquisition completion), all NS* NF 

frames (still stored in the acquisition buffers) were passed through Directional 

Median Filter (DMF) in order to eliminate salt & pepper camera noise and camera 

synchronization spikes. Direction of the filtration was normal to the direction of 

the strips edges. Optimal Half-Width of the DMF was found to be 3. 

On the next step, all frames of the specific series were passed through combined 

directional Median-LPF filter (DMLPF). Parameters of DMLPF were empirically 
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chosen to reliably exclude invalid frames resulted from camera malfunctions and to 

additionally filter-out camera noise of different origin without compromise XYZ 

resolution. Optimal Half-Width of the DMLPF was found to be between 2 and 4. 
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3  Images Decolorizing and Alignment  
 

NS pre-processed images were decolorized and aligned by using 4 fixed markers of 

pre-defined shapes. Resulted NS aligned and decolorized images (ADI) appeared as 

if the camera was positioned normally to Z-plane from the fixed distance and as if 

the surface of human foot was absolutely white. Additionally, this procedure 

significantly reduced camera lens distortion (alignment accuracy was close to 

practical camera limit ~ 1 pixel) and uneven field illumination effects [2].  

 

4  Robust Color Edge Detector 
 

A number of different edge detectors [1], [2], [3] and color edge detectors [5], [6], 

[7] are known. Specifically to the described 3D scanner, a number of known color 

edge detectors adapted to the goals of current research were evaluated [8], [9], 

[11].  

The best results (practically zero numbers of outliners) were obtained by using the 

following procedure: 

To simplify the discussion, procedure of "Cyan-Magenta" color edge position 

detecting will be described here. 

After alignment (described in (3)), direction normal to color strips orientation 

becomes column direction.   

For each row and for each column of specific ADI two groups of pixels were 

organized: Left Color Strip (LCS) and Right Color Strip (RCS). Typically, color 

strip width (CSW) was set to 6 pixels. Possible colors of the strip were fixed as 

colors of color slide: {Black, Cyan, Magenta, Yellow, Gray}. For each {R,G,B} 

pixel of LCS and RCS the "closest" color was calculated by the following way: 

  

    IF  (R < BLACK_LEVEL)  

               AND 

          (G < BLACK_LEVEL) 

                AND 

          (B < BLACK_LEVEL) 

     THEN Pixel is Black 

 

     IF ( ABS(R-B) < NOISE_LEVEL ) 

                 AND 

          ( ABS(R-G) < NOISE_LEVEL ) 

                  AND  

          ( ABS(B-G) < NOISE_LEVEL ) 

      THEN Pixel is Gray 
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      MagentaValue = ScalarProduct ( {R,G,B}, {255,0,255} ) 

      CyanValue      = ScalarProduct ( {R,G,B}, {0,255,255} ) 

      YellowValue   = ScalarProduct ( {R,G,B}, {255,255,0} ) 

(Scalar product was calculated in {RGB} space after Gray component elimination) 

      IF (MagentaValue > CyanValue) AND (MagentaValue > YellowValue) 

      THEN Pixel is Magenta 

      IF (CyanValue > MagentaValue) AND (CyanValue > YellowValue) 

      THEN Pixel is Cyan  

      IF (YellowValue > CyanValue) AND (YellowValue > MagentaValue) 

      THEN Pixel is Yellow  

 

In case inside LCS at least (SCW-n) Cyan pixels were found, and inside RCS at 

least (SCW-n) Magenta pixels were found, the pixel between LCS and RCS was 

marked as "color edge candidate" (CEC).  Typically, n was set to 1 (as 5 against 1 

"vote"). For each CEC, robust average colors of LCS and RCS were recalculated 

and their scalar product (SP) was calculated. Column of CEC having maximal SP 

was marked as "Cyan-Magenta" Edge position {ColumnOfMax, row}. In case 

"Cyan-Magenta" CEC was nor found for the specific row, edge position was 

marked as invalid by setting Edge position as {-1, row}. 

This procedure was repeated for each color edge of the color slide. 

 

 

Fig. 1. CNC ready STL 3D Presentation of typical Human Foot  

5  XYZ Cloud calculations and processing 
 

Result of the color edge detector described in (4) is a plurality of curved lines. 

Every curved line was smoothed by using DMLPF (in the row direction). Then, by 
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using well known triangulation procedure [1], [3], cloud of XYZ points 

representing foot surface was generated.  

XYZ points positioned outside predefined box were outlined. Resulted XYZ cloud 

was used to create a number of user friendly 2D and 3D presentations of human 

foot in test. 

Additionally, standard STL file (see Fig. 1) was created and routed to 3D printer to 

evaluate accuracy of 3D Scanner. For the CMOS camera having VGA resolution 

640x480, XYZ accuracy of the smoothed surface was evaluated as 0.5mm. 

6  Conclusions 
 

Inexpensive structured light 3D Foot Scanner enables creation of insole prototypes 

with accuracy adequate for the specified goal. Resulted XYZ cloud was effectively 

clean from dangerous for CNC /3D Printer outliners.   
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General parametric reliability model
for reparable system

Makrem KRIT

Abstract

The aim of the paper is to expose a general form of modeling repairable system
reliability. It is a bathtub form presented as a superposition of two Non-Homogeneous
Poisson Processes (NHPP) and Homogeneous Poisson one (HPP). Moreover, the
particularity of this model allows taking account of system state improvement in time
course. The estimation of its parameters is considered through Maximum Likelihood
(ML) and Expectation-Maximization (EM) algorithm. Decision tests are revealed to
choose between a HPP and our model. Field failures data from an industrial setting
are used to fit the model. In order to specify asymptotic properties, a Monte-Carlo
simulation is employed, allowing to compare the estimate of our model by ML and
EM algorithm. In this procedure, we are going to discuss two various cases of
degradation.

Key words : repairable systems reliability, bathtub failure intensity, HPP, NHPP,
estimation, likelihood, EM algorithm, Monte-Carlo simulation.

1 Introduction

Industrial world, that was made a long time, before do not cease to gain reliability
and efficiency of their systems. The major stakes that can be placed in certainty are
mainly safety, availability, costs and especially these of maintenance and lifetime. Near
the industrial companies, we can recapitulate these stakes by the competitiveness and
the safety which became a temptation responsible for the management of maintenance
and for to improving the reliability objectives. It is in this direction that the methods
of maintenance optimization by reliability (MOR) were developed, which optimize the
maintenance programs on basis of the system functional analysis and the experience
returns: the best maintenance adapted to the good site. Random models and statistical
methods are used more and more to evaluate the industrial performance system in term
of reliability.

However, separately the experience returns, when a maintenance program is chosen,
we do not know its efficiency and its impact on the system operation. The objective is
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thus to model the system lifespan and to quantify its degradation state or its failure,
to appreciate the impact of a maintenance action on system behavior, and to find the
actions in order to differ or to eliminate degradation, starting from the knowledge of
events observation. In fact, the significant sorrow remains: at rest, there are the risks
that can blame reliability, availability or the system safety. Particularly, a very significant
characteristic to consider is the evaluation of the system failure intensity, and primarily
the discovery at the appropriate time of its degradation. Moreover, to optimize the
maintenance programs respecting the availability and to reduce the maintenance costs
using the Maintenance Optimization by Reliability (MOR), as it was the case in Jiang-
Ji-Xiao [11]. More clearly, it is a question on the one hand of building stochastic models
of failures process and repairs of various systems, and on the other hand, of implementing
the statistical methods to exploit the failures and maintenances data raised by experts
with an aim to evaluate the performance of these systems.

Degradation concepts were often used to characterize the lifetime of systems, and
to apply them to the maintenance action durations. In literature, several modelings of
this appearance, the most known of which are the exponential law and its two principal
alternatives; the Weibull model and the Gamma law, evoked by Ascher [1], Friedman-
Gertsbakh [7]. In industrial context, the authors distinguished two fundamental types
from data which is dependent in fact on two classes of systems; reparable and non-
reparable ones. They presented subordinated probabilistic models, in particular the ex-
ponential law and the Homogeneous Poisson Processes (HPP), characterizing an absence
of degradation, and which constitutes the base of reliability and maintenance modeling
(see e.g, Ascher-Feingold [2], Cohen-Sacrowitz [5]).

From a more realistic point of view, and in order to appear the instant when the
system degradation begins, two models were proposed: a simplest by Raftery-Ackman
[16], who breaks up the failure rate on two levels; initially, it is equal to λ1 up to one
instant γ0, then it changes level beyond γ0 to fix itself at a height λ2. The other, it was
developed by Zacks [19], to study a formulation for which the failure rate is constant at
the beginning then increases according to particular form as from the instant γ0. A more
general formulation than the two last allowed models is the one interesting interpretation,
evoked by Bertholon-Celeux [3]. So that he is able to study the degradation instant of
a non-reparable system. It’s lifespan which is modeled by means of a law which failure
rate is selected in the following way; it is constant up to one instant γ0, which translates
the absence of degradation until this date, then it increases according to general form of
Weibull, translating therefore a state of degradation (Jiang-Ji-Xiao [9], Jiang-Murthy-Ji
[10]).

By the same principle which is seen to specify the behavior change (i.e. appearance of
degradation) of reparable system, Bertholon-Celeux [3] has a great contribution to model
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the process of successive failures using Non Homogeneous Poisson Processes (NHPP)
which intensity is λ(t), having the same appearance as the failure rate for non-reparable
system. The deferring Poisson process is thus a superposition of two processes: an HPP
characterizing constant failure intensity equal to 1

η0
, and a NHPP specifying the Weibull

intensity, which starts from that γ0. In this case, the failure number until the instant
t is distributed according to Poisson law with Λ(t) =

∫ t
0 λ(u)du parameter. The Power

law Process (PLP) proposed in Gianpaolo [8] as a special form of NHPPs, which is com-
monly used in the practical reliability analysis of complex repairable system. Lately the
generalized exponential (GE) distribution, as a particular case of NHPPs was introduced
in Rameshwar-Debasis [17] as much as an alternative to the Weibull law. The purpose
of this article is to formulate a model, more general, more realistic, and aiming at the
behavior evolution of reparable system during all its life.

2 Modeling of the system degradation

We move in this section about the failure intensity in bathtub form to formulating
pace of such intensity on the three phases of the system life (see Mi [14]). Two forms
are distinguished one from the other by a small change over the service life period. For
the first form, as it indicates the hereafter figure, the failures process is modeled by
superposition of three Poisson processes; the first and the third non-homogeneous and
the second is homogeneous, of which the intensity is selected in following way :

It decline up to one instant noted by γ0 , according to the function of the form
1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
, translating the system improvement state in time course. After

that, it’s constant on a level 1
η0

(there will not be an advance of system degradation in this
phase) up to an instant γ1 which beyond the intensity increases in accordance with the

form function 1
η0

+ β2

η2

(
t−γ1

η2

)β2−1
, discovering a degradation case. This idea is originally

proposed by Mudholkar-Srivastava [15] in the context of non-reparable system and in the
context of complex system by Xie-Tang-Goh [18].

It to be proved that this degradation modeling comprises two terms (seconds in the
two expressions of phase I and II) that one finds in Weibull process, the first for a
shape parameter β1 < 1 and the second for one β2 > 1. Thus, the failure intensity is
defined as the sum of three functions: a first is constant and equal to 1

η0
, the second is

equal to β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
until the instant γ0, afterwards it’s canceled, and the third

function is null until the instant γ1 later equalizes to β2

η2

(
t−γ1

η2

)β2−1
. It’s proceeded by

admitting the assumption of perfect corrective maintenance (discover Lefebvre [12]), by
the principle of competing risk already stated in Bertholon-Bousquet-Celeux [4] like an
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Figure 1: Graphic Modeling

alternative against Weibull law, the waiting duration of next failure can be written by
the form X = min (Y, Z, W), where:

• Y a random variable, independent of Z and W, of Weibull law having as form the
first expression, with a shift parameter equal to zero.

• Z a random variable, independent of Y and W, of exponential law with parameter
η0, which corresponds to constant failure intensity equalizes to 1

η0
.

• W a random variable of Weibull law having a shift parameter equal to γ1.

Our proposal, with the help of system behavior modeling, characterizes the failures
process by intensity which is written as follows:

λ(t) =


1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
if 0 < t < γ0

1
η0

if γ0 ≤ t ≤ γ1

1
η0

+ β2

η2

(
t−γ1

η2

)β2−1
if t > γ1

(1)

Knowing this intensity, we can withdraw implicitly the system reliability, thanks to
the following relation:

R(t) = exp
{
−

∫ t

0
λ(u)du

}
(2)
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3 Parameters estimation of the model

3.1 Writing of likelihood function

The likelihood of data coming from a Poisson process, with general intensity λ(t), is
a function of seven parameters γ0, γ1, η0, η1, η2, β1, β2, and which is written as follows:

L(θ; t1, . . . , tn) =

[
n∏

i=1

λti

]
exp

{
−

n∑
i=1

∫ ti

ti−1

λsds

}
(3)

In this case, intensity has not the same form front γ0, between γ0 and γ1, and af-
terwards γ1. It’s in this direction that requires distinguishing the γ0 and γ1 positions,
in relation to n failure instants. With the aim of simplifying calculation, γ0 and γ1 will
be often fixed in two failure instants ti and tj to hold in check ti < tj , particularly in
degradation test treatment. For general case, where γ0 and γ1 are unspecified, that gives
n(n+1)

2 possible likelihood forms, denoted Li,j when one i observed failures front γ0 and
j failures between γ0 and γ1. The likelihood function is developed in the same way by
Bertholon-Bousquet-Celeux [4] is of the form:

Li,j =
[

i∏
k=1

(
1
η0

+ β1

η
β1
1

(
tβ1−1
k − γβ1−1

0

) )]
×

(
1
η0

)j
×

[
n∏

z=j+1

(
1
η0

+ β2

η2

(
tz−γ1

η2

)β2−1
) ]

× e
−

(
γ0
η1

)β1− 1
η0

tn−
(

tn−γ1
η2

)β2

with 1 ≤ i ≤ n

i + 1 ≤ j ≤ n

(4)

3.2 Property of maximum likelihood estimators (MLE)

Being fixed the instants γ0 and γ1 conditionally with failures data, the estimate
program can be formulated thus as fallowing:

max
γ0, γ1

(max (Li,j ( η0, η1, η2, β1, β2)))

The problem to pose is that likelihood is not limited. We can show the existence of
a path in the parameters space which brings to infinitely increasing likelihood, when the
shape parameters β1 and β2 themselves tend towards infinite one.

Demonstration (in appendix)

With the kept of preceding result, we arrive to distinguish β1 and β2 as two fixed
and known parameters (for example β1 = 1

2 , β2 = 2), to be able to use the maximum
likelihood procedure. Obviously, after testing the degradation existence unless he has
sufficient information on system is allowed to know the dynamics of his degradation and
to fix the two shape parameters.
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3.3 The use of EM algorithm

The application of EM algorithm, proposed by Dempster-Laird-Rubin [6], in our
model is on the one hand to discover an approximation of MLE in the case when γ0 and
γ1 are fixed in observed failure values, t(i). On the other hand, we calculate, after that the
likelihood obtained in each case corresponding to different (γ0, γ1) couples. Subsequently,
we select the (γ0, γ1) case which leads to the greatest likelihood, the parameters values is
obtained like the estimate of parameters true values. If the observations number is small,
so much it is better to fix γ0 and γ1elsewhere than in two observed failure values which
are not sufficiently numerous.

4 Homogeneity test of failures process

We try in this paragraph to formalize procedure allowing to decide if the failures
process is homogeneous or not. More precisely, in our context we prospect to know if
there is one γ0 to γ1period during which failures are purely accidental, and they trickle
from the mechanism which integrates degradation elsewhere this period. The assumption
test is thus defined as follows:{

H0 : the process is homogeneous Poisson
H1 : the process is managed by our model

A non-informative bayesian approach presentation of the test, such often the case in
industrial field where the data are very few and much censured. It is a question within

this framework to testing:

{
H0 : β1 = β2 = 1
H1 : β1 6= 1 and/or β2 6= 1

.

That study shows than the calculation of the bayesian factor BNH−H is complicated
and difficult to interpret, because β1and β2 parameters have an improper probabilistic
laws. But this factor depends primarily on ratio made up of likelihoods integrated into
η, of what sort : LNH(β1,β2)

LH
, as in Martz-Waller [13]. The components of this ratio re-

spectively represent relative likelihoods to Weibull process and HPP. In practice, for any
sample T , the function LNH(β1,β2)

LH
holds an unimodal form. It is equal to 1 in a first point

(β1, β2) = (1, 1), and in a second (β0
1 , β0

2). Geometrically and in space, the sample leading
to rejection of the HPP is that for which volume (since to matter of double integrals)
integrated in the square

([
1, β0

1

]
×

[
1, β0

2

])
and represent more than (100−α) confidence

of total volume. This volume is commented indeed like bayesian factor BNH−H .

Consequently, it appears interesting to clear up a decision rule directly starting from
the ratio LNH(β1,β2)

LH
. According to this decision rule, a sample involves rejection of HPP

when:
Pr

(
LNH(β1, β2)

LH
> 1 / T

)
≥ (100− α) (5)
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To define a critical region for our modeling, we first of all cover the discussion on
data likelihood already stated by the equation (4). For this fact, we fix the parameters
β1 and β2 without having infinite likelihood, and considering that the instants γ0 and
γ1 coincide with two instants of observed value properly by t(i) and t(j). Obviously, the
case γ0 = 0 and γ1 = tn corresponding to the HPP implies:

L0,n =
(

1
η0

)n

× e
− 1

η0
tn (6)

whence, we draw from it the following relation:

Ri,j(η0, η1, η2) =
[

i∏
k=1

(
1
η0

+ β1

η
β1
1

(
tβ1−1
k − tβ1−1

i

))]

×

[
n∏

z=j+1

(
1 + β2

η0

η2

(
tz−tj

η2

)β2−1
)]

× e
−

(
ti
η1

)β1−
(

tn−tj
η2

)β2
(7)

representing the likelihoods ratio : Li,j

L0,n
.

The critical region making it possible to answer the above-mentioned assumption
test of which decision variable equalizes with maxRi,j(η0, η1, η2) (see for example Kass-
Raftery [11]), and it is defined in the following way:

W = {maxRi,j(η0, η1, η2) ≥ K} (8)

The maximum is taken for i varying from 1 to n, and j varying from i + 1 to n,
since we seek to compare Li,j (for i = 1, . . . , n, and j = i + 1, . . . , n) with L0,n which
agrees on absence of improvement and degradation of system. A strong value of decision
variable (rigorously higher than K) thus plays in favor the alternative assumption. To
carry out this test we could check the principal property of independence between the
decision variable law and the parameter η0 under the homogeneity assumption. In fact,
we distinguish two cases one from the other according to check whether η0 is known or
not.

5 Numerical experiments

5.1 Application to real data

In a general gait, we initially propose to test the homogeneity of failures process
while supposing η0 as unknown, on basis of failure observed for reparable system. If the
test makes allows showing existence from improvement and degradation, then we estimate
the model parameters γ0, γ1, η0, η1, η2, β1, β2, by means of EM algorithm. The direct
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maximum likelihood method is used when one has sufficient information about system
allowing to know its improvement and degradation characters in outline to fix β1 and β2.

Whereas in the inexistence case of statistically significant improvement and degrada-
tion, the suitable model is the HPP. The inspection period is a phase of service life; the
system is thus not detected by significant improvement and degradation.

The real data analysis is object to real example concerning reparable system (hydraulic
pump) about nuclear sector of France which was used in Bertholon-Celeux [3]. The
studied system retains a hydraulic pump on which we have the observation of 6 successive
failures (18 months, 30, 82, 113, 121, 126).

The homogeneity test is first of all carried out, resulting that the decision variables
equal to 1.766 and the critical probability associated, evaluated by achievements simula-
tion of HPP, and takes the 25.13 value. The homogeneity assumption is then rejected.
This decision is ensured with Kolmogorov-Smirnov test by critical probability evaluated
to 0.63 (KSSTAT = 0.667). The alternative assumption is allowed and the failures
process is governed by our model as the figure shows it hereafter.

Figure 2: Empirical Cumulative Distribution Function

The estimate of model parameters using the EM algorithm gives the following results
:

- γ0 and γ1, respective instants of improvement end and degradation beginning are
estimated to 26.685 and 101.412.

- The reverse of accidental failure rate η0 is estimated by η̂0 = 43.855.
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- The scale parameters η1 and η2 are estimated respectively by η̂1 = 4.409 and
η̂2 = 4.361.

- The shape parameters β1 and β2 are estimated respectively by β̂1 = 1.098 and
β̂2 = 3.000.

5.2 Simulation phase

In order to obtain concrete numerical results a Monte-Carlo simulation is employed,
allowing to compare the estimate of our model by direct maximum likelihood (MLE) and
by EM algorithm. We present two different cases:

- A first case retains 100 simulations of 50 size sample of our model with parameters
η0 = 1, η1 = 1, β1 = 0.5, η2 = 1,β2 = 2,γ0 = 30, γ1 = 100.

- A second case retains 100 simulations of 50 size sample of our model with the same
parameters except for β2 = 3.

The results are stated in form of mean and a 95% confidence interval. Things would
be clearer studying the following table:

First case (β2 = 2) Second case (β2 = 3)
Mean C I Mean C I

η̂0 1.705 [1.411, 1.998] 1.331 [1.096, 1.565]
η̂1 0.850 [0.659, 1.041] 0.968 [0.810, 1.127]

MLE η̂2 0.880 [0.656, 1.104] 1.117 [0.935, 1.299]
γ̂0 30.454 [25.130, 35.778] 35.085 [49.625, 60.546]
γ̂1 104.723 [99.153, 110.293] 109.695 [104.528, 114.863]
η̂0 1.881 [1.527, 2.234] 1.156 [0.985, 1.326]
η̂1 0.801 [0.592, 1.008] 0.999 [0.875, 1.123]
β̂1 0.345 [0.184, 0.506] 0.454 [0.411, 0.496]

EM η̂2 0.799 [0.559, 1.038] 1.094 [0.959, 1.230]
β̂2 1.776 [1.464, 2.089] 2.783 [2.602, 2.963]
γ̂0 31.645 [27.091, 36.198] 32.560 [27.493, 37.627]
γ̂1 105.639 [100.028, 111.250] 109.229 [104.459, 113.998]

5.3 Discussion

Ultimately, subsequent the results of preceding tests, the failures process is a NHPP.
The empirical cumulative distribution function of real data is evolved in the same direction
as the simulated one. This process is then managed by our reliability model.
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Hence, the effects of estimate go in front that there is improvement of system until
the second failure (during 2.2 years of operation) and degradation starts from the fourth
failure (beyond 8.5 years of operation). Considering the same unit of data over the
improvement period and that of degradation, the scale parameters η1 and η2 over these
two periods do not have a significant difference. This can be easily to ensure with skew
of an averages difference traditional test.

The estimate value of β2 is higher than 2, the failure intensity is increasing and convex
announcing a marginal increase in degradation state. At the same time, β1 takes an
estimate value very near to 1 by saying that the intensity is practically constant. Thus,
the failures are rather accidental and cannot be due to youth diseases. This purified
model of improvement period, which is presented in Bertholon-Celeux [3] and Bertholon-
Bousquet-Celeux [4], remains able alone to concretize the hydraulic pump behavior.

In light of simulations, we state the following criticisms :

- The η̂j (j = 0, 1 ou 2) have the best behavior to one side for the first case where η̂0

appears to degrade.

- The γ̂j (j = 0 ou 1) are all acceptable.

- The variability of β̂j (j = 1 ou 2) is significant enough.

- In the aggregate, the EM procedures offer better estimators for the second case. The
values of β2 are rather higher than 2, then the curve is convex over the degradation
period as it is presented by our model.

Nevertheless, a possible disadvantage of our model is that it implies seven parameters.
In fact, it can be difficult to estimate these parameters for small-sized and/or censured
samples. For this reason even, the MLE appear more reliable for industrial applications.
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Appendix

The instants γ0 and γ1 are two fixed unspecified positive reals, but not necessarily in
two respective instants ti and tj . The likelihood of the data can be written as :

L =
(

1
η0

)i
×

[
i∏

k=1

(
1 + β1

η0

η
β1
1

(
tβ1−1
k − γβ1−1

0

) )]
×

(
1
η0

)j
×

(
1
η0

)n−i−j

[
n∏

z=j+1

(
1 + β2

η0

η2

(
tz−γ1

η2

)β2−1
)]

× e
−

(
γ0
η1

)β1− 1
η0

tn−
(

tn−γ1
η2

)β2

where i and j represent the observations number of samples which are located respec-
tively before the instant γ0 and between γ0 and γ1.

Thus we get the following log-likelihood function :

lnL = −n ln η0 +
[

i∑
k=1

ln
(

1 + β1
η0

η
β1
1

(
tβ1−1
k − γβ1−1

0

) )]

+

[
n∑

z=j+1
ln

(
1 + β2

η0

η2

(
tz−γ1

η2

)β2−1
)]

−
(

γ0

η1

)β1

− 1
η0

tn −
(

tn−γ1

η2

)β2

Let us fix in η0 which can take an unspecified value, and we define the estimates of
η1 and η2 parameters such as :

η̃1 = ti and η̃2 = tn − γ1.

At the point ( η0, η̃1, η̃2, β1, β2) , we obtain :

lnL = −n ln η0 + ln
(

1 + β1
η0

η̃
β1
1

(
tβ1−1
i − γβ1−1

0

))

+ ln
(

1 + β2
η0

η̃2

(
tn−γ1

η̃2

)β2−1
)
−

(
γ0

η̃1

)β1

− 1
η0

tn − 1

However, it proved implicitly as though :

1 + β1
η0

η̃
β1
1

(
tβ1−1
i − γβ1−1

0

)
= 1 + β1

[
η0

ti
− η0

ti

(
γ0

ti

)β1−1
]
−→ −∞ when β1 −→ +∞

in the same way 1 + β2
η0

η̃2

(
tn−γ1

η̃2

)β2−1
= 1 + β2

η0

tn−γ1
−→ +∞ when β2 −→ +∞.

lnL is consequently infinite at the time or instant when β1 → +∞ and/or β2 → +∞.
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Arithmetic Reduction of Intensity and Age models
with bathtub failure intensity

Makrem KRIT ∗ Abdelwaheb REBAÏ †

Abstract

In this paper, we will study the estimation of maintenance efficiency in Arithmetic
Reduction of Intensity (ARI) and Arithmetic Reduction of Age (ARA) models with a
memory m. These models have been proposed by Doyen (2005), the failure process is sim-
ply Non Homogeneous Poisson Process (NHPP). Our models are defined by reformulation
of ARI and ARA ones using bathtub failure intensity. This form is presented like a super-
position of two NHPP and Homogeneous Poisson one (HPP). Moreover, the particularity
of this model allows taking account of system state improvement in time course. The
maintenance effect is characterized by the change induced on the failure intensity before
and after failure during degradation period. To simplify study, the asymptotic properties
of failure process are derived. Then, the asymptotic normality of several maintenance
efficiency estimators can be proved in the case where the failure process without main-
tenance is known. Practically, the coverage rate of the asymptotic confidence intervals
issued from those estimators is studied.

Key words : repairable systems reliability, bathtub failure intensity, imperfect re-
pair, maintenance, Homogeneous Poisson Process, Non Homogeneous Poisson Process,
estimation, likelihood.

1 Introduction

However, separately the experience return, when a maintenance program is chosen, we
do not know its efficiency and its impact on the system operation. The objective is thus to
model the system lifespan and to quantify its degradation state or its failure, to appreciate the
impact of a maintenance action on system behavior, and to find the actions in order to differ
or to eliminate degradation, starting from the knowledge of events observation. Indeed, the
significant sorrow remains: still there are the risks which can blame reliability, availability or

∗Institut des Etudes Technologiques de Gafsa
†Ecole Supérieure de Commerce de Sfax
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the system safety. Particularly, a very significant characteristic to consider is the evaluation
of the system failure intensity, and primarily the discovery at the appropriate time of its
degradation. Moreover, to optimize the maintenance programs respecting the availability and
to reduce the maintenance costs using the maintenance optimization by reliability (MOR), as
it was the case in Jiang-Ji-Xiao [11]. More clearly, it is a question on the one hand of building
stochastic models of failures process and repairs of various systems, and on the other hand,
of implementing the statistical methods to exploit the failures and maintenances data raised
by experts with an aim to evaluate the performance of these systems.

The totality of momentous industrial systems is subjected to corrective and preventive
maintenance actions which are supposed to prolong their functioning life. The efficiency
evaluation of these maintenance actions is regarded with a great practical interest, but it was
rarely studied. In literature, several maintenance effect models have been proposed, knowing
for example, Pham-Wang [17] and Baxter-Kijima-Tortorella [3]. In their works, the authors
try to index and to classify the various maintenance models. The majority of these models
consider only the effect of CM; these models are known under the repair models name. These
models are useful for modeling real systems which is sustained by constant repair. Several
repair models, including the Brown-Proschan [5], Block-Borges-Savits [4], Kijima [14] models,
the more general models of Dorado-Hollander-Sethuraman [7] and Last-Szekli [16], have all
been useful in this regard. The Dorado-Hollander-Sethuraman model is much more general
than the virtual age, reaching to take into account a great number of varied maintenance
effects. Several theoretical properties of such models, including frequently estimators of the
fundamental failure intensity and asymptotic confidence intervals, these estimators have been
studied without assessing the maintenance efficiency. The same assumptions for these models
can be also used for the PM models only.

The degradation concept summer is often employed to characterize the system’s lifetime,
and to apply them to the maintenance action durations. In the literature, several model-
ings of this appearance, of which most known are the exponential law and its two principal
alternatives Weibull model and Gamma law, evoked by Ascher [1] and Friedman-Gertsbakh
[12]. In industrial context, the authors distinguished two fundamental types from data and
which are dependent in fact on two classes of systems; reparable and non-reparable ones.
They presented subordinated probabilistic models, in particular exponential law and HPP,
which characterize an absence of degradation, and which constitute the base of reliability
and maintenance modeling (see e.g. Ascher-Feingold [2], Cohen-Sacrowitz [6]). The idea of
our study is to develop some maintenance efficient estimators when the failure intensity in
bath-tub form is known. Thus, the system behavior without maintenance is known, and the
failure intensity is then supposed to be as a function of the single efficiency parameter ρ. For
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this fact, we try to proceed in the same way as Doyen [8], by introducing in the first place
the properties of maximum likelihood estimator, and in the second place by interesting in
exposing an explicit estimator. Several works was carried out on the parametric statistical
inference in imperfect repair models. We refer for example to the Shin-Lim-Lie [18] study in
which authors developed a preventive maintenance policy; it is the same work for Yun-Choung
[19]. For the case of ARA and ARI models, we evoke the Doyen-Gaudoin [10] and Doyen [9]
works. The numerical results for our study were at the estimate base by the maximization
likelihood method and its properties. Thus, it was necessary to initially study the behavior of
failure process. We are interested in the case of the ARIm and ARAm reformulated models,
like the most general case of these models classes.

2 Behavior of failure process

Our reformulation of the ARIm and ARAm models using failure intensity in bath-tub form
is made to consider that the maintenance effect relates to several preceding failure instants.
Obviously, during degradation period in view of the maintenance actions during improvement
and service life two periods of system are supposed ABAO (i.e. they are carried out just to
restore the system operation, considering that it’s still without degradation). We thus build
reformulations of the ARI and ARA models with memory m (ARIm and ARAm) by sup-
posing that this effect relates to previous m failure instants occurring all lasting degradation
period. Memory m represents the maximum number of previous instants preceding failure
instants occurring in degradation phase which can influence the failure intensity, always re-
flects markovian property. The two ARIm and ARAm reformulated models are characterized
by two failure intensities defined respectively by equations (1) and (2).

λt =



1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
if 0 < t < γ0

1
η0

if γ0 ≤ t ≤ γ1

1
η0

+ β2

η2

(
t−γ1

η2

)β2−1
− ρ

min(m−1, Nt−1)∑
k=Nγ1

(1− ρ)k β2

η2

(
TNt−k−γ1

η2

)β2−1
if t > γ1

(1)

and,

λt =



1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
if 0 < t < γ0

1
η0

if γ0 ≤ t ≤ γ1

1
η0

+ β2

η2

 t−γ1−ρ
min(m−1, Nt)∑

k=Nγ1

(1− ρ)kTNt−k

η2


β2−1

if t > γ1

(2)

3

407



It is noticed that for the ARIm model reformulation case, the maintenance effect does not
make vary the slope of failure intensity, it continues to move similarly as before failure. When
maintenance action is AGAN (of course beyond the instant γ1), the slope of failure intensity
is the same one as that of the renewed system (and not new in our model). For this reason,
beyond the instant γ1, maintenance action cannot in any case be perfect. In this case, the
efficiency parameter ρ cannot be higher than 1, allowing for intensity not to become negative.
Then it is the case of our reformulation of the ARAm model, correspondent to maintenance
actions which are more than perfect.

Like any ARA model case of simple failure intensity, from the instant γ1 the ARAm

reformulated models have failure intensity horizontally parallel to increasing part of initial
intensity. In the same way, the ARIm reformulated models have failure intensity vertically
parallel to increasing part of the initial intensity.

We request to confirm the interesting property of the ARIm and ARAm models presented
by Doyen-Gaudoin [10]. These models hold is what we call minimal and maximal degradation
intensities. The minimal degradation intensity is concreted as a maximal lower limit for failure
intensity. For our reformulation of the ARIm model, this intensity is defined, as follows:

For all t > γ1, λmin(t) =

{
(1− ρ)m λ(t) if 0 ≤ ρ ≤ 1
λ(t) if ρ ≤ 0

(3)

Demonstration :
Consent to the failure intensity is increasing for all t of interval ]γ1,+∞[, ∀ Nγ1 ≤ k ≤

Nt − 1, λ(TNt−k) ≤ λ(t),
Consequently,

λt−γ1 ≥ λ(t)− ρ
min(m−1, Nt−1)∑

k=Nγ1

(1− ρ)k λ(t) (4)

with λ(t) =
β2

η2

(
TNt−k

η2

)β2−1

In the same way,

λt ≥ λ(t)

1− ρ

m−1∑
k=Nγ1

(1− ρ)k

 = (1− ρ)mλ(t)

In this fact :
Pr (λt ≥ (1− ρ)mλ(t)) = 1
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Under the same condition, minimal degradation intensity of the ARAm reformulated
model is:

λmin(t) =

{
λ ((1− ρ)m(t)) if 0 ≤ ρ ≤ 1
λ(t) if ρ ≤ 0

(5)

By identical principle of minimal degradation intensity, we can similarly define maximal
degradation intensity: it is expressed as a minimal upper limit for failure intensity. For
our reformulations of the ARIm and ARAm models, maximal degradation intensity can be
respectively defined by the two following relations:

For all t > γ1, λmax(t) =

{
λ(t) if 0 ≤ ρ ≤ 1
(1− ρ)mλ(t) if ρ ≤ 0

(6)

And,

and, for all t > γ1, λmax(t) =

{
λ(t) if 0 ≤ ρ ≤ 1
λ ((1− ρ)m(t)) if ρ ≤ 0

(7)

The demonstrations of these last degradation intensities are very similar to that of the
ARIm reformulated model.

Figure 1: Failure intensity of ARA3 reformulated model in harmful and effective maintenance
cases.

The figure 1 represents the failure intensities of the ARI model with memory 3 like
particular ARIm case, for bath-tub failure intensity is defined by the parameters as: η0 = 26,

η1 = η2 = 200, β1 = 0.5, β2 = 3, γ0 = 1.6, γ1 = 2.7. These two failure intensities are defined
one for effective maintenance (0 < ρ < 1) and the other for harmful maintenance (ρ < 0). We
note in this representation for effective maintenance case, that in time course the difference
between minimal degradation intensity and failure intensity tends to decrease. It’s the same
in harmful maintenance case, for the maximal degradation intensity.
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Therefore, it appears in the effective maintenance case that the failure intensity and
the minimal degradation intensity remain about equivalent. For the harmful maintenance
case, the same property seems to be preserved but with the maximal degradation intensity.
Indeed, we develop the asymptotic intensity (same principle which followed by Doyen [8]) like
the minimal degradation intensity for the effective maintenance and the maximal degradation
intensity for the harmful maintenance. Consequently, we admit for our reformulation of the
ARAm model, like asymptotic failure intensity, the function: λ∞ = λ ((1− ρ)m(t)) . And the
function defined by λ∞ = (1− ρ)mλ(t) is considered as an asymptotic failure intensity of the
ARIm reformulated model.

In continuation, the initial intensity, λ(t), is supposed to be as a deterministic function,
which is not identically null and which is increasing during the period of the system degra-
dation (defined in Krit-Rebaï-Benbacha [15] without maintenance process). These conditions
necessarily imply : lim

t→+∞
Λ (t) = +∞. The function Λ is the cumulative failure intensity.

2.1 Asymptotic Behavior of failure process

In this paragraph, the idea is to show that the failure intensity (in particular it’s increasing
phase) and the asymptotic intensity have an identical behavior. Thus, we recall the property
presented in Doyen [8], that if exists a function λmin, not decreasing and verifies for our model
∀t > γ1: λmin(t), hence for all k ≥ 0: t− TNt−k = o(t)

If moreover λ is a regular variation function, then for t > γ1: λ(t)−λ(t + o(1)) = o(λ(t)).

Thereafter, the whole of asymptotic results of this study are rested on a rewriting of the
failure intensity, considered exclusively by finished memory models. By means of ρ

∑m−1
k=0 (1−

ρ)k = 1 − (1 − ρ)m, this new form of failure intensity is defined, for the ARIm reformulated
model, ∀t ≥ Tm ≥ Tγ1 , as:

λt = λ∞ (t)− ρ

(1− ρ)m

m−1∑
k=0

(1− ρ)k [λ∞ (t)− λ∞ (t + (t− TNt−k))] (8)

By means of the foregoing property, this formula is written as follows:

λt = λ∞ (t)− ρ

(1− ρ)m

m−1∑
k=0

(1− ρ)k [λ∞ (t)− λ∞ (t + o(1))]

= λ∞ (t) + o(λ∞(t))

In same way, for the ARAm reformulated models, for all t ≥ Tm ≥ Tγ1 :

λt = λ∞ (t)−

[
λ∞ (t)− λ∞

(
t +

ρ

(1− ρ)m

m−1∑
k=0

(1− ρ)k (t− TNt−k)

)]
(9)
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And that :

λt = λ∞ (t)− [λ∞ (t)− λ∞ (t + o(1))]

= λ∞ (t) + o(λ∞(t))

Consequently, for our reformulations of the ARIm and ARAm models, the failure intensity,
for all t > γ1, verify: λt = λ∞ (t) + o(λ∞(t)). Under the same conditions, the cumulative
failure intensity proves : Λt = Λ∞ (t) + o(Λ∞(t)). This first order of asymptotic expansion of
the failure intensity, make possible to verifies that the increasing phase of the failure intensity
and the asymptotic intensity of the ARIm and ARAm reformulated models of finished memory
have a same asymptotic behavior (like it was the remark on figure 1). In general case, this
result is valid only if:

- The maintenance actions are not perfect: ρ < 1;

- The initial intensity of the ARAm models is an increasing power function: λ (t) =
αβtβ−1, with α > 0, β > 1;

These two properties are already checked in our study, ρ < 1 (the maintenance actions
are not perfect) and the initial intensity has as an like increasing phase the function: 1

η0
+

β2

η2

(
t−γ1

η2

)β2−1
. It is a well an increasing power function when η2 > 0, β2 > 1.

-The initial intensity of the ARIm models is a function with increasing regular variations
(see, for example, Embrechts-Klüppelberg-Mikosch [11]), which verify : There exists θ > 0,

for all x > 0, lim
t→+∞

λ(xt)
λ(t) = xθ.

This assumption is also checked in our model case, seeing that the increasing phase of the
initial failure intensity verifies:

∃ β2 > 1, for all x > 0, lim
t→+∞

1
η0

+ β2

η2

(
xt−γ1

η2

)β2−1

1
η0

+ β2

η2

(
t−γ1

η2

)β2−1
= lim

t→+∞

(xt)β2−1

tβ2−1
= xβ2−1 (10)

Using the second order of asymptotic expansion of the cumulative failure intensity, Doyen
[8] goes more and expresses the difference between failure and asymptotic intensities. The
author proved that the cumulative failure intensity for the ARIm and ARAm models with the
power failure intensity. In consequence, for our reformulation with bath-tub failure intensity,
the cumulative failure intensity of the ARIm model can be written, for all t ≥ Tm, as:

Λt = Λ∞ (t) +
ρ

(1− ρ)m

m−1∑
k=0

(1− ρ)k

t∫
γ1

λ∞ (s)− λ∞ (TNs−k) ds (11)
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Thereafter, let’s suppose that through the asymptotic intensity, or in an equivalent way,
during the degradation phase of the system that the initial intensity is divergent. That’s to
say then the proposal that the cumulative failure intensity of the ARIm reformulated models
ensures:

for all t > γ1, Λt = Λ∞ (t) +
1− (1 + mρ) (1− ρ)m

ρ(1− ρ)m
lnλ(t) + o(lnλ(t)) (12)

By analogy with the ARIm reformulated models, and considering that the restriction of
our initial intensity on ]γ1,+∞[, is defined by:

λ]γ1,+∞[(t) =
1
η0

+
β2

η2

(
t− γ1

η2

)β2−1

then the cumulative failure intensity of the ARAm reformulated models verify, for all
t > γ1:

Λt = Λ∞ (t) + (β2 − 1)
1− (1 + mρ) (1− ρ)m

ρ(1− ρ)m
ln(t) + o(ln(t)) (13)

3 Estimate of maintenance efficiency

The object now is to study some estimators of maintenance efficiency since initial intensity
is known. In that case the failure intensity is supposed to depend on a simple parameter
ρ ∈ J : λt = λt(ρ). The true value of this parameter will be noted ρ0. Initially, the properties
of maximum likelihood estimators (MLE) are studied and explicit estimators are introduced.
We propose the following assumptions, appearing necessary for the treatment of this section.

- H1 : J0 = [ρ1, ρ2] is a known compact of R, included inside J and significant that
ρ1 < ρ0 < ρ2.

- H2 : The functions λmin, λmax are increasing, non null, and there exists a positive
constant c, checking for all ρ ∈ J and t ≥ γ1 : λmin(t) ≤ λt(ρ) ≤ λmax(t) and |λ′t(ρ)| ≤
cλmin(t), where λ′t(ρ) denotes the derivative in ρ of the restrictions on ]γ1,+∞[ of the
relations (1) and (2) respectively for the ARIm and ARAm reformulated models.

- H3 : The MLE is required in a known interval : J0 = [ρ1, ρ2] like that −∞ < ρ1 <

ρ0 < ρ2 < 1.

The MLE of maintenance efficiency, denoted ρ̂ML
t , is the value of ρ in J0 that maximizes

likelihood. The convergence results for the MLE maintenance efficiency are given as follows:
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For our reformulation of the ARIm model and under assumptions H1 and H3, the MLE

of maintenance efficiency parameter, for only one observation of the failure process throughout
interval ]γ1, t], checks:√

Λ(t)
(1− ρ0)m

(1− ρ0)m − (1− ρ̂ML
t )m L−→ N (0, 1) (14)

In the same way as previously, and under the assumptions H2 and H3, the MLE of
maintenance efficiency parameter of the ARAm reformulated model, for only one observation
of the failure process in the interval ]γ1, t], proves:√

(t− γ1)
β2

η2(1− ρ0)m(β2−1)
(1− ρ0)m(β2−1) − (1− ρ̂ML

t )m(β2−1) L−→ N (0, 1) (15)

As it was seen according to preceding assumptions, we do not know how to prove that
the MLE is convergent when the maximization of likelihood is made on ] − ∞, 1]. So the
MLE must be required in compact of ]−∞, 1] containing the true value ρ0 of maintenance
efficiency. The explicit estimators (EE), which are not present in this problem type, can
exist. These EE verify the same asymptotic properties as the MLE. They are based on
the fact that the cumulative failure intensity can be appearing nearer asymptotically by the
asymptotic intensity with an error proportional to a logarithm. The EE are also based on
the fact that the cumulative failure intensity verifies:

for all t > γ1, Λt = (1− ρ0)mΛ∞ (t) + o(Λ(t)) (16)

For the ARIm reformulated model and under the assumption H1, for only one observation
of the failure process over ]γ1, t], the EE of maintenance efficiency parameter is given by:

ρ̂E
t = 1−

[
Nt

Λ(t)

]1/m

(17)

Similarly with the ARIm reformulated model, an EE can be defined for the ARAm

reformulated model using the initial intensity in bath-tub form. Thus, we define near last
reformulation, under the H2 assumption, for only one observation of the failure process over
]γ1, t], the EE of maintenance efficiency parameter. This estimator is expressed by:

ρ̂E
t = 1−

[
η2Nt

tβ2

]1/[m(β2−1)]

(18)

These two EE verifies the same convergence property as that of MLE (given respectively
by the relations(16) and (17)). It is noticed that in particular case of the ARI1 model,
there exist an EE built from the true value of failure intensity. This estimator has the same
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properties as the other estimators. And considering that it is not taken into account in term
of its asymptotic development, we should hope that this estimator converges more quickly
than the other estimators. We find in Doyen [9] that this estimator is expressed under the
assumptions H1 and H3, for only one observation of the failure process on ]γ1, t], by the
following relation:

ρ̂E
t =

Λ(t)−Nt∫ t
γ1

λ (TNs) ds
(19)

proving the same convergence property as that of the MLE with m = 1.

In consideration to asymptotic normality of the estimators introduced in front, we main-
tain to define the Asymptotic Confidence Intervals (ACI). It is clear that for a same model,
MLE and EE verify the same properties, then they describe the identical ACI. Thus, we
can assimilate to the model ARIm reformulated model with finished memory, simultaneously
for two estimators under the assumptions H1, H2 and H3, an ACI for (1 − ρ0)m at level δ,
given by:

ACI(ρ) = (1− ρ̂)m +
u2

δ ±
√

u2
δ

[
4Λ(t)(1− ρ̂)m + u2

δ

]
2Λ(t)

where uδ indicate it 1 − δ
2 quantile of the reduced-centered normal law, ρ̂ indicate the

MLE or EE and Λ]γ1,+∞[(t) = 1
η0

t +
(

t−γ1

η2

)β2

.

In a similar way, we can define an ACI for the ARAm reformulated model. Under the
assumptions H1 and H3, the ACI for (1− ρ0)m of level δ is defined as follows:

ACI(ρ) = (1− ρ̂)m(β2−1) +
η2

(
u2

δ ±
√

u2
δ

[
4
η2

(t− λ1)
β2 (1− ρ̂)m(β2−1) + u2

δ

])
2 (t− λ1)

β2

3.1 Simulation phase

Using simulations groping of the ARIm and ARAm models one next to one and for a
given ACI, we estimate the coverage Rate (CR). This rate is expressed as the simulations
proportion for which the true value of the parameter is in the confidence interval. Obviously,
the CR converges to 1−δ when the number of observed failures n increases, where δ represents
the ACI threshold. Practically, the CR is a function only of the estimator quality used to
build the ACI. This is why we choose the CR as a comparison criterion for various estimators,
rather than the mean squared error as it was the case in Doyen-Gaudoin [10]. For this fact,
we have estimated over 10000 simulations with an initial intensity defined by the equation
below, the CR of the ACI at level 95 for m = 1, 2 or 3, β1 = 0.25 or 0.75, β2 = 1.5 or 3,
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ρ = −1,−0.7,−0.5,−0.2, 0, 0.2, 0.5, 0.7 or 0.9 and n = 5, 10, 20, 40, 60, 80 or 100.

λ(t) =


1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
if 0 < t < γ0

1
η0

if γ0 ≤ t ≤ γ1

1
η0

+ β2

η2

(
t−γ1

η2

)β2−1
if t > γ1

(20)

As it was often the study of empirical case of the Weibull model, the location and scale
parameters γ and η seem not to have influence on the CR value. Thus, the graphs are the
same ones for various parameters values γ0, γ1, η0, η1 and η2. The figures from 2 to 5 represent
the estimators CR according to number n of simulated failures, for different values of β1 and
β2, the efficiency parameter ρ is equal to 0.5.

The following notations are used in the various figures:

— MLE o ARA1 ∗ ARI1

· · · EE � ARA2 + ARI2

× ARA3 O ARI3

Figure 2: CR(n); β1= 0.25; β2 = 1.5 Figure 3: CR(n); β1= 0.25; β2 = 3

Figure 4: CR(n); β1= 0.75; β2 = 1.5 Figure 5: CR(n); β1= 0.75; β2 = 3

It is noticed that for the MLE, in the case of decreasing phase (which is always convex
in our model) of initial intensity is more convex (the value of the shape parameter β1 closer
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to zero, i.e. the system improves more quickly), the CR converges slowly for diverse models
(figures 2 and 3). This incident can be explained by the fact that the number of failures
occurring in the improvement period is proportional to the convexity degree of the initial
intensity. Whereas if the increasing phase of the initial intensity is concave, the CR of ARIm

reformulated models converges less quickly than that one of ARAm reformulated models, and
vice versa if the increasing phase is convex. These results are respectively illustrated by the
two figures 4 (β2 = 1.5) and 5 (β2 = 3). The idea is that in the convexity case (β2 > 2), while
making increase n and any thing remaining equal otherwise, the ARIm reformulated models
correspond to systems which are degraded more quickly than for those ARAm. Thus, overall
for the same number of observed failures, it is better to function the system according to the
ARAm reformulated model longer. Then, we have more information for the model in order
to estimate its maintenance efficiency.

We see that for some EE the convergence speed, in the majority of cases, is very slow.
Several of them having a CR values can be not read in the graphs, i.e. they are very small.
The property of the MLE seems to be reversed for the EE. Moreover, since the EE are built
with rapprochement principle of the failure intensity to the cumulative asymptotic intensity,
then the EE tends to converge for enough large n values. Like the ARIm reformulated model
corresponds to system which is degraded more quickly than that ARAm one, its cumulative
and asymptotic intensities are near relatives, consequently, the EE converge more quickly.

Figure 6: CR(ρ); β1 = 0.75; β2 = 3; n = 60

The figure 6 represents the CR evolution according to the value of maintenance efficiency
parameter ρ. So the CR of EE depends closely of the ρ value. The EE provides the most
correct ACI for maintenance efficiency close to the ABAO case (ρ near to 0), even for a low
values of the number of observed failures. On the other hand when maintenance efficiency
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is too different to the ABAO assumption, the CR converges less quickly especially in the
EE case. This result is a consequence due to the EE, which is founded on an equivalence
property between cumulative failure and asymptotic intensities. This equivalence relation is
made with a near remainder which is asymptotically equal to:

r(t) =
(β2 − 1)
(1− ρ)m

1− (1 + mρ) (1− ρ)m

ρ
ln (t− γ1) (21)

At a certain instant t > γ1and for ρ = 0, this quantity is null by hypothesis. In fact in this
case Λt = Λ∞(t). whereas, when ρ tends to 1 by lower values, the above difference diverges.
finally, since the maintenance efficiency is degraded and becomes more and more harmful,
the cumulative asymptotic intensity increase, and the difference r(t) tends to a constant limit
equal to m (β2 − 1).

The MLE are characterized by CR, which are less sensitive to the value of ρ, but it
is always under the assumption of ABAO maintenance efficiency that the estimators are
most correct. This CR behavior whether through of the MLE or EE, can be owed to the
operation of the system in the improvement and service life periods, and is maintained by
ABAO maintenance actions. It appears clearly, on the one hand for low numbers of failures,
and on the other hand for the models with high enough memories. Thus, for a great number of
failures the ACI are the good approximations for the practical value of maintenance efficiency.

4 Conclusion

In this paper we reformulated two classes of imperfect maintenance models using failure
intensity in bath-tub shape. We gave new results on our reformulations of arithmetic reduc-
tion of age or intensity with memory m. In fact, their failures process is characterized by
equivalence between cumulative failure intensity and cumulative asymptotic intensity.

For the ARI and ARA reformulated models with finished memory, we proposed the
explicit estimators of maintenance efficiency parameter. Then, we presented theoretical sta-
tistical results for the estimate of maintenance efficiency. The convergence properties relative
to maximum likelihood and explicit estimators were derived. Thus, we could deduce that the
asymptotic confidence intervals are issued from those estimators.

An eventual prospect for this work would be the theoretical study of simultaneous estimate
of the initial intensity parameters with bath-tub form. The theoretical study of simultaneous
estimate of all parameters does not seem indeed realistic.

13

417



References

[1] Ascher H. (1990). A survey of tests for exponentiality. Communications in Statistics-
Theory and Methods, 19, 1811-1825.

[2] Ascher H. and Feingold H. (1984). Repairable Systems Reliability. New York and Basel,
Marcel Dekker.

[3] Baxter L., Kijima M., and Tortorella M. (1996), A point process model for the reliability
of a maintained system subject to general repair, Communications in Statistics, 12, 37-65.

[4] Block H., Borges W.S. et Savits T.H. (1985), Age-dependent minimal repair, Journal of
Applied Probability, 22, 370-385.

[5] Brown M. et Proschan F. (1983), Imperfect Repair, Journal of Applied Probability, 20,
851-859.

[6] Cohen A. and Sacrowitz H.B. (1993). Evaluating Test for Increasing Intensity of a
Poisson Process. Technometrics, 35, 446-458.

[7] Dorado C., Hollander M. and Sethuraman J. (1997). Nonparametric estimation for a
general repair model. The Annals of Statistics 25, 3, 1140-1160.

[8] Doyen L. (2004). Estimation of maintenance efficiency in imperfect repair models. 4th
International conference on Mathematical Methods in Reliability (MMR 04), Santa Fe,
USA, Juin 2004.

[9] Doyen L. (2005). Repair efficiency estimation in the ARI1 imperfect repair model. Modern
Statistical and Mathematical Methods in Reliability, S. Keller-Mc Nulty, N. Limnios, A.
Wilson and Y. Armijo eds., World Scientific, Singapore, 153-168.

[10] Doyen L. and Gaudoin O. (2004), Classes of imperfect repair models based on reduction
of failure intensity or virtual age, Reliability Engineering and System Safety, 84, 45-56.

[11] Embrechts P., Klüppelberg C. and Mikosch T. (1997), Modeling extremal events,
Springer.

[12] Friedman L. and Gertsbakh I. (1980). Maximum Likelihood Estimation in a Minimum-
type Model with Exponential and Weibull Failure Modes. J.A.S.A, 75, 460-465.

[13] Jiang R., Ji P. and Xiao X. (2003). Aging property of unimodel failure rate models.
Reliability Engineering and System Safety, 79, 1, 113-116.

14

418



[14] Kijima M. (1989), Some results for repairable systems with general repair, Journal of
Applied Probability, 26, 89-102.

[15] Krit M., Rebaï A. and Benbacha H. (2007), General parametric reliability model for
reparable system, To appear in Reliability Engineering and System Safety, 2008.

[16] Last G. et Szekli R. (1998), Asymptotic and monotonicity properties of some repairable
systems, Advances in Applied Probability, 30, 1089-1110.

[17] Pham H. et Wang H. (1996), Imperfect maintenance, European Journal of Operational
Research, 94, 452-438.

[18] Shin I., Lim T.J. and Lie C.H. (1996), Estimating parameters of intensity function and
maintenance effect for repairable unit, Reliability Engineering and System Safety, 57,
1-10.

[19] Yun W.Y. and Choung S.J. (1999), Estimating maintenance effect and parameters of
intensity function for improvement maintenance model, Proc. 5th ISSAT Int. Conf. on
Reliability and Quality in Design, Las Vegas, 164-166.

15

419



420



Brown-Proschan imperfect repair model with bathtub
failure intensity

Makrem KRIT ∗ Abdelwaheb REBAÏ †

Abstract

The aim of this paper is to study the estimation of maintenance efficiency in
Brown-Proschan model. This model has been proposed by Brown and Proschan
(1983), the failure process is simply a Non Homogeneous Poisson Process (NHPP).
Our model is defined by BP reformulation one using bathtub failure intensity. This
form of intensity is presented like superposition of two NHPP and Homogeneous
Poisson one (HPP). Moreover, the particularity of this model allows to take account
of system state improvement in time course. The characteristics of failure process
and its influence on maintenance process are studied while basing on Monte-Carlo
simulation. Finally, the main features of our model are derived: The likelihood
function, thus parameter estimation and evaluation of maintenance efficiency are
possible.

Key words: repairable system, reliability, bathtub failure intensity, virtual age,
imperfect maintenance, estimation, likelihood.

1 Introduction

The totality of the significant industrial systems is subjected to the actions corrective
and preventive maintenance which are supposed to prolong their functional life. The
efficiency evaluation of these maintenance actions is of a great practical interest, but it
was seldom studied. In the literature, several models of maintenance effect were proposed.
That is to say for example, Pham-Wang (1996) and Baxter-Kijima-Tortorella (1996).
The authors tried to classify various models of maintenance. The majority of these
models consider only the corrective maintenance (CM) effect, known under the name of
repair models. These models are useful to model the real systems which are supported
by a constant repair. Several repair models, including those of Brown-Proschan, the
Block-Borges-Savits model (1985), the Kijima model (1989), the most general models
of Dorado-Hollander-Sethuraman (1997) and Last-Szekli model (1998), were all useful

∗Institut des Etudes Technologiques de Gafsa
†Ecole Supérieure de Commerce de Sfax

1
421



in this respect. Several theoretical properties, as well as the parameters estimators of
fundamental failure intensity and their asymptotic intervals confidence studied by these
authors, without evaluating the maintenance efficiency. The same claims of these models
can be also used for the only preventive maintenance (PM).

The idea of the Brown-Proschan model (1983) is that, the efficiency of the kth main-
tenance action is evaluated by a random variable Ek, independently and identically dis-
tributed according to the Bernoulli law with parameter p, such as:

Ek =

{
1 if the maintenance is perfect
0 if the maintenance is minimal

knowing that maintenance is always minimal over all the improvement period and
that of service life (i.e. for Tk ≤ γ1). We can show that at the moment t higher than
γ1, the duration passed since the last perfect maintenance (moreover, before the moment
γ1, all maintenances are supposed to be minimal) can be expressed in the form: t −

TNt +
Nt∑

k=Nγ1+1

[ Nt∏
z=k

(1− Ez)
]
Xk, where Nγ1 = i + j represent the failures number (of

maintenance action) will take place during, respectively the improvement and service
life periods : i.e. before the instant γ1. Under these conditions, the failure intensity is
written:

λt(N , E) =



1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
if 0 < t < γ0

1
η0

if γ0 ≤ t ≤ γ1

1
η0

+ β2

η2

 t−TNt+
Nt∑

k=Nγ1+1

[
Nt∏

z=k
(1−Ez)

]
Xk

η2


β2−1

if t > γ1

(1)

being given that the virtual age just after the kth maintenance, noted ak, is equal

to
k∑

z=Nγ1+1

[
k∏

h=z

(1− Eh)
]
Xh for all k ≥ Nγ1 + 1, where the variable Xh indicate the hth

duration of the between-failures.
The figure1 translated the trajectory of this intensity for an unspecified value of p

between 0 and 1. In this figure, the instants of perfect and minimal maintenances are
represented on the x-axis respectively by circles and squares.

Concerning the evaluation of the maintenance efficiency, we return to the same prop-
erties presented in Brown and Proschan (1983). The reformulation of the Block-Borges-
Savits model is also a generalization of the preceding form of the Brown-Proschan model.
Indeed, the probability that the CM is perfect depends to the instant to which is carried
out. In this case, the failure intensity is equivalent to that of the Brown-Proschan model,
with that the law of Ek is related to parameters p(Tk).
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Figure 1: Reformulation of the Brown-Proschan model intensity

2 Characteristics of the failures process

The model Brown-Proschan (BP) is a particular case of the Kijima model (Kijima
(1989)), making the two part of the whole models of repair. A generalization of such a
model arises in Last-Szekli (1998) shows that the failures process, under certain condi-
tions, tends to be stabilized. For our BP reformulated model, and in the degradation
phase (obviously, the failure intensity is monotonous), the convergence property in law
of the virtual age after maintenance (or effective age) and the waiting durations between
two failures, is checked. This fact, the virtual age just after the kth maintenance, noted
ak, have a distribution function of the form:

Fak
(t) =



1− exp
{
− 1

η0
t
}
× exp

{
−
(

t
η1

)β1

+
(

γ0

η1

)β1−1
t

}
if 0 < t < γ0

1− exp
{
− 1

η0
t
}

if γ0 ≤ t ≤ γ1

1− (1− p) exp {−Λ(t)}

[
k−1∑

z=Nγ1+1

(1− p)z Λz(t)
z!

]
if t > γ1

(2)

During the degradation period, and for a value of p strictly higher than zero, the
random variables continuation of the ages {ak}k≥Nγ1+1 converge in law towards a random
variable a. Brown and Proschan (1983) proved that this variable follows a law having
the failure rate pλ(t), and Fa(t) = 1 − (1 − p) exp {−Λ(t)} as function of distribution.
It is the same, as constantly, the virtual age is equal to the time passed since the last
perfect maintenance. In Last-Szekli (1998), the authors showed the convergence of the
continuation of the virtual ages expectation, and of the expectation of the between-failures
durations. Within the framework of our BP reformulated model, and thanks to the
convergence property of Brown-Proschan, we can obviously calculate these expectations
and prove their tendency towards a finished and continuous limit.
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The reformulation of the BP model using the failure intensity with bathtub form,
characterize the failures process by the between-failures durations, for k ≥ Nγ1 +1, having
the survival function as:

SXk
(x) = (1− p)

∫ +∞
γ1

λ(u) exp {−Λ(t + u)}[
(1− p)k−2 Λk−2(u)

(k−2)! + p
k−3∑

z=Nγ1

(1− p)z Λz(u)
z!

]
du + p exp {−Λ(x)}

(3)

And if moreover p is strictly positive,and that exp {−Λ(x)} = o(1), then the survival
function of the between-failures durations, for the values of k ≥ Nγ1 + 2, converge in law
towards the random variable X with survival function:

SX (x) = p

∫ +∞

γ1

λ(x + u) exp {−Λ(x + u) + (1− p)Λ(u)} du (4)

Thus, we deduce from these results, that the between-failures durations converge in
law towards the random variable X of which the survival function as:

SX (x) = p exp {−Λ(x)}+ p(1− p)
∫ +∞

γ1

λ(u) exp {−Λ(x + u) + (1− p)Λ(u)} du

Consequently, by using an integration by parts, we can write:

SX (x) = lim
u−→+∞

exp {−Λ(x + u) + (1− p)Λ(u)}

+p

∫ +∞

γ1

λ(x + u) exp {−Λ(x + u) + (1− p)Λ(u)} du

And considering that Λ is an increasing function, then:

exp {−Λ(x + u) + (1− p)Λ(u)} ≤ exp {−pΛ(u)} = o(1)

Under these conditions, for our reformulation of the BP model by an intensity with
bathtub form, if it exists an ε > 0 so that : x1+ε exp {−Λ(x)} = o(1), then the expectation
of the average waiting duration of the (k +1)th failure, with k ≥ Nγ1 +1, is expressed by
the following relation:

E [xk] =
∫ +∞

γ1

exp {−Λ(t)}

(1− p)k−1 Λk−1(t)
(k − 1)!

+ p
k−2∑

z=Nγ1

(1− p)z Λz(t)
z!

 dt (5)

It appears that the most significant result of this section is, in the absence of any
ambiguity, the relation (3) which offers the marginal laws of the consecutive between-
failures durations. The figure 2 represents the simulated random rates of these between-
failures durations of which the initial failure intensity in bathtub form (defined by the
parameters η0 = 26, η1 = η2 = 200, β1 = 0.5, β2 = 3, γ0 = 0.7, γ1 = 1.6) and a
maintenance efficiency equalizes to 0.3.
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Figure 2: Random rate of the consecutive between-failures durations of the BP reformu-
lated model

We notice that after the maintenance action, the random rate of the next between-
failures duration is represented by a concave trajectory during the improvement period,
and convex during the degradation period. The growth in k of the first values of this
random rate is due to the fact that the effect of this maintenance action on the system is
unknown. In other word, just after a maintenance action, the system tends moreover to
weaken because what we don’t know if the maintenance be effective or not. After being
maintained, if the system survives long enough, the random rate takes the values almost
identical to the initial intensity (it’s extremely probable that this last maintenance is
perfect).

The chart of the asymptotic random rate of the between-failures durations (simulated
with the same parameters values of the initial failure intensity of Fig.2) (Fig.3) illustrate
the maintenance effect. It’s obviously the form of the random rate associated to the
variable X , already defined in the preceding paragraph, for various values of the efficiency
parameter p.

We see that during all the period before the beginning of the degradation phase,
the form of the random rate keeps always the same pace whatever is the parameter
value p. In fact the maintenanace effect is, by hypothesis, As Bad As Old (ABAO),
and the maintenance action is carried out just to take again the system operation). The
maintenance effect, through the degradation period, is to increase the first values of the
random rate compared to that of the initial intensity. This increase is even higher than
the parameter p is weak. So, more p is weak and more the maintenance is extremely
probable that it’s ABAO.
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Figure 3: Asymptotic random rate of the between-failures durations according to various
values of p

3 Estimate of the maintenance efficiency

Under the assumption that the maintenance effects are known (the maintenance is
As Good As New (AGAN) or ABAO, and Ek are observed). Thus, the writing of the
likelihood function is possible by using the equation (6). Therefore, we estimate the
parameters of our model, such as the efficiency parameter p, and the parameters of the
failure intensity λ. It’s noticed that the estimator of p is logically the percentage of the
perfect maintenance actions among all actions carried out. In the case of failure intensity
of the Power-Law-Process type, Whitaker and Samagniego (1989)studied the identifia-
bility problem of the parameter p for a waiting duration of the first failure according to
the exponential law. And so the between-failures durations law is independent of the
parameter p. Considering that the maintenance actions are useless when the system is
neither in improvement state nor in degradation state, the models of assumptions AGAN
and ABAO are the same ones.

L(θ; t1, . . . , tn) =

[
n∏

i=1

λti

]
exp

{
−

n∑
i=1

∫ ti

ti−1

λsds

}
(6)

If on the contrary, this first between-failure duration is supposed of non-exponential
law, the identifiability problem does not arise and it’s possible then to estimate in prior
the parameter p. In the same way, we estimate the other parameters of the model, without
having the observed values of the external variables E. Several alternatives of estima-
tion, always for the simple failure intensity, namely the idea to use the Expectation
Maximization (EM) algorithm, gotten by Lim (1998). In their article Lim, Lu and Park
(1998) presented another method, based on the bayesian analysis, and which is trying to
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give to p the prior law of the beta type. Another approach was proposed by Langseth
and Lindqvist (2003), acted to calculate the model characterization without utilizing the
external variables values E.

In practice, and without maintenance, the systems are considered either in improve-
ment or in degradation states (in view of the service life phase is practically short). Then,
the initial intensity cannot coincide with an exponential law and the identifiability prob-
lem doesn’t presented. Indeed, this is logical insofar as the exponential law is in mental
blank. Nevertheless, if the first between-failure duration is supposed of non-exponential
law, the maintenance efficiency parameter is identifiable.

We interest thereafter, in the estimation of the parameters for our BP reformulated
model by an intensity with bathtub form. The failures process depends on the external
variables continuation of which we don’t know their values. Subsequently, and even if the
failures process is influenced by the external variables E, this can be in any event, also
considered with a self-excited punctual process. The two following relations express the
relationship between the failure intensities.

λt(N , E) = lim
dt→0

1
dt

Pr(Nt+dt −Nt = 1/Nt, TNt , ENt)

and
λt(N ) = lim

dt→0

1
dt

Pr(Nt+dt −Nt = 1/Nt, TNt)

We find in Andersen, Borgan and Gill (1993) the innovation theorem, allowing to note
the failure intensity quite simply by λt = λt(N ). As the failure process is considered as
well as a self-excited punctual process. We can apply within the parametric approach
framework various procedures of estimate. This process is characterized by a clean fail-
ure intensity which is calculated in an iterative way according to the intensity values
and cumulative failure intensity at the preceding maintenance instants. This function is
expressed by the following equation.

λt =



1
η0

+ β1

η
β1
1

(
tβ1−1 − γβ1−1

0

)
if 0 < t < γ0

1
η0

if γ0 ≤ t ≤ γ1

−d
dt

[
ln

(
Nt∑

k=Nγ1

p1{k>γ1}(1− p)Nt−k

[
Nt∏

j=k+1

λ(Tj−Tk)
λTj

]
e{−Λ(t−Tk)−ΛTk}

)]
if t > γ1

Obviously, through the degradation phase, this property formalizing the model BP.
What is translated by the third restriction of the foregoing equation . For this fact,
we condition the calculation compared to the instant of the last perfect maintenance
action. Consequently, we note Ez,k, for k ≤ z and k ≥ Nγ1 , the next event : the kth

maintenance is AGAN and the following ones, until the zth maintenance, are ABAO:
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Ez,k =
{
{Ek = 1} , {Ej = 0}k<j≤z

}
.

For all t ≥ 0, Pr(Xn+1 ≥ x/Tn) = exp
{
−
∫ Tn+x

Tn

λudu

}
(7)

When the law of the failure instants is influenced by the maintenances process, M,
and by the external variables, E, the failure intensity remains insufficient to characterize
perfectly the failures process. For this fact, and using the formula of the probability law
of next between-failures time, data by the equation (7), and of the innovation theorem
(1993) it’s possible to write:

Pr(Xn+1 ≥ x/Tn) = exp
{
−
∫ Tn+x

Tn

E
[
λNu (N ,M, E)/Nu = n, Tn

]
du

}
(8)

We can deduce from this last relation the law of between-failures times, knowing the
history of the failures process. In our reformulation case of the BP model, and through
the degradation period, the failures process checks:

Pr(Xn+1 ≥ x/Tn) =
n∑

k=Nγ1

p1{k>γ1}(1−p)n−k

 n∏
j=k+1

λ (Tj − Tk)
λTj

 e{−Λ(x+Tn−Tk)+ΛTn−ΛTk}

Thus, during all its life, the system is characterized by a failures process, of which a
law of the between-failures times is given by:

Pr(Xn+1 ≥ x/Tn) =

exp
{
− 1

η0
x−

(
Tn+x

η1

)β1

+
(
Tn
η1

)β1

+
(

γ0

η1

)β1−1
x

}
if n < Nγ0

exp
{
− 1

η0
x
}

if Nγ0 < n < Nγ1

n∑
k=Nγ1

p1{k>γ1}(1− p)n−k

[
n∏

j=k+1

λ(Tj−Tk)
λTj

]
e{−Λ(x+Tn−Tk)+ΛTn−ΛTk} if n > Nγ1

We hold to distinguish between this property and that from the survival function. The
Interpretations of the two properties are considerably distinct. The property correspond-
ing to the survival function transmitted the marginal law of the consecutive between-
failures durations. What allows us to well understand the evolution of the failures pro-
cess. Whereas, the property of the preceding equation presents the conditional law of the
consecutive between-failures durations. These two laws entirely characterize the failures
process. Remain the problem of complexity which meets us in their studies.

We find in the figure 4 our reformulation with bathtub form of the self-excited failure
intensity (in full feature), λt, and the failure intensity relating to the external process
λt(N , E). The AGAN maintenance actions are indicated on the instants axis by circles,
and the ABAO maintenance actions by squares. Subsequent to a maintenance action,
the self-excited failure intensity proves to be the form of the initial intensity (in bathtub
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form). When the duration passed since the preceding maintenance action is sufficiently
long, the self-excited failure intensity is equal to the initial intensity at the instant t−TNt .
In consequence of a maintenance action, the pace of the self-excited failure intensity is
dependent on the history of the failures process. Indeed, at what time the previous
between-failures duration is sufficiently high, the length of the improvement period is less
significant.

Figure 4: Reformulation in the bath-tub form of the self-excited and relative intensities
of the BP model

By using the self-excited failure intensity defined, we can deduce the likelihood func-
tion associated to the observation of the maintenance instants. Under these conditions,
our BP reformulated model allows to withdraw the likelihood function associated to only
one observation of the failures process. By using the equation (6), this function is given
by:

Ltn(θ; t1, . . . , tn) =

[
n∏

k=1

λTk

]
exp

{
−

n∑
k=1

∫ tk

tk−1

λsds

}

=

[
n∏

k=1

λTk

]
exp {−Λtn}

This last function is equivalent to the likelihood function developed in the work of
Doyen (2004). And that the restriction of this likelihood function over the two improve-
ment and service life periods is equal to:

Ltn{n≤Nγ1}(θ; t1, . . . , tn) =
[

i∏
k=1

(
1
η0

+ β1

η
β1
1

(
tβ1−1
k − γβ1−1

0

) )]
×
(

1
η0

)n−i
× exp

{
−
(

γ0

η1

)β1

− 1
η0

tn

}
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Whereas through the degradation period, the restriction of this likelihood function is
expressed as:

Ltn{n>Nγ1}(θ; tNγ1
, . . . , tn) =

 n∏
k=Nγ1+1

λTk

λ
1{tn=TNtn

}
tn exp

−
n∑

k=Nγ1+1

∫ tk

tk−1

λsds


Then it will be proved, in the following, that restriction likelihood function is written:

Ltn{n>Nγ1}(θ; tNγ1
, . . . , tn) =

n∑
k=Nγ1

p1{k>γ1}λ1{tn=TNtn
}(tn − Tk)e−Λ(tn−Tk)

(1− p)n−k

[
n∏

j=k+1

λ (Tj − Tk)

][
k∏

j=Nγ1+1

λTj

]
e−ΛTk

= λ1{tn=TNtn
}(tn)e−Λ(tn)(1− p)n

[
n∏

j=Nγ1+1

λ (tn − Tj)

]
+

n∑
k=Nγ1+1

pλ1{tn=TNtn
}

(tn − Tk) e−Λ(tn−Tk)(1− p)n−j

[
n∏

j=k+1

λ (Tj − Tk)

][
k∏

j=Nγ1+1

λTj

]
e−ΛTk

And owing to the fact that:

LTk
(θ; tNγ1

, . . . , tk) =

 k∏
j=1

λTj

 exp {−ΛTk
}

Therefore, while associating to the nth observation, such that n > Nγ1 , we obtain:

Ltn{n>Nγ1}(θ; tNγ1
, . . . , tn) = (1− p)n

[
n∏

j=Nγ1+1

λ (Tj)

]
λ1{tn=TNtn

}(tn)e−Λ(tn)

+p

[
n∑

k=Nγ1+1

(1− p)n−k

(
n∏

j=k+1

λ (Tj − Tk)

)
λ1{tn=TNtn

} (tn − Tk) e−Λ(tn−Tk)LTk
(θ)

]
Finally, the likelihood function of our reformulation of the BP model is overall definite

by:

Ltn(θ; t1, . . . , tn) = Ltn{n≤Nγ1}(θ; t1, . . . , tn)× Ltn{n>Nγ1}(θ; tNγ1
, . . . , tn) (9)

It appears that in our study, the fact of removing the logarithm of the likelihood
function doesn’t simplify calculations. Thereafter, we attach to the direct calculation of
the first partial derivative of likelihood in p. This calculation is resulted in the following
function:

∂
∂pLtn(θ; t1, . . . , tn) =[

i∏
k=1

(
1
η0

+ β1

η
β1
1

(
tβ1−1
k − γβ1−1

0

) )](
1
η0

)n−i
e
−

(
γ0
η1

)β1− 1
η0

tn ×
{
−n(1− p)n−1[

n∏
j=Nγ1+1

λ (Tj)

]
λ1{tn=TNtn

}(tn)e−Λ(tn) +
n∑

k=Nγ1+1

(1− p)n−k−1

(
n∏

j=k+1

λ (Tj − Tk)

)
λ1{tn=TNtn

} (tn − Tk) e−Λ(tn−Tk)
[
(1− (n− k + 1) p)LTk

(θ) + p(1− p) ∂
∂pLTk

(θ)
]}
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Given that the calculation of the partial derivative of likelihood in the parameters of
the initial intensity is much more complex, we can then use their estimators without the
maintenance process. Indeed, the estimate is carried out being given only the failures
process, and the maintenance actions are supposed all minimal. Moreover, the two esti-
mate procedures presented (the direct maximum likelihood and the EM algorithm) get
in their globally the best estimators, especially that of the EM algorithm.

4 Conclusion

In this study, we gave new results on our new reformulation of the Brown-Proschan
model. Doyen (2004) proved that this model corresponds to systems for which the main-
tenance efficiency makes it possible to contain or to stabilize degradation. That enabled
us to introduce the innovation theorem which makes it possible to treat our general model
of maintenance efficiency including the hidden external variables, in a way similar to a
self-excited punctual process.

In the simulation stage, it’s noticed that the service life period was not taken into
account, in the direction where the system state is stabilized during this period. Moreover,
in practice the service life period is, in general, short compared to the total life period of
the reparable systems.

We can then, for this general model, to calculate a failure intensity known as clean and
a clean likelihood function. Within the framework of the BP model, this failure intensity
and this clean likelihood are complex and must be calculated recursively. Moreover, in
spite of the complexity of the clean likelihood function, we showed that it was possible
to calculate its partial derivative and thus to maximize it by numerical methods.

By knowing the clean likelihood function, other methods of estimate can be used.
Like a method of Newton or via groping by calculating all the clean likelihood values on
a grid.
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Abstract

We give an Itô formula for a general class of pseudo-differential oper-
ators.

1 Introduction

Let us recall what is the Itô formula for a purely discontinuous martingale
t → Mt with values in R [1]. Let f be a C2 function on R. We have

f(Mt) = f(M0) +
∫ t

0

f ′(Ms−)δMs +
∑
s≤t

f(Ms)− f(Ms−)− f ′(Ms−)∆Ms (1)

It is the generalization of the celebrated Itô formula for the Brownian motion
t → Bt on R [1]

f(Bt) = f(B0) +
∫ t

0

f ′(Bs)δBs + 1/2
∫ t

0

f”(Bs)ds (2)

A lot of of stochastic analysis tools for diffusions were translated by Léandre in
semi-group theory in [6], [7], [8], [10], [11], [14], [15], [16], [18]. Some basical
tools of stochastic analysis for the study of jump processes were translated by
Léandre in semi-group theory in [11], [12], [19]. For review on that, we refer to
the review of Léandre [9], [17].

Léandre has extended the Itô formula for the Brownian motion to the case
of some classical partial differential equations in [19], [21], [22], [23]. In such
a case, there is until now no convenient measure on a convenient path space
associated to this partial differential equation. In [23], we have extended the Itô
formula for jump process for an integro-differential generator when there is until
now no stochastic process associated. Jump processes are generically generated
by pseudo-differential operators which satisfy the maximum principle [5].

1
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In this paper, we give an Itô formula for a general class of positive elliptic
pseudo differential operators. For material on pseudo-differential operators, we
refer on [2], [3], [4] and [5]. Since the considerations below on pseudo-differential
operators are more and less classical, we won’t enter in the technical details of
the proof.

2 The two semi-groups

Let û be the Fourier transform of a smooth function u on Rd. Let a(x, ξ) be a
global symbol of order m on Rd. It is a smooth function from Rd × Rd into C
such that for all k, k′

sup
x∈Rd

|Dk
xDk′

ξ a(x, ξ)| ≤ Ck,k′ |ξ|m−k′
(3)

We say that a global symbol of order m is elliptic if for |ξ| > M

inf
x∈Rd

|a(x, ξ)| ≥ CM |ξ|m (4)

We consider the proper pseudodifferential operator associated to the symbol a:
the Fourier transform of L0u is given by∫

Rd

a(x, ξ)û(ξ)dξ (5)

We consider its adjoint L∗0 on L2(dx) and we put L = L∗0L0.
All the considerations of [2] which were valid on a compact subset of Rd are

still true because (3) and (4) are valid globally. In particular, L is essentially
selfadjoint on L2(dx) and generates a contraction semi-group Pt on L2(dx).

Let us consider a smooth function f from Rd into R with compact support
and a smooth function v with compact support from Rd × R into C. (x, y)
denotes the generic element of Rd × R. We consider the smooth function from
Rd into R v̂

v̂(x) = v(x, f(x)) (6)

We consider the function v from Rd × R into C

(x, y) → v(x, y + f(x)) (7)

We apply Lto v, y being frozen. We get a function Lv. We put

(L̂v)(x, y) = (Lv)(x, y − f(x)) (8)

Definition 1 L̂ is called the Itô transform of L.

We remark that (x, y) → (x, y+f(x)) is a diffeomorphism of Rd×R which keeps
the measure dx⊗ dy invariant. This shows:

2
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Theorem 2 L̂ is positive symmetric on L2(dx ⊗ dy). It admits therefore a
self-adjoint extension still denoted L̂. This self-adjoint extension generates a
semigroup P̂t of contraction on L2(dx⊗ dy)

We get

Theorem 3 (Itô formula)We have the relation for all smooth function v with
compact support

Pt(v̂)(x) = (P̂t(v))(x, f(x)) (9)

Remark:If we consider the generator L =
∑

X2
i where the Xi are smooth

vector fields, L̂ =
∑

X̂2
i where

X̂i = (Xi, < Xi, df >) (10)

which corresponds to the generator of [19], [21], [22]. Analogous remark holds
for the considerations of [23].

3 Proof of the Itô formula

Lemma 4 If v is a smooth function on Rd × R whose all derivatives belong to
L2, P̂tv is still a smooth function whose all derivatives belong to L2.

Proof: Let

L = L̂ + (− ∂2

∂y2
)m/2 (11)

L commute with L̂. Therefore, for all k

(L
k
)P̂t = (P̂t)(L

k
) (12)

If v satisfies the hypothesis, P̂tv belongs to the domain of L
k
. But L is the

transform of

L̃ = L + (− ∂2

∂y2
)m/2 (13)

under the change of variable (x, y) → (x, y + f(x)). Therefore P̂tv belongs to
the domain of L̃k. The result arises by Garding inequality.♦

Let φ be a smooth function from Rd into [0, 1], equals to 0 if |ξ| ≥ 2 and
equals to 1 if |ξ| ≤ 1. We consider the global symbol

aλ(x, ξ) = φ(ξ/λ)a(x, ξ) (14)

and the operator L0,λ, L∗0,λ associated to it. Classically

L0,λu(x) =
∫

Rd

Kλ(x, y)u(y)dy (15)

L∗0,λu(x) =
∫

Rd

Kλ(y, x)u(y)dy (16)

3
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Lemma 5 If u is smooth whose all derivative belong to L2, then (L0 − L0,λ)u
tends to zero as well as all his derivatives and in L2 when λ → ∞. The same
holds for (L∗0 − L∗0,λ)u.

Proof:(L0 − L0,λ)u is given by the oscillatory integral∫ ∫
R×Rd

exp[2πi < x− y|ξ > (1− φ(ξ/λ))a(x, ξ)u(y)dydξ (17)

The result holds by integrating by parts in y. Analog statement work for (L∗0−
L∗0,λ)u. ♦

Proof of the Itô formula:We put

Lλ = L∗0,λL0,λ (18)

Lλ is a continuous operator acting on bounded continuous function on Rd en-
dowed with its uniform norm. The same is true for its Itô transform L̂λ. There-
fore Lλ generates a semi-group Pλ,t on bounded continuous functions on Rd. L̂λ

generates a semi-group P̂λ,ton bouded continuous functions on Rd×R. Moreover
if u and v are bounded continuous,

Pλ,tu =
∑

1/n!Ln
λu (19)

and
P̂λ,tv =

∑
1/n!L̂n

λv (20)

But
Ln

λv̂(x) = (L̂n
λv)(x, f(x)) (21)

Therefore
Pλ,tv̂(x) = (P̂λ,tv)(x, f(x)) (22)

But (P̂λ,t − P̂t)(v) is solution of the parabolic equation

−d/dtvt = L̂λvt + (L̂λ,t − L̂)P̂tv (23)

with initial condition 0. The result arises from the two previous lemma, by the
method of variation of constants since P̂λ,t is a semi-group of contraction on
L2(dx⊗ dy). This shows that for λ →∞

P̂λ,tv → P̂tv (24)

in L2(dx⊗ dy). Similarly, in L2(dx)

Pλ,tv̂ → Ptv̂ (25)

We remark that L̂λ commute with L. Therefore

(L
k
)(P̂λ,t − P̂t)v = (P̂λ,t − P̂t)(L

k
v) (26)

By a similar argument to the proof of lemma (4), we can show that the conver-
gence in (24) and (25) works for the uniform topology and not in L2 only. This
shows the result.♦
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[17] R. Léandre: Malliavin Calculus of Bismut type in semi-group theory. Far
East Journal of Mathematical Sciences 30, 2008, 1-26.
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[23] R. Léandre: Itô formula for an integro differential operator without an
associated stochastic process. To appear in ”ISAAC 2009” (London), J.
Wirth edt.
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Wentzel-Freidlin estimates in semi-group
theory

Rémi Léandre

Institut de Mathématique de Bourgogne
Université de Bourgogne. 21000. Dijon. France
(e-mail: Remi.leandre@u-bourgogne.fr)

Abstract. We give the translation in semi-group theory of Wentzel-Freidlin esti-
mates either for diffusion or jump processes. We give an application to Varadhan
estimates for heat-kernel when we use a mixture of large deviation estimates and
of the Malliavin Calculus of Bismut type translated by us in semi-group theory.
Keywords: Wentzel-Freidlin estimates, Varadhan estimates.

1 The case of a diffusion

In the first case we study the case of the small time behaviour of a diffusion.
We translate in semi-group our proof of large deviation theory for diffusion
which was valid for all the path space. Here this estimate is valid only for the
semi-group. In particular, our proof is based upon the translation in semi-
group theory of martingale exponential and of the Itô formula. By using
a mixture between the Malliavin Calculus and large deviation theory, as it
was pioneered by Bismut in his celebrated book ”Large deviation and the
Malliavin Calculus”, we can translate in semi-group our proof of Varadhan
estimate, upper bound, for a subelliptic heat-kernel which say when Wentzel-
Freidlin estimate pass to heat-kernel.

2 The case of a Poisson process

In this case, we consider the behaviour of a jump process with more and
more jumps which belong smaller and smaller. We show it is related to the
theory of semi-classical expansion of Maslov and others people by looking
the symbol of the operator. We translate in semi-group theory the proof of
large deviation theorems of Wentzel-Freidlin which were valid for all the path
space and now is valid only for the semi-group. We do a mixture between the
Malliavin Calculus for jump process of Bismut type translated by ourself in
semi-group theory and these Wentzel-Freidlin estimates in order to establish
a logaritmic expansion of the involved heat-kernel.
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Abstract: In this paper there are presented results (tables of percentage points and statistic 

distribution models) for the nonparametric goodness-of-fit tests in testing composite 

hypotheses using the maximum likelihood method for parameters estimation for Generalized 

Weibull Distribution law. Statistic distributions of the nonparametric goodness-of-fit tests 

are investigated by the methods of statistical simulation. 
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Mises-Smirnov test, Anderson-Darling test, Generalized Weibull distribution. 

 

1 The family of Generalized Weibull Distrbution in Reliability 

Let as consider the sample ( )1 2
, ,...,

T

n
X X XΧ = , we say that 

i
X  follow the 

generalized Weibull distribution (GWD). The density function of the law is 

defined by: 

( )

1

0 1
0 1

2
0 0

1
1

1 1

10

0 1 2 2

1 2

; , , 1

x

x
f x x e

θ θ −  θ  θ − +   θ θ θ −  
  θ
 θ θ θ = θ +   θ θ  

,  (1) 

where 0x ≥ , 
0
θ , 

1
θ , 

2
0θ > . The family (1) defines a set of different laws. 

Special cases of Generalized Weibull Distribution are: 
1

1θ =  – the family of 

Weibull distribution; 
0

1θ = , 
1

1θ =  – the family of exponential distribution. 

The distribution function is  

( )

1

0 1

2

1 1

0 1 2
; , , 1

x

F x e

θ θ   − +   θ  θ θ θ = − . 

The hazard function of GWD can be monotone increase (
0

1θ > , 
0 1
θ > θ  and 

0
1θ = , 

1
1θ < ), monotone decrease (

0
0 1< θ < , 

0 1
θ < θ  и 

0
0 1< θ < , 

0 1
θ = θ ), 

−I shaped (
1 0

1θ > θ > ), −U shaped (
1 0

0 1< θ < θ < ) and we have: 
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( )
0 1

01

1
1

10

2

1 2

1
x

x x

−θ θ
θ −θ

  θ
 λ = θ +   θ θ  

.  (2) 

The Generalized Weibull distribution used in reliability and survival tasks along 

with lognormal distribution and inverse Gaussian distribution. As usual, in 

construction the models of laws for real observed random variables it is difficult to 

discriminate one laws from another and choose one of them. To certain degree 

these difficulties related with restricted facilities of application nonparametric 

goodness-of-fit tests with unknown statistic distribution for verification of 

composite hypotheses concerning GWD. 

 

2 Nonparametric goodness-of-fit tests in verification single and 

composite hypothesises 

One of the most popular statistic analysis problems in handling the results of 

experimental data is verification the agreement experimental distribution and 

theoretical one. There exist the verification of single hypothesis and composite 

hypothesis. Single hypothesis has the form 
0

H : ( ) ( , )F x F x= θ , ( , )F x θ  is 

probability distribution function, θ  is known parameter value ( θ  is scalar 

parameter or vector parameter). In the case of single hypothesis marginal statistic 

distribution of nonparametric Kolmogorov, 2ω  Cramer-Von Mises-Smirnov, 2Ω  

Anderson-Darling goodness-of-fit tests do not depend on view of observed 

distribution law and parameters values. These goodness-of-fit tests are “free from 

the distribution” 

Composite hypotheses has the form 
0

H : ( )F x ∈  { ( , )F x θ , }θ∈Θ . In this case 

the estimate of distribution parameter θ̂  is calculated by the same sample, the 

nonparametric Kolmogorov, 2ω  Cramer-Von Mises-Smirnov, 2Ω  Anderson-

Darling goodness-of-fit tests lose the property called “free from the distribution”. 

In Kolmogorov goodness-of-fit test the value 

sup ( ) ( , )
n n

x

D F x F x
<∞

= − θ , 

where ( )
n

F x  is the empirical distribution function, n  is the sample size, is used in 

Kolmogorov test characterized a distance between the empirical and theoretical 

laws. In testing of hypotheses used a statistic with Bolshev correction [1] in the 

form [2] 

6 1

6

n

K

nD
S

n

+
= ,         (3) 

where max( , )
n n n

D D D+ −= , 
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1
max ( , )

n i
i n

i
D F x

n

+

≤ ≤

 = − θ 
 

, 
1

1
max ( , )

n i
i n

i
D F x

n

−

≤ ≤

− = θ − 
 

, 

n  is the sample size, 
1 2
, , ,

n
x x xK  are sample values in increasing order is usually 

used. The distribution of statistic (3) obeys the Kolmogorov distribution law ( )K S  

[1] in testing simple hypotheses.  

For verification of 2ω  Cramer-Von Mises-Smirnov goodness-of-fit test is used a 

statistic of the form  
2

2

1

1 2 1
( , )

12 2

n

n i

i

i
S n F x

n n
ω

=

− = ω = + θ − 
 

∑ ,          (4) 

and in  test of 2Ω  Anderson-Darling type [3, 4] the statistic of the form  

1

2 1 2 1
2 ln ( , ) 1 ln(1 ( , ))

2 2

n

i i

i

i i
S n F x F x

n n
Ω

=

 − −  = − − θ + − − θ  
  

∑ .    (5) 

In verification a simple hypothesis statistic (4) obeys the 1( )a S  distribution and 

statistic (5) obeys the 2( )a S  distribution (see [1]). 

In verification of composite hypotheses the conditional distribution law of the 

statistic 
0

( )G S H  is affected by a number of factors: the form of the observed law 

( , )F x θ  corresponding to the true hypothesis 
0

H ; the type of the parameter 

estimation and the number of estimated parameters; sometimes it is a specific value 

of the parameter (e.g., in the case of gamma-distribution and beta-distribution 

families); the method of parameter estimation. The distinctions in the marginal 

distributions of the same statistics in testing simple and composite hypotheses are 

so significant that we cannot neglect them.  

The paper [5] was one of the first in investigating statistic distributions of the 

nonparametric goodness-of-fit tests with composite hypotheses. Then, for the 

solution to this problem, various approaches where used [6, 7], [8-10], [11, 12], 

[13],  [14], [15-16], [17], [18, 19], [20], [21, 22]. 

In our research [23-28] statistic distributions of the nonparametric goodness-of-fit 

tests are investigated by the methods of statistical simulating and for constructed 

empirical distributions approximate models of law were founded. Obtained results 

were used for developing of recommendations for standardization [29]. Precise 

models of statistics distributions and the tables of upper percentage points 

presented in [30-34]. The comparative analysis results of power of goodness-of-fit 

tests in verification a single and composite hypothesis are presented in the paper 

[35-37]. 
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3 Distributions of statistics of the tests in the case of verification composite 

hypotheses concerning generalized Weibull distribution 

In the case of verification composite hypotheses concerning Generalized Weibull 

Distribution the distributions of statistics 
0

( )G S H  for nonparametric goodness-

of-fit tests depend on specific values of shape parameters 
0
θ . 

In the fig. 1 you can see the behavior of statistics distribution SΩ  in testing 

composite hypotheses for family (1). In the case when two parameters are 

estimated by MLM (fig. 1) you can see the following: with the growing of values 

of parameters 
1
θ  the distribution 

0
( )G S H  shifts to the right. 

In the case when three parameters are estimated by MLM you can see the next: 

when the values of shape parameter are grow up till 
1

2θ ≈  the distribution 

0
( )G S H  is shift to the left. With the following growth of values of  shape 

parameter the distribution 
0

( )G S H  shifts to the opposite direction, to the right. 

 
Fig. 1. Statistic distributions (5) of Anderson-Darling goodness-of-fit tests in 

composite hypotheses testing concerning family (1). MLM is used for estimation 

two (
0
θ  and 

1
θ ) parameters. 

 

Percentage points obtained by statistic modeling and the models of marginal 

statistic distributions of Kolmogorov, Cramer-Von Mises-Smirnov and Anderson-

Darling tests were computed for the values of shape parameter 
1
θ = 1.0 with MLM 
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used for parameter estimation are presented in table 1. Similar tables are 

constructed for the values of shape parameter 
1
θ = 0.5, 2, 3, 4, 5, 6, 7, 8.  

Distributions 
0

( )G S H  of the Kolmogorov, Cramer-Von Mises-Smirnov and the 

Anderson-Darling statistics are best approximated by the family of the III type 

beta-distributions with the density function 
0 1

0

0 1

1 1

4 4

3 32
3 0 1 2 3 4

3 0 1
4

2

3

1

( , , , , )
( , )

1 ( 1)

x x

B
x

θ − θ −

θ

θ +θ

   − θ − θ
−   θ θθ    θ θ θ θ θ =

θ Β θ θ  − θ
+ θ − θ 

, 

or by the family of the Sb-Johnson distributions 

( )
( )( )

2

31 2

0 1 2 3 0 1

3 2 3 2 3

1
, , , exp ln

2

x
Sb

x x x

  − θθ θ  
θ θ θ θ = − θ − θ  

− θ θ + θ − θ + θ −   
. 

The tables of percentage points and statistic distributions models were constructed 

by modeled statistic samples with the size 610N = . In the case when 610N =  the 

deviation the empirical p.d.f. 
0

( )
N

G S H  from the theoretical one is less than 10
-3

. 

In this case the values of statistics of goodness-of-fit- tests were calculated using a 

samples of pseudorandom variables which belong to ( , )F x θ  with sample size 

310n = . For the such value of n  statistic p.d.f. 
0

( )
n

G S H  almost coincides with 

the marginal p.d.f. 
0

( )G S H . 

 
Table 1. Percentage points and models of limiting statistic distributions of the 

nonparametric goodness-of-fit test when MLM is used for parameter estimation (for 
1
θ = 1)  

Percentage points Parameter  

estimated 0.9 0.95 0.99 
Model 

for Kolmogorov’s test 

0
θ  1.181 1.316 1.585 3

B (6.9734, 4.8247, 5.3213, 2.3800, 0.2690) 

1
θ  1.083 1.196 1.425 3

B (4.6425, 6.6688, 2.8491, 2.2246, 0.3200) 

2
θ  0.994 1.092 1.290 3

B (6.2635, 7.1481, 3.2059, 2.0000, 0.2800) 

0
θ , 

1
θ  0.874 0.954 1.117 Sb(2.4299, 1.8866, 1.7504, 0.2598) 

0
θ , 

2
θ  0.823 0.893 1.033 3

B (5.8989, 7.5040, 2.4180, 1.3724, 0.2800) 

1
θ , 

2
θ  0.815 0.883 1.023 Sb(2.4499, 1.9720, 1.6016, 0.2486) 

0
θ ,

1
θ ,

2
θ  0.758 0.820 0.946 Sb(2.3012, 1.9386, 1.3863, 0.2464) 
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for Cramer-Von Mises-Smirnov’s test 

0
θ  0.320 0.431 0.706 3

B (2.2422, 2.2970, 16.4663, 1.6500, 0.0130) 

1
θ  0.227 0.295 0.464 3

B (5.3830, 2.6954, 40.5199, 1.6450, 0.0050) 

2
θ  0.174 0.221 0.336 3

B (3.6505, 3.2499, 16.5445, 1.0000, 0.0100) 

0
θ , 

1
θ  0.117 0.144 0.209 Sb(3.8667, 1.4603, 0.7583, 0.0059) 

0
θ , 

2
θ  0.102 0.123 0.174 3

B (12.2776, 4.1107, 27.2069, 0.4875, 0.0000) 

1
θ , 

2
θ  0.103 0.127 0.182 3

B (4.7144, 4.6690, 10.8816, 0.5261, 0.0059) 

0
θ ,

1
θ ,

2
θ  0.080 0.097 0.135 Sb(4.1842, 1.6587, 0.4794, 0.0061) 

for Anderson-Darling’s test 

0
θ  1.724 2.280 3.639 3

B (4.8106, 2.6855, 35.5593,11.8700, 0.0500) 

1
θ  1.275 1.617 2.468 3

B (3.6999, 3.9108, 16.4841, 9.0300, 0.0740) 

2
θ  1.056 1.314 1.953 3

B (4.9871, 4.1479, 16.5432,  6.4500, 0.0600) 

0
θ , 

1
θ  0.687 0.827 1.161 3

B (4.6368, 6.6727, 7.1680, 3.6356, 0.0521) 

0
θ , 

2
θ  0.633 0.753 1.037 3

B (3.0467, 5.9239, 5.0944, 2.7870, 0.1000) 

1
θ , 

2
θ  0.696 0.842 1.194 3

B (6.9638, 4.5238, 17.7792, 3.8000, 0.0522) 

0
θ ,

1
θ ,

2
θ  0.494 0.582 0.786 Sb(3.9578, 1.6861, 2.5760, 0.0547) 

 

4 Conclusions 

The Generalized Weibull probability distribution plays an important role in a 

statistical analysis of lifetime or response data in reliability and survival studies. In 

certain parameters the function of Generalized Weibull Distribution agree with the 

Weibull distribution function and the exponential distribution function. In this 

work you can find how density of distribution depends on the parameters values of 

the law. 

In this work are presented models of the statistic distributions of the nonparametric 

goodness-of-fit tests for testing composite hypotheses with the distributions family 

(1).  

It should be stressed, that obtained percentage points and models guarantee proper 

implementation of the nonparametric goodness-of-fit tests in statistic analysis 

problems if MLM is used. These results can’t be used with other estimations 

because statistic distributions of these tests are essential depend on estimation 

method [25]. 

The authors hope that release of the article will be conductive to decrease mistake 

amount, committed in statistic analysis problems if nonparametric goodness-of-fit 

tests are used [27]. 
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Abstract. The comparative analysis of power of classical variance homogeneity tests 

(Fisher’s, Bartlett’s, Cochran’s, Hartley’s and Levene’s tests) is carried out. Distributions of 

tests statistics are investigated under violation of assumptions that samples belong to the 

normal law. Distributions and power of nonparametric tests for dispersion characteristics 

homogeneity are researched (Ansari-Bradley’s, Mood’s, Siegel-Tukey’s tests). The 

comparative analysis of power of classical variance homogeneity tests with power of 

nonparametric tests is carried out. Tables of percentage points for Cochran’s test are 

presented in case of the distributions which are different from normal. 

Key words: test of variances homogeneity, Fisher’s test, Bartlett’s test, Cochran’s test, 

Hartley’s test, Levene’s test, nonparametric test, Ansari-Bradley’s test, Mood’s test, Siegel-

Tukey’s test, power of test. 
 

1  Introduction 

Tests of samples homogeneity are often used in various applications of statistical 

analysis. The question can be about checking hypotheses about homogeneity of 

samples distributions, population means or variances. Naturally the most complete 

findings can be done in the first case. However researcher can be interested in 

possible deviations in the sample mean values or differences in dispersion 

characteristics of measurements results. 

Application features of nonparametric Smirnov and Lehmann-Rosenblatt 

homogeneity tests and analysis of their power were considered in [1]. In [2] it was 

shown that classical criteria for testing hypotheses about homogeneity of means are 

stable to violation of normality assumption and comparative analysis of the power 

of various tests, including nonparametric, was given. 

One of the basic assumptions in constructing classical tests for equality of 

variances is normal distribution of observable random variables (measurement 

errors). Therefore the application of classical criteria always involves the question 

of how valid the results obtained are in this particular situation. Under violation of 

assumption that analyzed variables belong to normal law, conditional distributions 

of tests statistics, when hypothesis under test is true, change appreciably. 

All available publications do not give full information on the power of the classical 

tests for homogeneity of variances and on comparative analysis of the power of the 
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classical tests and nonparametric criteria for testing hypotheses about the 

homogeneity of the dispersion characteristics (scale parameters). 

This work continues researches of stability of criteria for testing hypotheses about 

the equality of variances [3]. Classical Bartlett’s [4], Cochran’s [5], Fisher’s, 

Hartley’s [6], Levene’s [7] tests have been compared, nonparametric (rank) Ansari-

Bradley’s [8], Mood’s [9], Siegel-Tukey’s [10] tests have been considered. The 

purpose of the paper is  

− research of statistics distributions for listed tests in case of distribution laws of 

observable random variables which are different from normal; 

− comparative analysis of criteria power concerning concrete competing 

hypotheses; 

− realization of the possibility to apply the classical tests under violation of 

assumptions about normality of random variables.  

A hypothesis under test for equality of variances corresponding to m  samples will 

have the form 
2 2 2

0 1 2
: ...

m
H σ = σ = = σ ,   (1) 

and the competitive hypothesis is 

1 2

2 2

1 : i iH σ ≠ σ ,    (2) 

where the inequality holds at least for one pair of subscripts 
1 2,i i . 

Statistical simulation methods and the developed software have been used 
for investigating statistic distributions, calculating percentage points and 
estimating tests power with respect to various competing hypotheses. The 

sample size of statistics under study was 610N = . Such N  allowed absolute 

value of difference between true law of statistics distribution and simulated 

empirical not to exceed 310− .   
Statistic distributions have been studied for various distribution laws, in particular, 

in case when simulated samples belong to the family with density 

( ) ( )
( )

0

20

0 0 1 2

1 0 1

; , , exp
2 1/

x
De f x

θ  − θ θ  θ = θ θ θ = − 
 θ Γ θ θ  

  (3) 

with various values of the form parameter 0θ . This family can be a good model for 

error distributions of various measuring systems. Special cases of distribution 

0( )De θ  include the Laplace ( )0
1θ =  and normal ( )0

2θ =  distribution. The family 

(3) allows to define various symmetric distributions that differ from normal: the 

smaller value of form parameter 
0

θ  the "heavier" tails of the distribution 
0

( )De θ , 

and vice-versa the higher value the "easier" tails. 
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The competing hypotheses of the form 
1

H : 
0m

dσ = σ  have been considered in 

comparative analysis of the test power. That is, a competing hypothesis 

corresponds to the situation when 1m −  samples belong to the law with 
0σ = σ , 

while one of the samples, for example, with number m  has some different 

variance. Hypothesis under test corresponds to the situation 
2 2 2 2

0 1 2 0
: ...

m
H σ = σ = = σ = σ .  

 

2  Bartlett’s test 

Bartlett's test statistic [4] is  
1

2

1

1 1 1
1

3( 1)

m

i i

M
m N

−

=

  
χ = + −  

− ν   
∑ ,  (4) 

where 

2 2

1 1

1
ln ln

m m

i i i i

i i

M N S S
N = =

 
= ν − ν 

 
∑ ∑ , 

m  is the number of samples; 
in  are the sample sizes; 

i inν = , if mathematical 

expectation is known, and  1
i i

nν = − , if it is unknown; 
1

m

i

i

N
=

= ν∑ ; 2

i
S  – 

estimators of the sample variances. If the mathematical expectation is unknown, 

the estimators are 
2 2

1

1
( )

1

in

ii ji

ji

S X X
n =

= −
− ∑ , where 

ij
X  – j -th observation in 

sample i , 
1

1 in

i ji

ji

X X
n =

= ∑ . 

If hypothesis 
0

H  is true, all 3iν >  and samples are extracted from a normal 

population, then the statistic (4) has approximately the 2

1m−χ distribution. If 

measurements are normally distributed, the distribution for the statistic (4) is 

almost independent of the sample sizes 
in  [3]. If distributions of observed 

variables differ from the normal law, the distribution 
2

0
( )G Hχ  of statistic (4) 

becomes depending on 
in  and differs from 2

1m−χ . 

 

3  Cochran’s test  

When all 
in  are equal, one can use simpler Cochran’s test [5]. The test statistic Q 

is defined as follows: 

453



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010 

  

 

 

2

max

2 2 2

1 2 m

S
Q

S S S
=

+ + +L
,    (5) 

where ( )2 2 2 2

max 1 2
max , ,...,

m
S S S S= , m  is the number of independent estimators of 

variances (number of samples), 2

iS  are estimators of the sample variances. 

Distribution of Cochran’s test statistic strongly depends on the sample size. The 

reference literature gives only tables of the percentage points for limited number of 

values n , which are used in hypothesis testing. 
 

4  Hartley’s test 

Hartley’s test [6] as well as Cochran’s test is used in case of samples of equal size.
 

Hartley’s test statistic for homogeneity of variances is  
2

max

2

min

s
F

s
= ,    (6) 

where ( )2 2 2 2

max 1 2
max , ,...,

m
S S S S= , ( )2 2 2 2

min 1 2
min , ,...,

m
S S S S= , m  – number of 

independent estimators of variances (number of samples). 

Literature gives tables of percentage points for distribution of statistic (6) 

depending on 
1 mν =

 
and 

2 1nν = − . 

 

5  Levene’s test  

The Levene’s test statistic [7] is defined as: 

( )

( )

2

1

2

1 1

1 i

m

ii

i

nm

iij

i j

n Z Z
N m

W
m

Z Z

• ••

=

•

= =

−
−

=
−

−

∑

∑∑
,   (7) 

where m  is the number of samples, 
in  is the sample size of the i -th sample, 

1

m

i

i

N n
=

=∑ ,  iij ij
Z X X •= − , 

ij
X  – j -th observation in sample i , iX •  is the mean 

of i -th sample, iZ •  is the mean of the
ij

Z  for sample i , Z ••  − the mean of all 
ij

Z .  

In some descriptions of the test, for example [11], it is said that in case when 

samples belong to the normal law and hypothesis  
0H  is true, the statistic has a 

1 2,Fν ν -distribution with number of degrees of freedom 
1 1mν = −

 
and

2 N mν = − . 

Actually distribution of statistics (7) is not Fisher's distribution 
1 2,Fν ν . Therefore 
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percentage points of distribution were investigated using statistical simulation 

methods [12]. 

Levene’s test is less sensitive to departures from normality. However it has less 

power. 

The original Levene’s test used only sample means. Brown and Forsythe [13] 

suggested using sample median and trimmed mean as estimators of the mean for 

statistic (7).  

However our researches have shown that using in (7) sample median and trimmed 

mean leads to another distribution 
0

( )G W H of statistics (7). 

 

6  Fisher’s test 

Fisher’s test is used to check hypothesis of variances homogeneity for two samples 

of random variables. The test statistic has a simple form 
2

1

2

2

s
F

s
= ,     (8) 

where 2

1
s  and 2

2
s  – unbiased variance estimators, computed from the sample data. 

In case when samples belong to the normal law and hypothesis  2 2

0 1 2
:H σ = σ  is 

true, this statistic has the 
1 2,Fν ν -distribution with number of degrees of freedom 

1 1 1nν = −
 
and

2 2 1nν = − . A hypothesis under test is rejected if 
1 2/2, ,

F F∗
α ν ν<  or 

1 21 /2, ,
F F∗

−α ν ν> . 

 

7  Comparative analysis of power 

At given probability of type I error α  (to reject the null hypothesis when it is true) 

it is possible to judge advantages of the test by value of power 1−β , where β is 

the probability of type II error (not to reject the null hypothesis when alternative is 

true).  In [14] it is definitely said that Cochran’s test has lower power in 

comparison with Bartlett’s test. In [3] it was shown that Cochran’s test has greater 

power by the example of checking hypothesis about variances homogeneity for five 

samples. 

Research of power of Bartlett’s, Cochran’s, Hartley’s, Fisher’s and Levene’s tests 

concerning such competing hypotheses 
1

H : 
2 1

dσ = σ , 1d ≠  (in case of two 

samples that belong to the normal law) has shown that Bartlett’s, Cochran’s, 

Hartley’s and Fisher’s tests have equal power in this case. Levene’s test 

appreciably yields to them in power. 

In case of the distributions which are different from normal, for example, family of 

distributions with density (3), Bartlett’s, Cochran’s, Hartley’s and Fisher’s tests 
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remain equivalent in power, and  Levene’s test also appreciably yields to them. 

However in case of heavy-tailed distributions (for example, when samples belong 

to the Laplace distribution) Levene’s test has advantage of greater power.  

Bartlett’s, Cochran’s, Hartley’s and Levene’s tests can be applied when number of 

samples 2m > . In such situations power of these tests is different. If 2m >  and 

normality assumption is true, given tests can be ordered by power decrease as 

follows: 

Cochran’s f  Bartlett’s f  Hartley’s f  Levene’s. 

The preference order remains in case of violation of normality assumption. The 

exception concerns situations when samples belong to laws with more “heavy 

tails” in comparison with the normal law. For example, in case of Laplace 

distribution Levene’s test is more powerful than three others. 
 

8  Ansari-Bradley’s test 

Nonparametric analogues of tests for homogeneity of variances are used to check 

hypothesis that two samples with sample sizes 1n  and 2n  belong to population 

with identical characteristics of dispersion. As a rule equality of means is 

supposed. 
The Ansari-Bradley’s test statistic [8] is: 

1
1 2 1 2

1

1 1

2 2

n

i

i

n n n n
S R

=

 + + + + 
= − − 

 
∑ ,   (9) 

where iR  - ranks corresponding to elements of the first sample in general 

variational row. In case when samples belong to the same law and checked 

hypothesis 
0

H  is true, distribution of statistics (9) does not depend on this law. 

Discreteness of distribution of statistics (9) can be practically neglected when  

1 2, 40n n > . 

 

9  Siegel-Tukey’s test 

The variational row constructed on general sample 
1 2

...
n

x x x≤ ≤ ≤ , where 

1 2
n n n= + , is transformed into such sequence  

1 1 2 3 2 3 4 5
, , , , , , , , ,

n n n n
x x x x x x x x x− − − K , 

i.e. row of remained values is “turned over” each time when ranks are assigned to 

pair of extreme values. Sum of ranks of sample with smaller size is used as test 

statistics. When 1n < 2n  test statistic is defined as: 

1

1

n

i

i

R R
=

=∑ .     (10) 
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Discreteness of distribution of statistics (10) can be practically neglected when  

1 2, 30n n > . 

  

10  Mood’s test  

The test statistic is [9]:  

1 2

1 2

1

1

2

n

i

i

n n
M R

=

+ + 
= − 

 
∑ ,    (11) 

where  iR  - ranks of sample with smaller size in general variational row. 

Discreteness of distribution of statistics (11) can be neglected at all when 

1 2, 20n n > .   

When sample sizes 1 2, 10n n >  discrete distributions of statistics (9), (10) and (11) 

are well enough approximated by normal law. Therefore instead of statistics (9), 

(10) and (11) normalized analogues are more often used, which are approximately 

standard normal. 

Results of power research have shown appreciable advantage of Mood’s test and 

practical equivalence of Siegel-Tukey’s and Ansari-Bradley’s tests. Of course, 

nonparametric tests yield in power to Bartlett’s, Cochran’s, Hartley’s and Fisher’s 

tests. Figure 1 shows graphs of criteria power concerning competing hypotheses 
1

1 2 1
: 1.1H σ = σ and 2

1 2 1
: 1.5H σ = σ  depending on sample size 

i
n  in case when 

0.1α =  and samples belong to the normal law. As we see, advantage in power of 

Cochran’s test is rather significant in comparison with Mood’s test - most powerful 

of nonparametric tests. Let's remind that Bartlett’s, Cochran’s, Hartley’s and 

Fisher’s tests have equal power in case of two samples. 

Distributions of nonparametric tests statistics do not depend on a law kind, if both 

samples belong to the same population. But if samples belong to different laws and 

hypothesis of variances equality 
0

H  is true, distributions of statistics of 

nonparametric tests depend on a kind of these laws.  

 

11 Cochran’s test in case of laws different from normal 

Classical tests have considerable advantage in power over nonparametric. This 

advantage remains when analyzed samples belong to the laws appreciably different 

from normal. Therefore there is every reason to research statistics distributions of 

classical tests for checking variances homogeneity (construction of distributions 

models or tables of percentage points) in case of laws most often used in practice 

(different from the normal law). Among considered tests Cochran’s test is the most 

suitable for this role. 
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Fig. 1. Power of tests concerning competing hypotheses 

1

1H  and 
2

1
H  depending on sample 

size n  when 0.1α =  and samples belong to normal law 
 

In case when observable variables belong to family of distributions (3) with 

parameter of the form 
0

1,  2, 3,  4,  5θ =  and some values n , tables of upper 

percentage points (1%, 5%, 10%) for Cochran’s test were obtained using statistical 

simulation (when number of samples 2 5m = ÷ ). The results obtained can be used 

in situations when distribution (3) with appropriate parameter 
0

θ  is a good model 

for observable random variables. Computed percentage points improve some 

results presented in [3] and expand possibilities to apply Cochran’s test. 
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Personalization of Text Information Retrieval with
Bayesian Networks and Evolutionary Algorithms

Piotr Lipinski

Institute of Computer Science, University of Wroclaw, Wroclaw, Poland
(e-mail: lipinski@ii.uni.wroc.pl)

Abstract. Information retrieval focuses on searching through large databases of unstructural
information and finding documents relevant to queries sent by users. Queries are usually
imprecise and often do not reflect exactly some hidden user’s intentions. In some cases,
users send the same query many times or want to continuously monitor databases (chang-
ing frequently - each time when new documents appear or some others disappear) with the
same query, which enables to collect some user’s feedback, analyze it to detect hidden user’s
intentions and tune further searching.

In the approach proposed, each user’s query has assigned a probability distribution over
the document space, modelled by a Bayesian Network, which describes documents relevant
to supposed user’s expectations. At the beginning, the probability distribution is defined by
the original user’s query. After getting user’s feedback, the probability distribution is updated
to better fit hidden user’s intentions by solving an optimization problem using an evolutionary
algorithm, based on Bayesian Optimization Algorithm, estimating a new probability distri-
bution. Information retrieval continues to search through databases with the new probability
distribution and all the process repeats until the user stops monitoring databases.

Results of some experiments performed on real-life data prove that such a system is able
to personalize information retrieval, adapt to hidden user’s intentions and increase accuracy
of results.
Keywords: Fitting models for data, Graphical models and Bayesian networks, Classification
and Documentation, Data and Text Mining, Genetic and Fuzzy Algorithms.

1 Introduction

Information retrieval (IR) focuses on searching through large databases of unstruc-
tural information and finding documents relevant to queries sent by users [1]. Queries
are usually imprecise and often do not reflect exactly some hidden user’s intentions.
In some cases, users send the same query many times or want to continuously moni-
tor databases (changing frequently - each time when new documents appear or some
others disappear) with the same query, which enables to collect some user’s feed-
back, analyze it to detect hidden user’s intentions and tune further searching.

In the approach proposed, each user’s query has assigned a probability distri-
bution over the document space, modelled by a Bayesian Network (BN) [3], which
describes documents relevant to supposed user’s expectations. At the beginning, the
probability distribution is defined by the original user’s query. After getting user’s
feedback, the probability distribution is updated to better fit hidden user’s inten-
tions by solving an optimization problem using an evolutionary algorithm, based
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on Bayesian Optimization Algorithm (BOA) [6], [4], estimating a new probabil-
ity distribution. IR continues to search through databases with the new probability
distribution and all the process repeats until the user stops monitoring databases.

This paper is structured in the following manner: Section 2 introduces classic
text information retrieval. Section 3 discusses its personalization. Section 4 presents
an evolutionary algorithm to construct proper bayesian networks. Section 5 reports
some experiments on real-life data. Finally, Section 6 concludes the paper.

2 Classic Text Information Retrieval

IR focuses on searching through large databases of unstructural information and
finding documents relevant to queries sent by users. Information databases store
descriptions of documents, such as text messages, on-line articles, news headlines or
blog entries, where each document is described by some meta-data, such as authors,
languages, publishers, categories or keywords, as well as some content-based data.

Users execute queries on information databases and receive lists of best match-
ing documents. Queries consist of constraints on meta-data and sets of significant
words for the content of documents. IR filters information databases according to
the constraint on meta-data and searches through resulting documents for contents
relevant to the set of significant words.

Information databases usually change with time, when new documents appear
and some others disappear, so executing the same query in different time may lead
to different results.

2.1 Information Database

Let D denote the information database consisting of a number N of documents
D1, D2, . . . , DN . Each document Dj , j = 1, 2, . . . , N , is described by two vectors:

• cj ∈ C1 ×C2 × . . .×CK , related to meta-data, where C1, C2, . . . , CK denote
domains of such meta-data components, and

• dj ∈ RL, related to content-based data, whose components correspond to sig-
nificance of some preselected terms in the document, according to the TF-IDF
representation [1], described further.

Let ΩC = C1 × C2 × . . .× CK denote the meta-data space, ΩD = RL denote
the content-based data space, and Ω = ΩC ×ΩD denote the document space.

Let T denote the list of some preselected terms consisting of a number L of
terms t1, t2, . . . , tL which includes all the significant words appearing in the en-
tire information database D (after simple preprocessing, such as lexical analysis,
stopword elimination and stemming). For each term ti, i = 1, 2, . . . , L, and each
document Dj , j = 1, 2, . . . , N , let fij denote the number of occurrences of the term
ti in the document Dj , called the term frequency (TF) [1].

470



Personalization of Text Information Retrieval with BN and EA 3

Term frequencies enable to compute the term-document matrix D ∈ RL×N

which describes relations between documents and terms [1]. For i = 1, 2, . . . , L,
j = 1, 2, . . . , N , each element dij of the matrix D is

dij = lijgi, (1)

where lij is a local factor that measure the importance of the term ti in the document
Dj and gi is a global factor that measures the importance of the term ti in the entire
information databaseD. In the TF-IDF representation, the local factor lij is the term
frequency (TF), lij = fij , the global factor gi is the inverse document frequency
(IDF)

gi = log2

N∑N
j=1 bin(fij)

, (2)

where bin(fij) = 1 for fij 6= 0 and bin(fij) = 0 otherwise. Successive columns of
the term-document matrix D define the vectors d1,d2, . . . ,dN being the content-
based description of the documents D1, D2, . . . , DN .

2.2 Basic User’s Query and Information Retrieval

In the classic approach, each query Q consists of two parts: a constraint on meta-
data, C ⊂ ΩC , and a set of significant terms for the content of documents, S =
{s1, s2, . . . , sl} ⊂ T . Such a set S defines an element s = (s̃1, s̃2, . . . , s̃L) ∈ ΩD

in such a way that s̃i = 1 if ti ∈ S and s̃i = 0 otherwise, for i = 1, 2, . . . , L.
IR tries to find all the documents D from the information database D, which

hold the constraint C and have the content similar to s, i.e. all the documents D =
(c,d) ∈ Ω such that

c ∈ C ⊂ ΩC and %(d, s) < ε, (3)

where % is a document similarity measure on the content-based data space, described
further, and ε > 0 is a specific constant.

One of more popular document similarity measures is the cosine measure [1].
For d1 ∈ ΩD and d2 ∈ ΩD being the content-based description of two documents
D1 and D2, respectively, the cosine measure %(d1,d2) is the cosine of the angle
between vectors d1 and d2 in the space RL,

%(d1,d2) =
dT

1 d2

|d1| · |d2| , (4)

where |d1|, |d2| denote lengths of vectors d1,d2, respectively.
Figure 1 illustrates the document space Ω with documents from the information

database D, marked by dots, and a query Q = (C, s), marked by a cross, as well as
the result set – a set of documents holding the constraint C and having the content
similar to s.
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+

Fig. 1. The document space Ω with documents from the information database D (marked by
dots) and a query Q (marked by a cross) as well as the result set.

3 Personalized Text Information Retrieval

In some cases, users send the same query many times or want to continuously mon-
itor information databases (changing frequently - each time when new documents
appear and some others disappear) with the same query, which enables to improve
information retrieval and provide more accurate results by collecting some user’s
feedback, analyzing it to detect hidden user’s intentions and tuning further search-
ing.

3.1 User’s Feedback

Let R denote the set of documents from the information database D returned to the
user after the initial query Q consisting of a number m of documents R1, R2, . . . , Rm.
Each document Rj , j = 1, 2, . . . , m, is evaluated by the user by assigning a rele-
vance factor rj ∈ {0, 1}, where rj = 1 stands for relevant documents and rj = 0
for irrelevant ones (in practice, such relevance factors rj are assigned automatically
when the user open, or does not open, the document Rj).

3.2 Personalized User’s Query and Information Retrieval

Such relevance factors enable to precise the initial user’s query Q taking into con-
sideration hidden user’s intentions by assigning to the query Q a probability distri-
bution PQ over Ω describing documents relevant to supposed user’s expectations.

PQ is a (K +L)-dimensional joint probability distribution and is modelled by a
Bayesian Network (BN) [3] [5] [2], which is a directed acyclic graph, where nodes
represents random variables and edges represents conditional dependencies between
them (if two nodes are not connected by an edge, they are conditionally independent
of each other). Each node has a marginal conditional probability distribution (in
discreet cases – a table of values, in continuous cases – a density function), which
describes distribution of the random variable for a particular set of values of parent
nodes.
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In order to avoid an excessively large BN (the number L of preselected terms
usually exceeds 1000), in the approach proposed, PQ is modelled by a BN with a di-
rected acyclic graph B = (V, E), where the set of vertices V = {v1, v2, . . . , vK+l}
consists of K+l vertices corresponding to K meta-data components C1, C2, . . . , CK

and l terms s1, s2, . . . , sl from the initial query Q and the set of edges E ⊂ V × V
is initially empty (the edges as well as the marginal probability distributions are
estimated further on the basis of user’s feedback). In such an approach, the joint
probability distribution PQ modelled by the BN is

PQ(D) =
K∏

j=1

PQ(Cj |πCj
)

L∏

j=1

PQ(Dj |πDj
), (5)

where PQ(Dj |πDj
) has a uniform distribution for tj 6∈ S = {s1, s2, . . . , sl} and

πV denotes parent vertices of the vertex V .
Figure 2 presents an example of BN for a query Q with a set of terms S =

{s1, s2, s3, s4, s5}, where L = 5 and ΩD = R5 as well as, for the sake of simplicity,
K = 0 and ΩC = ∅. Figure 2 (A) presents an initial BN with no edges (variables are
conditionally independent), and Figure 2 (B) presents a further BN with marginal
conditional probability distributions in successive nodes S1, S2, . . . , S5 correspond-
ing to P (S1), P (S2|S1), P (S3|S1), P (S4|S1, S3), P (S5|S1), respectively. In such
an approach, the joint probability distribution PQ modelled by the BN is

PQ(D) = P (S1) · P (S2|S1) · P (S3|S1) · P (S4|S1, S3) · P (S5|S1). (6)

S1

S2

S3 S4

S5

S1

S2

S3 S4

S5

(A) (B)

Fig. 2. A bayesian network for a query Q with a set of terms S = {s1, s2, s3, s4, s5} (for the
sake of simplicity, K = 0 and ΩC = ∅): (A) all variables are conditionally independent, (B)
S2, S3, S5 depends on S1 and S4 depends on S1 and S3.

4 Constructing Bayesian Networks

In order to construct the BN which models hidden user’s intentions defined by user’s
feedback, an evolutionary algorithm, based on Bayesian Optimization Algorithm
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(BOA) [6], [4], is applied. It deals with a bayesian network B and a population P ⊂
Ω of documents generated randomly using B, as described in the previous section,
with the aim to generate a set of documents relevant to hidden user’s intentions.
In order to simplify the approach, all the continuous domains of components of Ω
were quantized.

For a document D ∈ R, its relevance F (D) to hidden user’s intentions is defined
by user’s feedback. For a document D ∈ Ω\R, its relevance F (D) to hidden user’s
intentions is based on its distances to documents evaluated by the user in such a way
that

F (D) = max
j=1,2,...,m

F (Rj)
%(D,Rj) + 1

. (7)

Algorithm 1 presents the overview of the evolutionary algorithm, which maxi-
mizes the objective function F and builds a proper BN. It starts with taking an initial
network B0, generating a random initial population P0 of size n and evaluating it.
If it is the first attempt to personalize the user’s query, B0 is an empty network with
no edges, otherwise, it is the network built in the previous attempt (with previous
user’s feedback).

Afterwards, the evolution starts with improving the population Pt by removing
a half of the weakest individuals and replacing them by a half of the strongest in-
dividuals, updating the network Bt to model the current population Pt, generating
a random new population and evaluating it. Finally, the evolution process repeats
until a termination condition is hold (normally, after a certain number of iterations).

Updating the network Bt consists in adapting it to model the current population
Pt by a sequence of trials of adding, removing or changing a direction of a randomly
chosen edge with the aim to maximize the K2 metrics. The K2 metrics is given by

K2(B|P) =
K+l∏

i=1

∏
πVi

1
Γ (m(πVi) + 1)

·
∏
vi

Γ (m(vi, πVi) + 1) (8)

where the product over πVi runs over all instances of the parents of Vi, the product
over vi runs over all instances of Vi, m(πVi) denotes the number of instances in
P with the parents of Vi instantiated to πVi , and m(πVi) denotes the number of
instances in P with the parents of Vi instantiated to πVi and Vi instantiated to vi.

5 Experiments

A number of experiments on real-life data were performed to validate the approach
proposed. The information database consisted of descriptions of documents re-
trieved from popular news services (about 20 data sources, about 10000 documents
in total, collected over a period of one year). Meta-data consisted of 10 components,
leading to a preliminary document categorization. Content-based data consisted of
3000 components, corresponding to 3000 preselected terms.
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Algorithm 1 Evolutionary Algorithm to Personalization of IR (EAPIR)
B0 = Initial-Bayesian-Network();
P0 = Random-Population(B0, n);
Population-Evaluation(P0);
t = 0;
while not Termination-Condition(Pt) do

Replace-Weakest-Individuals(Pt);
Bt+1 = Update-Bayesian-Network(Bt, Pt);
Pt+1 = Random-Population(Bt+1, n);
Population-Evaluation(Pt+1);
t = t + 1;

end while
return Pt;

In the first part of experiments, each experiment concerned a user’s query and a
manually selected set of documents, perfectly suiting hidden user’s intentions. The
user’s query were processed by the system and a set of documents was returned to
the user. The user evaluated it and user’s feedback returned to the system, which
adapted the searching process and returned a new set of documents. Such a process
was repeated until the user did not cancel the query.

Table 1 presents summary of results of these experiments for 3 iterations. Due
to the long time necessary for manual preparing such data sets, only 10 experiments
were performed. However, it is easy to see that personalization of IR enables to
reduce the total number of documents found and returned to the user without signif-
icant loss in expected documents.

Table 1. Summary of results of experiments with manually selected set of documents per-
fectly suiting hidden user’s intentions.

experiment 1 2 3 4 5 6 7 8 9 10
number of terms in the query 5 5 10 10 10 10 20 20 20 20
total number of documents (1st iter.) 500 238 500 500 302 194 500 500 287 173
number of expected documents (1st iter.) 240 64 326 173 134 57 288 211 158 37
total number of documents (2nd iter.) 387 174 421 398 199 101 455 378 198 126
number of expected documents (2nd iter.) 238 64 311 162 138 57 267 209 149 35
total number of documents (3rd iter.) 297 132 394 231 174 86 328 319 173 73
number of expected documents (3rd iter.) 237 63 309 157 135 51 267 208 149 35

In the second part of experiments, 1000 queries were processed and the average
user’s feedback was studied in a few successive iterations of the IR process. Table 2
presents a summary of results. Clearly, the personalization of IR enables to improve
the average document evaluation.
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Table 2. Average user’s feedback in successive iterations of the IR process.

number of terms in the query 5 10 20
average document evaluation (1st iter.) 0.3892 0.4726 0.5972
average document evaluation (2nd iter.) 0.5195 0.6294 0.7694
average document evaluation (3rd iter.) 0.7214 0.8016 0.8731

6 Conclusions

This paper addresses the problem of optimization of information retrieval by per-
sonalization of searching through the information database according to the hidden
user’s intentions. Experiments performed on real-life data proved that the approach
presented were able to improve IR, adapt to hidden user’s intentions and increase ac-
curacy of results. EAs applied in the approach, based on the Bayesian Optimization
Algorithm (BOA), were able to find efficient solutions for the optimization problem
and construct a BN precisely describing user’s feedback.

Such an improvement may be applied in the IR systems, where users send the
same query many times or want to continuously monitor databases with the same
query, such as corporate information databases with many users waiting for docu-
ments related to their domains and duties (accountants, analytics, investors or man-
agers).

Further research may improve the approach proposed by additional studies on
modelling the probability distribution and constructing the BN (for instance, adding
additional nodes to the BN in the EA), experiments with dimensionality reduction
in the IR as well as further validation on larger data sets.
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Abstract. We research how uncertainties in the input data (parameters, coeffi-
cients, right-hand sides, boundary conditions, computational geometry) spread of
in the solution. Since all realisations of random fields are too much information,
we demonstrate an algorithm of their low-rank approximation. This algorithm is
based on singular value decomposition and has linear complexity. This low-rank
approximation allows us to compute main statistics such as the mean value, vari-
ance, exceedance probability with a linear complexity and with drastically reduced
memory requirements.
Keywords: uncertainty quantification, stochastic elliptic partial differential equa-
tions, Karhunen-Loève expansion, QR-algorithm, sparse data format, low-rank data
format.

1 Introduction

Nowadays the trend of numerical mathematics is often trying to resolve in-
exact mathematical models by very exact deterministic numerical methods.
The reason of this inexactness is that almost each mathematical model of
a real world situation contains uncertainties in the coefficients, right-hand
side, boundary conditions, initial data as well as in the computational ge-
ometry. All these uncertainties can affect the solution dramatically, which
is, in its turn, also uncertain. The information of the interest usually is not
the whole set of the solutions (too much data), but some other stochastic
information: cumulative distribution function, density function, mean value,
variance, exceedance probability etc.

We consider mathematical models described by stochastic partial differen-
tial equations (SPDEs), where uncertainties are represented as random fields.
Efficient numerical solution of such SPDEs requires an appropriate discreti-
sation of the deterministic operator as well as the stochastic fields. The total
number degrees of freedom (dofs) of the discrete model of the SPDE is the
product of dofs of the deterministic and stochastic discretisations and can be,
even after application of the truncated Karhunen-Loève expansion (KLE) [7]
and polynomial chaos expansion (PCE) of Wiener [11], very high. Therefore
data sparse techniques for representation of input and output data (solution)
are necessary for efficient representation and computation.
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In this work we compress the set of output random fields via the algorithm
based on the singular value decomposition. The short idea is as follows.
Let Z be a number of stochastic realisations of the solution (e.g., number of
Monte Carlo simulations or a number of collocation points). Let vi ∈ R

n,
i = 1..Z, stochastic realisations of the solution (without the mean value). We
build from all vectors vi the matrix W := [v1, ...,vZ ] ∈ R

n×Z and compute
its low-rank approximation W̃ = ABT . For every new vector vZ+1 an update
for the matrices A and B is computed on the fly with a linear complexity.
In the conclusion, we demonstrate examples from aerodynamic (influence of
uncertainties in the angle of attack α, in the Mach number Ma and in the
airfoil geometry on the solution - drag, lift, pressure and friction coefficients).

2 Discretisation techniques

By definition, the Karhunen-Loève expansion (KLE) of a random field κ(x, ω)
is the following series [7]

κ(x, ω) = Eκ(x) +

∞
∑

ℓ=1

√

λℓφℓ(x)ξℓ(ω), (1)

where ξℓ(ω) are uncorrelated random variables and Eκ(x) is the mean value
of κ(x, ω), λℓ and φℓ are the eigenvalues and the eigenvectors of problem

Tφℓ = λℓφℓ, φℓ ∈ L2(G), ℓ ∈ N, (2)

and operator T is defined like follows

T : L2(G) → L2(G), (Tφ)(x) :=

∫

G

covκ(x, y)φ(y)dy,

where covκ(x, y) a given covariance function. Throwing away all unimportant
terms in KLE, one obtains the truncated KLE, which is a sparse represen-
tation of the random field κ(x, ω). Each random variable ξℓ can be approx-
imated in a set of new independent Gaussian random variables (polynomial
chaos expansions (PCE) of Wiener [3,11]), e.g.

ξℓ(ω) =
∑

β∈J

ξ
(β)
ℓ Hβ(θ(ω)), (3)

where θ(ω) = (θ1(ω), θ2(ω), ...), ξ
(β)
ℓ are coefficients, Hβ , β ∈ J , is a Her-

mitian basis and J := {β|β = (β1, ..., βj, ...), βj ∈ N0} a multi-index set
[8]. Computing the truncated PCE for each random variable in KLE, one
can make representation of the random field even more sparse. Polynomial
expansion (3) is also called the response surface.
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Since Hermite polynomials are orthogonal, the coefficients ξ
(β)
ℓ can be

computed by projection

ξ
(β)
ℓ =

1

β!

∫

Θ

Hβ(θ)ξℓ(θ) P(dθ).

This multidimensional integral over Θ can be computed approximately, for
example, on a sparse Gauss-Hermite grid

ξ
(β)
ℓ =

1

β!

n
∑

i=1

Hβ(θi)ξℓ(θi)wi, (4)

where weights wi and points θi are defined from sparse Gauss-Hermite inte-
gration rule.

After a finite element discretisation (see [5] for more details) the discrete
eigenvalue problem (2) looks like

MCMφℓ = λh
ℓ Mφℓ, Cij = covκ(xi, yj). (5)

Here the mass matrix M is stored in a usual data sparse format and the
dense matrix C ∈ R

n×n (requires O(n2) units of memory) is approximated
in the sparse H-matrix format [5] (requires only O(n log n) units of memory)
or in the Kronecker low-rank tensor format [4]. To compute m eigenvalues
(m ≪ n) and corresponding eigenvectors we apply the Lanczos eigenvalue
solver [6,10].

3 Data compression

Stochastic random fields require a large amount of memory and computa-
tional resources. The aim is to find a low-rank format for all presented input
and output random fields and for each new realisation to compute only corre-
sponding low-rank update (see, e.g. [1]). It can be practical when, e.g. many
thousands Monte Carlo simulations are computed and stored. This low-rank
data format makes memory requirements smaller and the computational pro-
cess faster.

Let vi ∈ R
n be the solution vector (the deterministic component is sub-

tracted), where i = 1..Z a number of stochastic realisations of the solution.
Build from all these vectors the matrix W = (v1, ...,vZ) ∈ R

n×Z . Consider
the factorization

W = ABT where A ∈ R
n×k and B ∈ R

Z×k. (6)

Definition 1. We say that matrix W is a rank-k matrix if the representa-
tion (6) is given. We denote the class of all rank-k matrices for which factors
A and BT in (6) exist by R(k, n, Z). If W ∈ R(k, n, Z) we say that W has
a low-rank representation.

479



4 A. Litvinenko and H. G. Matthies

The first aim is to compute a rank-k approximation W̃ of W , such that

‖W − W̃‖ < ε, k ≪ min{n, Z}.

The second aim is to compute an update for the approximation W̃ with a
linear complexity for every new coming vector vZ+1. Below we present the
algorithm which does this.

To get the reduced singular value decomposition we omit all singular
values, which are smaller than some level ε or, alternative variant, we leave
a fixed number of largest singular values. After truncation we speak about
reduced singular value decomposition (denoted by rSVD) W̃ = Ũ Σ̃Ṽ T , where
Ũ ∈ R

n×k contains the first k columns of U , Ṽ ∈ R
Z×k contains the first

k columns of V and Σ̃ ∈ R
k×k contains the k-biggest singular values of Σ.

There is Lemma (see more in [9] or [2]) which tells that matrix W̃ is the best
approximation of W in the class of all rank-k matrices.

The computation of such basic statistics as the mean value, the variance,
the exceedance probability can be done with a linear complexity. The follow-
ing examples illustrate computation of the mean value and the variance.

Let W = (v1, ...,vZ) ∈ R
n×Z and its rank-k representation W = ABT ,

A ∈ R
n×k, BT ∈ R

k×Z be given. Denote the j-th row of matrix A by aj ∈ R
k

and the i-th column of matrix BT by bi ∈ R
k.

1. One can compute the mean solution v ∈ R
n as follows

v =
1

Z

Z
∑

i=1

vi =
1

Z

Z
∑

i=1

A · bi = Ab, (7)

The computational complexity is O(k(Z + n)), besides O(nZ)) for usual
dense data format.

2. One can compute the mean value of the solution in a grid point xj as
follows

v(xj) =
1

Z

Z
∑

i=1

vi(xj) =
1

Z

Z
∑

i=1

aj · bi = ajb. (8)

The computational complexity is O(kZ).
3. One can compute the variance of the solution var(v) ∈ R

n by the comput-
ing the covariance matrix and taking its diagonal. First, we compute the
centred matrix Wc := W −WeT , where W = W · e/Z and e = (1, ..., 1)T .
Computing Wc costs O(k2(n + Z)) (addition and truncation of rank-k
matrices). By definition, the covariance matrix is cov = WcW

T
c . The

reduced singular value decomposition of Wc is Wc = UΣV T , Σ ∈ R
k×k,

can be computed with a linear complexity via the QR algorithm (Section
3.1). Now, the covariance matrix can be written like

cov = WcW
T
c = UΣV T V ΣT UT = UΣΣT UT . (9)
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The variance of the solution vector (i.e. the diagonal of the covariance
matrix in (9)) can be computed with the complexity O(k2(Z + n)).

4. One can compute the variance value var(v(xj)) in a grid point xj with a
linear computational cost.

5. To compute minimum or maximum of the solution in a point xj over all
realisations cost O(kZ).

3.1 Low-rank update with linear complexity

Let W = ABT ∈ R
n×Z and matrices A and B be given.

An rSVD W = UΣV T can be computed efficiently in three steps (QR algo-
rithm for computing the reduced SVD):

1. Compute (reduced) a QR-factorization of A = QARA and B = QBRB,
where QA ∈ R

n×k, QB ∈ R
Z×k, and upper triangular matrices

RA, RB ∈ R
k×k.

2. Compute an reduced SVD of RART
B = U ′ΣV ′T .

3. Compute U := QAU ′, V := QAV ′T .

The first and third steps need O((n + Z)k2) operations and the second step
needs O(k3). The total complexity of rSVD is O((n + Z)k2 + k3).

Suppose we have already matrix W = ABT ∈ R
n×Z containing solution

vectors. Suppose also that matrix W
′

∈ R
n×m contains new m solution

vectors. For the small matrix W
′

, computing the factors C and DT such
that W

′

= CDT is not expensive. Now our purpose is to compute with a
linear complexity the new matrix Wnew ∈ R

n×(Z+m) in the rank-k format.
To do this, we build two concatenated matrices Anew := [AC] ∈ R

n×2k and
BT

new = blockdiag[BT DT ] ∈ R
2k×(Z+m). Note that the difficulty now is that

matrices Anew and Bnew have rank 2k. To trancate the rank from 2k to k
we use the QR-algorithm above. Obtain

Wnew = UΣV T = U(V ΣT )T = AnewBT
new,

where Anew ∈ R
n×k and BT

new ∈ R
k×(Z+m). Thus, the “update” of the

matrix W is done with a linear complexity
O((n + Z)k2 + k3 + (n + Z)k2).

4 Numerics

Further numerical results are obtained in the MUNA project. We demon-
strate the influence of uncertainties in the angle of attack, the Mach number
and the airfoil geometry on the solution (the lift, drag, lift coefficient and skin
friction coefficient). As an example we consider two-dimensional RAE-2822
airfoil. The deterministic solver is the TAU code with k-w turbulence model.
We assume that α and Ma are gaussian with means α = 2.79, Ma = 0.734
and the standard deviations σ(α) = 0.1 and σ(Ma) = 0.005.
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Table 1 demonstrates application of the collocation method computed
in grid points of the sparse Gauss-Hermite two-dimensional grid (Z = 5
deterministic evaluations). The Hermite polynomials are of order 1 with two
random variables (see (3)). In the last column we compute the measure of
uncertainty σ/mean. It shows that 3.6% and 0.7% of uncertainties in α and
in Ma correspondingly result in 2.1% and 15.1% of uncertainties in the lift
CL and drag CD.

In Fig.1 we compare the cumulative distribution and density functions for
the lift and drag, obtained via the response surface (PCE of order 1) and via
6360 Monte Carlo simulations. To get the large sample we evaluated 106 MC
points on the response surface. Thus, one can see that very cheap collocation
method (13 or 29 deterministic evaluations) produces similar to MC method
with 6360 simulations. But, at the same time we can not say which result is
more precise. The exact solution is unknown and 6360 MC simulations are
too few.

mean st. dev. σ σ/mean

α 2.79 0.1 0.036

Ma 0.734 0.005 0.007

CL 0.853 0.018 0.021

CD 0.0206 0.0031 0.151

Table 1. Uncertainties in the input parameters (α and Ma) and in the solution
(CL and CD). PCE of order 1 and sparse Gauss-Hermite grid with 5 points.

The graphics in Fig. 2 demonstrate error bars [mean−σ, mean+σ], σ the
standard deviation, for the pressure coefficient cp and absolute skin friction
cf in each surface point of the RAE2822 airfoil. The data are obtained from
645 realisation of the solution. One can see that the largest error occur at
the shock (x ≈ 0.6). A possible explanation is that the shock position is
expected to slightly change with varying parameters α and Ma.
To decrease numerical complexity we build from all Z = 645 realisations of

the solution the matrix W :

W = [density; pressure; cp; cf]T ∈ R
2048×645 (10)

and compute its rank-k approximation W̃ . The solution vector v ∈ R
2048

consists of four vectors: density, pressure, cp and cf. In Table 2 one can see
fast decay of the approximation error. Additionally, one can also see very
smaller memory requirement (dense matrix format costs 10.6MB).

We model uncertainties in the geometry of RAE2822 airfoil via random
boundary perturbations:

∂Gε(ω) = {x + εκ(x, ω)n(x) : x ∈ ∂G}, (11)
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Fig. 1. Density functions (first row), cumulative distribution functions (second row)
of CL (left) and CD (right). PCE is of order 1 with two random variables. Three
graphics computed with 6360 MC simulations, 13 and 29 collocation points.

Fig. 2. Error bars [mean − σ, mean + σ], σ standard deviation, in each point of
RAE2822 airfoil for the cp and cf.

rank k 1 2 5 10 20 50

‖W − W̃k‖2/‖W‖2 0.82 0.21 0.4 5e-3 5e-4 1.2e-5

memory, kB 22 43 108 215 431 1080

Table 2. Accuracy and memory requirements of the rank-k approximation of the
solution matrix W = [density; pressure; cp; cf]T ∈ R

2048×645 .
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where n(x) is the normal vector in point x, κ(x, ω) a random field, G the
computational geometry and ε ≪ 1. We assume that the covariance function
is of Gaussian type

covκ(p1, p2) = σ2 · exp(−d2), d =
√

|x1 − x2|2/l21 + |z1 − z2|2/l22,

where σ = 10−3, p1 = (x1, 0, z1), p2 = (x2, 0, z2), the covariance lengths
l1 = |maxi(x) − mini(x)|/10 and l2 = |maxi(z) − mini(z)|/10. We took
m = 3 KLE terms (1), stochastic dimension is 3 and the number of sparse
Gauss-Hermite points (in 3d) for computing PCE coefficients (4) is 25. After
building the response surfaces for CL and CD, we use them to generate 106

MC realisations. We obtain surprisingly small uncertainties in the CL and
CD — 0.58% and 0.65% correspondingly. A possible explanation can be a
small uncertain perturbations in the airfoil geometry.
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Abstract

Every attainable structure of the so called continuous-time Homoge-
neous Markov System (HMS) with fixed size and state space S={1,2,...,n}
is considered as a particle of Rn and consequently the motion of the struc-
ture corresponds to the motion of the particle. Under the assumption that
”the motion of every particle-structure at every time point is due to its
interaction with its surroundings”, Rn becomes a continuum [9]. Then
the evolution of the set of the attainable structures corresponds to the
motion of the continuum. For the case of a three-state HMS it is stated
that the concept of the two-dimensional isotropic elasticity can further
interpret its evolution.

Keywords: Continuous time Markov system; Stochastic (population)
systems; Isotropic elastic continuum.

1 Introduction

There are many applications of Markov systems reported in the literature, in
areas of manpower planning, statistical physics, chemistry, demography, geog-
raphy as well as in economics and health care planning. In looking for example
applications of Homogeneous or non-Homogeneous Markov systems (or semi-
Markov systems) reference could be given to student enrolment in universities[1],
occupational mobility [2] and sea pollution [3], among others, while basic results
concerning continuous time Markov models in manpower systems can be found
in [4]-[7]. Main problems of interest regarding Homogeneous Markov Systems
(HMSs) are their asymptotic behaviour, stability, asymptotic stability, control,
variability, estimation, attainability, maintainability and entropy.

Consider a continuous-time HMS with state space S={1,2,...,n}. The mem-
bers of the system could be particles, biological organisms, parts of human
population, etc. Every member of the system may be in one and only one of
the states 1, 2,..., n, at some time point t, and it can move from some state
∗Postal address: Depart. of Physics, Arist. Univ. of Thessal., 54124, Thessaloniki, Greece.
†Postal address: Depart. of Mathem., Arist. Univ. of Thessal., 54124, Thessal., Greece.
‡Postal address: Depart. of Physics, Arist. Univ. of Thessal., 54124, Thessaloniki, Greece.
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i to some other state j in the time interval [t,∆t ]with transition probability
pij [∆t], for every t ∈ R+. Then, every attainable structure of the continuous
time HMS with n states and fixed size is considered as a point-particle of Rn.
Thus, the motion of an attainable structure corresponds to the motion of the
respective point-particle in Rn. Under the assumption that the motion of every
particle at every time point is due to its interaction with its surroundings, Rn

is further seen as a continuum [9]-[10] and, hence, the evolution of the set of the
HMS attainable structures corresponds to the deformation of the continuum.
This turns to be a realistic assumption, since the motion of every point-particle
depends entirely on its position in Rn.
Under these considerations, the concepts of the state of stress and the relevant
stress tensor can be associated with an n-dimensional HMS and, as far as the
present paper is concerned, these are initially detailed in an example applica-
tion dealing with a three-dimensional HMS. Then, given the rate of transition
probabilities matrix of the HMS, a question is raised on whether the set of the
attainable structures of the continuous time HMS may be considered as an elas-
tic solid and, in this context, it is further examined whether the deformation
of such a model could explain the evolution of the HMS. The study follows
the steps of the methodology presented in [10], where the search for an answer
to this question gave rise to the concept of multidimensional, anisotropic linear
elasticity. The evolution of a 2-dimensional HMS was successfully interpreted in
[10] through the deformation of a linearly elastic rod, while it was further men-
tioned that the evolution of an n-dimensional HMS may be interpreted through
the deformation of an (n-1)-dimensional, anisotropic, linearly elastic solid.

Apart from the above concepts, the present paper develops further the three-
dimensional HMS example application, and the evolution of the HMS is in-
terpreted through the deformation of some two-dimensional isotropic elastic
solid. The increased number of dimensions, as compared with the number of
dimensions considered in [10], results into an increase of the number of the
PDEs describing the motion of the present HMS and, consequently, it com-
plicates the associated calculations. Using the field equations of elasticity, an
explicit form of the stress tensor involved can still be evaluated analytically. It
is therefore concluded that, under certain assumptions, the evolution of a three-
dimensional HMS may successfully be interpreted through the deformation of a
two-dimensional elastic solid material.
The successful interpretation of the evolution of HMSs through the deformation
laws of elastic solids gives rise to further fruitful thoughts regarding the manner
in which well known concepts and features met in classical and finite elasticity
(e.g., anisotropy, strain energy) may be associated to HMSs and be exploited
appropriately.
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2 The continuous time Homogeneous Markov
System as an elastic medium

For a continuous time HMS it is assumed that the transition probability of
moving from some state i to j in the time interval (t,t+∆t) is given by the
relation

pij(t, t+ ∆t) = qij∆t+ o(∆t), (1)

where o(∆t) denotes a quantity that becomes negligible when compared to
∆t as ∆t → 0, that is lim∆t→0(o(∆t)/∆t) = 0. In the general case of non-
homogeneous Markov systems the transition intensities qij may be time depen-
dent.

In what follows let x(t) = (xi(t))i∈S denote the n × 1 state vector of the
HMS, the i-th component of which is the probability of a systems’ member to
posses state i at time t. Then the probabilistic low for the transitions given in
(1) leads to the equation

xj(t+ δt) = xi(t)(δij + qij∆t) + o(∆t), (2)

where repeated indices denote summation over their range, and δij stands for
the Kronecker delta, having the value 1 when i = j and 0 otherwise. From (2)
the Kolmogorov equation can be derived, i.e.

ẋT (t) = xT (t) ·Q , (3)

where ẋ(t) denotes the derivative of the vector x(t) with respect to t, Q =
(qij)i,j∈S is the matrix of the transition intensities and the superscript T denotes
transposition of the respective vector (or matrix).

Equation (3) represents the motion of a stochastic structure in Rn. If we
consider every structure of the HMS moving according to (3) as a ’particle’ of
the n-dimensional space Rn we can assign material behavior to Rn. From (3)
we conclude that the velocity ẋ(t) of each particle depends only on the position.
So we can assume that the motion of every particle, at every time t, depends
on the interaction of that particle with its surroundings. Thus the HMS may
be considered as a continuum moving according to equation (3).
Now, from (3) we get the trajectory of every initial HMS’s structure x(0) moving
in Rn is given by

xT (t) = xT (0)eQt, t ≥ 0. (4)

As the initial state vectors x(0) run over all stochastic n-tuples, we get the
respective set of the solutions x(t) given by (4), which is denoted by At and
called “the set of the attainable structures”. Let An(t) be the region of Rn

defined by At. We are interested in the motion-evolution of the continuum
possessing the region An(0) ⊂ Rn at time t = 0 in the velocity field defined by
(3).

Now, equation (3) represents a system of n linear differential equations
(DEs). Because of the stochasticity condition

x1(t) + x2(t) + . . .+ xn(t) = 1

3

487



the variables xi(t), i = 1, 2, . . . , n, are dependent and the motion takes place on
the hyperplane

(Π) : x1 + x2 + . . .+ xn = 1.

In order to express the motion taking place on the ((n-1)-dimensional) hyper-
plane (Π) using only n-1 coordinates, we introduce a new coordinate system
as follows. Firstly we assume, without loss of generality, that Q is an irre-
ducible matrix. In this case a stochastic stability point, π, exists, for which
πT ·Q = 0T . Consider at π a new orthogonal coordinate system {f1, f2, . . . , fn}
where f1, f2, . . . , f(n−1) belong to the hyperplane (Π) and fn⊥(Π), and let

F = [f1, f2, . . . , fn] = [F1|fn] ,

where F1 =
[
f1|f2| . . . |f(n−1)

]
. Equation (3) expressed with respect to the coor-

dinate system {f1, f2, . . . , f(n−1)}, with origin at π, becomes żT (t) = zT (t) ·G ,
or simply

żT = zT ·G , (5)

where z =
(
z1, z2, . . . , z(n−1)

)T and

G = FT
1 QF1. (6)

The system of the n DEs of (3) is now reduced to the equivalent system of the
(n-1) DEs given in (5). So, equation (5) can be used instead of (3) in order to
study the dynamical evolution-motion of the HMS-continuum taking place on
(Π). Note that, since trG = trQ < 0, the field defined by (5) is compressible.

Now, every part of the “material continuum” An(t), t ≥ 0, is supposed to
be subjected to surface forces. Then the n × 1 stress vector tn(t) is defined
at every point P enclosed by the infinitesimal surface S, where n is the n × 1
outward unit normal of the surface element ∆S of S. The state of stress at P
is given by the set {tn} generated from all the unit vectors n, according to the
formula

tn = T · n

where T is the symmetric n× n stress tensor.
The stress tensor T = (Tij(z, t)), i, j = 1, 2, . . . , n − 1, should satisfy

Cauchy’s equation of motion

ρ(z, t) · a(z, t) = divT(z, t) + b(z, t) , (7)

at every point P of the medium, where z is the position vector of P (with respect
to the new coordinate system), ρ(z, t) is the density on the neighborhood of P
at time t, a(z, t) is the acceleration at P at time t and b(z, t) represents a vector
of possible body forces given by the description of a particular HMS.
The acceleration a(z, t) appearing in (7) is given by

a(z, t) =
∂v
∂t

+5v · v,
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where the (i,j)-entry of the (n − 1) × (n − 1) matrix 5v equals ∂vi

∂zj
. Since, by

(5), the velocity is time independent, we get

a(z, t) = 5v · v = GT · ż = (GT )2 · z .

Thus
a(z, t) = a(z) = (G2)T · z . (8)

Let E = (εij) be the (n− 1)× (n− 1) Eulerian strain tensor with

εij =
1
2

(
∂ui

∂zj
+
∂uj

∂zi
− ∂ui

∂zj

∂uj

∂zi

)
, (9)

where u = (ui) represents the displacement vector. Since the features of the
HMS give no rise to consider it as an inhomogeneous or anisotropic medium, we
will focus attention on the case of a homogeneous isotropic elastic continuum.
For this case the stress tensor becomes

Tij = λεkk∆ij + 2µεij , (10)

where λ and µ are Lamé constants.
With the use of the Lamé constants we can define two other constants that
characterize a continuum: The Young modulus, that is the ratio of stress over
strain towards axes x1

E =
T11

E11
=
µ(3λ+ 2µ)
λ+ µ

and the Poisson coefficient

ν = −E22

E11
= −E33

E11
=

λ

2(λ+ µ)
.

3 The case of the 3-D continuous-time HMS

For the case of the three-dimensional (S={1,2,3}) irreducible HMS, the intensity
matrix has the form

Q =

 −q12 − q13 q12 q13

q21 −q21 − q23 q23

q31 q32 −q31 − q32

 , (11)

where qij ≥ 0 for i 6= j, and the diagonal elements are not equal to 0. The
stability point π of the HMS is the stochastic, left eigenvector of the intensity
matrix (11) associated with the eigenvalue 0, i.e. πT ·Q = 0T and πT · 1 = 1T ,
where 1 is the column vector of 1’s.

The base vectors of the orthogonal coordinate system {f1, f2, f3}, with origin
at π, can be chosen to be

f1 =

(
−
√

2
3
,

1√
6
,

1√
6

)
, f2 =

(
0,− 1√

2
,

1√
2

)
, f3 =

(
1√
3
,

1√
3
,

1√
3

)
. (12)
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Then

F1 =

 −
√

2
3 0

1√
6

− 1√
2

1√
6

1√
2

 . (13)

According to (5), the motion of a particle-structure on the 2-dimensional
hyperplane (Π) is expressed by the equation

zT (t) = (z1(t), z2(t)) = zT (0)eGt. (14)

Now, since
u(z; t, t+ ∆t) = z(t+ ∆t)− z(t), (15)

the entries εij of the strain tensor can be found using (9).
In order to examine if the 3-D HMS can be interpreted as a homogeneous

elastic medium we have to check if Cauchy’s equation of motion, (7), is justified
while substituting for the required acceleration and density, using (8) and the
continuity equation

∂ρ

∂t
+ ρ · div(u) = 0. (16)

The mass forces appearing in (7) to meet the general case, are set equal to 0.

4 An illustrative example

Consider a closed continuous-time HMS with state space S={1,2,3} and inten-
sity matrix

Q =

 −4.7 4 0.7
4.02 −4.22 0.2
0.2 2 −2.2

 .

The stability point π of the HMS is the stochastic, left eigenvector of the in-
tensity matrix (11) associated with the eigenvalue 0, that is πT ·Q = 0T and
πT · 1 = 1T , where 1 is the column vector of 1’s. It is found that πT =(0.389,
0.447, 0.164 ).

The base vectors of the orthogonal coordinate system {f1, f2, f3}, with origin
at π, can be chosen to be those given by (12). Then, by (13) and (6), the matrix
G appearing in the reduced matrix equation (5), which expresses the motion on
the hyperplane (Π), is found to be

G = FT
1 QF1 =

(
−6.81 1.96876
3.30822 −4.31

)
,

with eigenvalues
λ1 = −8.40716 , λ2 = −2.71824.

Since λ1, λ2 < 0, the velocity field żT = zT ·G is compressible.
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Now, using (14), we get the equations of motion

z1(t) =
(
0.72e−8.402t + 0.28e−2.718t

)
z10 +

(
−0.582e−8.402t + 0.582e−2.718t

)
z20

z2(t) =
(
−0.346e−8.402t + 0.346e−2.718t

)
z10 +

(
0.28e−8.402t + 0.72e−2.718t

)
z20.

Then from (15) we derive the components of the displacement vector:

u1(z; t, t+ ∆t) =
(
−1 + 0.72e−8.402∆t + 0.28e−2.718∆t

)
z1

+
(
−0.582e−8.402∆t + 0.582e−2.718∆t

)
z2

u2(z; t, t+ ∆t) =
(
−0.346e−8.402∆t + 0.346e−2.718∆t

)
z1

+
(
−1 + 0.28e−8.402∆t + 0.72e−2.718∆t

)
z2.

From (9) the entries of the strain tensor can be found and then by (10) the
components of the stress tensor can be derived:

T11(t) = (−3− 0.528e−16.804∆t + 0.056e−11.12∆t + 2e−8.402∆t − 0.528e−5.436∆t

+2e−2.718∆t)λ+ 2(−1.5− 0.319e−16.804∆t − 0.082e−11.12∆t + 1.44e−8.402∆t

−0.099e−5.436∆t + 0.56e−2.718∆t)µ

T12(t) = 2(0.258e−16.804∆t − 0.052e−11.12∆t − 0.928e−8.402∆t − 0.206e−5.436∆t

+0.928e−2.718∆t)µ,

T21(t) = 2(0.258e−16.804∆t − 0.052e−11.12∆t − 0.928e−8.402∆t − 0.206e−5.436∆t

+0.928e−2.718∆t)µ,

T22(t) = (−3− 0.528e−16.804∆t + 0.056e−11.12∆t + 2e−8.402∆t − 0.528e−5.436∆t

+2e−2.718∆t)λ+ 2(−1.5− 0.209e−16.804∆t − 0.137e−11.12∆t

−0.429e−5.436∆t + 1.44e−2.718∆t)µ.

The velocity field is expressed via (5) by the equations

ż1 = −6.81z1 + 3.308z2, ż2 = 1.969z1 − 4.3z2,

and the acceleration field is given through (8) by the equations

z̈1 = 52.889z1 − 36.787z2, z̈2 = −21.892z1 + 25.089z2.

By substituting for a(z,t) and T(z,t) in Cauchy’s equation of motion, (7), as-
suming the body forces to be equal to zero, we derive the system of the DEs

(52.889z1 − 36.787z2)ρ = (−3− 0.528e−16.804∆t + 0.056e−11.12∆t

+2e−8.402∆t − 0.528e−5.436∆t + 2e−2.718∆t)
∂λ

∂z1

7
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+2(−1.5− 0.319e−16.804∆t − 0.082e−11.12∆t + 1.44e−8.402∆t

−0.099e−5.43648∆t + 0.56e−2.718∆t)
∂µ

∂z1

+2(0.258e−16.804∆t − 0.052e−11.12∆t − 0.928e−8.40176∆t

−0.206e−5.436∆t + 0.928e−2.718∆t)
∂µ

∂z2
(17)

and

(−21.893z1 + 25.089z2)ρ = (−3− 0.528e−16.804∆t + 0.056e−11.12∆t

+2e−8.402∆t − 0.528e−5.436∆t + 2e−2.718∆t)
∂λ

∂z2

+2(0.258e−16.804∆t − 0.052e−11.12∆t − 0.928e−8.402∆t

−0.206e−5.436∆t + 0.928e−2.718∆t)
∂µ

∂z1

+2(−1.5− 0.209e−16.804∆t − 0.137e−11.12∆t + 0.560e−8.402∆t

−0.426e−5.436∆t + 1.44e−2.718∆t)
∂µ

∂z2
(18)

In order to solve the system of the DEs (17)-(18) we have to evaluate the density
ρ(t). Now, by assuming that the density depends only on the time -and not on
the spatial coordinates- we get by the the continuity equation (16) that

∂ρ

∂t
− 11.2ρ = 0. (19)

5 The results

The numerical solution of the system of the DEs depends on the boundary
conditions for the Lamé constants. By choosing suitable boundary conditions,
i.e. big values for λ and µ in order to meet the exponential growth of the
density given by (19), we get that the Lame constants take still positive values
as expected by the theory of real continua. The values of µ grow up very slowly
as time increases, while the values of λ decrease slowly.

6 Conclusion

Since the features of a HMS do not give rise to the determination of certain
boundary conditions concerning the evaluation of the Lamé constants, fixed
numerical values can not be given to them. Nevertheless, by choosing some
(random) boundary conditions for the Lamé constants, we can study their be-
havior as time increases. As noticed in section 5, it turns out that values of µ
increase very slowly as time increases -in spite of the exponential growth of the
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density. So it can be assumed that µ remains constant (at least over large time
intervals). On the other hand the values of the λ coefficient decrease relatively
very slowly as time increases, so it can be assumed that λ remains constant.
The Young modulus and the Poisson factor remain also constant in the course of
time, for the whole numerical grid. Since the aforementioned constants, appear-
ing in the study of real elastic continua, retain their features while considered
for the three-dimensional HMS-continuum, the evolution of this HMS can be in-
terpreted as the deformation of a two-dimensional homogeneous elastic medium.

Acknowledgment: We would like to thank Prof. K. Soldatos for his contri-
bution in formulating this problem.
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Abstract: In the context of Discrete Discriminant Analysis (DDA) the idea of combining 
models is present in a growing number of papers aiming to obtain more robust and more 
stable models. This seems to be a promising approach since it is known that different DDA 
models perform differently on different subjects. Furthermore, the idea of combining models 
is particularly relevant when the groups are not well separated, which often occurs in 
practice.  
Recently, we proposed a new DDA approach which is based on a linear combination of the 
First-order Independence Model (FOIM) and the Dependence Trees Model (DTM). In the 
present work we apply this new approach to classify consumers of a Portuguese cultural 
institution. We specifically focus on the performance of alternative models’ combinations 
assessing the error rate and the Huberty index in a test sample. 
We use the R software for the algorithms’ implementation and evaluation.  
 

Keywords: Combining models, Dependence Trees model, Discrete Discriminant Analysis, 
First Order Independence model. 

 
 
1.  Introduction 
Discrete Discriminant Analysis (DDA) is a multivariate data analysis technique 
that aims to classify and discriminate multivariate observations of discrete 
variables into a priori defined groups (a known data structure or Clustering 
Analysis results). Considering  K exclusive groups G1, G2, …, GK and a n-
dimensional sample of multivariate observations  - X = (x1, x2, …, xn) described by 
P discrete variables - DDA has two main goals: 
1. To identify the variables that best differentiate the K groups; 
2. To assign objects whose group membership is unknown to one of the K groups, 
by means of a classification rule. 
In this work, we focus in the second goal and we consider objects characterized by 
qualitative variables (not necessarily binary) belonging to K ≥ 2 a priori defined 
groups. We propose to use the combination of two DDA models: FOIM - First-
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Order Independence Model and DTM - Dependence Trees Model (DTM), Celeux 
(1994) - to address classification problem. 
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In addition, we evaluate HIERM - Hierarchical Coupling Model performance when 
addressing the multiclass classification problems (Sousa Ferreira et al. (2000)) 
In order to evaluate the performance of the proposed approaches, we consider both 
simulated data and real data referred to consumers of a Portuguese cultural 
institution (Centro Cultural de Belém). Furthermore, we compare the obtained 
results with CART - Classification and Regression Trees (Breiman et al. (1984)) 
algorithm results. 
 
2.  Discrete Discriminant Analysis 
The most commonly used classification rule is based on the Bayes’s Theorem. It 
enables to determine the a posteriori probability of a new object being assigned to 
one of the a priori known groups. The Bayes’s rule can be written as follows: if 
 

for l =1, …, K and  l≠k,  (1) 
 
then assign x to Gk.  represents the a priori probability of group l (Gl), and 
P(x|Gl) denotes the conditional probability function for the l-th group. Usually, the 
conditional probability functions are unknown and estimated based on the training 
sample. 
For discrete data, the most natural model is to assume that P(x|Gl) are multinomial 
probabilities estimated by the observed frequencies in the training sample, the well 
known Full Multinomial Model (FMM) (Celeux (1994)). However, since this 
model involves the estimation of many parameters, there are often related 
identifiability issues, even for moderate P. One way to deal with this high-
dimensionality problem consists of reducing the number of parameters to be 
estimated recurring to alternative models proposals. One of the most important 
DDA models is the First-Order Independence Model (FOIM) (Celeux (1994)). It 
assumes that the P discrete variables are independent within each group Gk, the 
corresponding conditional probability being estimated by: 
 

                                                               (2) 
 
where nk represents the Gk’s group sample dimension. This method is simple but is 
not realistic in some situations. Thus, some alternative models have been proposed. 
The Dependence Trees Model (DTM), Celeux (1994) and Pearl (1988), for 
example, takes the predictors’ relations into account. In this model, one can 
estimate the conditional probability function, using a dependence tree that 
represents the most important predictors’ relations. In this research, we use the 
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Chow and Liu algorithm (Celeux (1994) and Pearl (1988)) to implement the 
dependence tree and approximate the conditional probability function.  
In this algorithm, the mutual information I(Xi, Xj) between two variables  
  

                     (3) 
is used to measure the closeness between two probability distributions. For 
example, take P = 4 variables and consider the data listed in Table 2. For each pair 
of variables we obtain the mutual information (see Table 1). Since I(x2, x3), I(x1, 
x2) and I(x2, x4) correspond to the three largest values the branches of the best 
dependence tree are (x2, x3), (x1, x2) and (x2, x4) and  
                          

                                        
(4) 

 
Table 2 illustrate the differences between the estimates of  the 3 referred DDA 
models corresponding to the data considered. Note that the DTM model estimates 
are closer to the FMM estimates but there are no null frequencies. 

(xi, xj) I (xi, xj) 

(x1, x2) 0,079434 

(x1, x3) 0,000051 

(x1, x4) 0,005059 

(x2, x3) 0,188994 

(x2, x4) 0,005059 

(x3, x4) -0,024 

Table 1. Mutual information values 

 (x1,x2,x3,x4)  for 
group Gk (x1,x2,x3,x4) 

values 

num. 
observ./ 

Gk 
 FMM FOIM DTM 

0000 10 0,10 0,05 0,10 
0001 10 0,10 0,05 0,13 
0010 5 0,05 0,06 0,03 
0011 5 0,05 0,06 0,04 
0100 0 0,00 0,06 0,02 
0101 0 0,00 0,06 0,02 
0110 10 0,10 0,07 0,08 
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0111 5 0,05 0,07 0,07 
1000 5 0,05 0,06 0,04 
1001 10 0,10 0,06 0,05 
1010 0 0,00 0,07 0,01 
1011 0 0,00 0,07 0,02 
1100 5 0,05 0,07 0,04 
1101 5 0,05 0,07 0,03 
1110 15 0,15 0,08 0,18 
1111 15 0,15 0,08 0,15 

Table 2. Conditional probability estimates for group Gk 

 

 

3. Combining Models in Discrete Discriminant Analysis 
The idea of combining models currently appears in an increasing number of 
papers. The aim of this strategy is to obtain more robust and stable models. Sousa 
Ferreira (2000) proposes combining FMM and FOIM to address classification 
problems with binary predictors, using a single coefficient β (0 ≤ β ≤ 1) to weight 
these models. In spite of yielding good results, the referred approach shows that the 
resulting FMM weights tend to be frequently negligible, even when the observed 
frequencies are smoothed (Brito et al. (2006)).  
In view of these conclusions, Marques et al. (2008) propose a new model which 
has an intermediate position between the FOIM and DTM models: 
 

                                                      (5) 
 
In the present work the combining models’ parameter  is assigned different values 
ranging from 0 to 1. 
 

4.  The Hierarchical Coupling Model 
In the multiclass case (K≥2) we can recur to the Hierarchical Coupling Model 
(HIERM) (Sousa Ferreira et al. (2000)) that decomposes the multiclass problem 
into several biclass problems using a binary tree structure. It implements two 
decisions at each level: 
1. Binary branching criterion for selecting among the possible 2K-1-1groups 
combinations; 
2. Choice of the model or combining model that gives the best classification rule 
for the chosen couple. 
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In the present work we implement branching using the affinity coefficient, 
Matusita (1955) and Bacelar-Nicolau (1985). Supposing F1={pl} and F2={ql}, 
l=1,…,L are two discrete distributions defined on the same space, the 
correspondent affinity coefficient is computed as follows: 
 

                                                                (6) 
 
The process stops when a decomposition of groups leads to single groups. 
For each biclass problem we consider FOIM, DTM or an intermediate position 
between them.  
 

5.  Numerical Experiments 
We conduct numerical experiments for simulated data and real data using moderate 
and large samples, respectively. We use test samples to evaluate the alternative 
models precision. Indicators of precision are the percentage of correctly classified 
observations (Pc) and  the Huberty index: 

 
 
where Pd represents the percentage of correctly classified cases using the majority 
class rule. 
 

5.1 Simulated data 
The simulated data set considered has 250 observations, 4 groups and 3 binary 
predictors (see Table 3). To evaluate the proposed models’ performance we use 
precision corresponding to a test (sub)sample: 50% of the original sample. The 
modal class in the test sample has 32% of the observations which yields the same 
32% for percentage of correctly classified observations, according to the majority 
rule.  

  Total data set Training sample Test sample 

  nk % nk % nk % 

G1 80 32% 40 32% 40 32% 

G2 70 28% 35 28% 35 28% 
G3 30 12% 15 12% 15 12% 
G4 70 28% 35 28% 35 28% 

Table 3. Characterization of simulated data set 
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The results obatined are presented in Table 4. For this data set the HIERM model 
and FOIM-DTM combination yeld the best results. 

 

Classification Method 
% of correctly 

classified 

Huberty  

index 

 

CART 45,6% 20,00%  

β = 0 (DTM) 52,8% 30,59%  

β = 0,25 47,2% 22,35%  

β = 0,50 48,8% 24,71%  

β = 0,75 48,8% 24,71%  

β*FOIM+ 
(1-β)*DTM 

β = 1 (FOIM) 48,8% 24,71%  

β = 0 (DTM) 45,6% 20,00%  

β = 0,25 59,2% 40,00%  

β = 0,50 60,8% 42,35%  

β = 0,75 60,8% 42,35%  

MHIERM: 
G2+G1 vs G3+G4 

 
β*FOIM+ 

(1-β)*DTM 
β = 1 (FOIM) 59,2% 40,00%  

Table 4.  Simulated data set results 

 
5.2 Real data 
We consider a data set referred to 988 observations originated from questionnaires 
directed to consumers of Centro Cultural de Belém, a Portuguese cultural 
institution (Duarte (2009)). Data includes three questions related to the quality of 
services provided by CCB that this study tries to relate with consumers’ education: 
we specifically use 4 education levels as the target variable. Predictors are: X1-
Considering your expectations how do you evaluate CCB products and 
services?(1=much worse than expected  …5=much better than expected); X2- How 
do you evaluate CCB global quality? (1=very bad quality  …5=very good quality); 
X3: How do you evaluate the price/quality relationship in CCB?(1=very 
bad…5=very good). The groups distribution is illustrated in Table 5. 

  
      

  
  

  

  Total data set Training sample Test sample 

  nk % nk % nk % 

G1 177 18% 115 18% 62 18% 
G2 136 14% 88 14% 48 14% 
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G3 462 47% 300 47% 162 47% 
G4 213 22% 138 22% 75 22% 

Table 5. Characterization of CCB data set 

The results obtained are presented in Table 6. For CCB problem the best solution is 
achieved by HIERM model and combined FOIM-DTM model. 

 

% of correctly Huberty 

Classification Method classified index 

CART 46,10% -1,70% 

β*FOIM+ β = 0 (DTM) 45,00% -3,77% 

(1-β)*DTM β = 0,20 45,80% -2,26% 

 β = 0,40 46,40% -1,13% 

 β = 0,50 47,60% 1,13% 

 β = 0,60 47,30% 0,57% 

 β = 0,80 47,80% 1,51% 

 β = 1 (FOIM) 47,00% 0,00% 

MHIERM: β = 0 (DTM) 47,80% 1,51% 

G2 vs G1+G3+G4 β = 0,20 48,10% 2,08% 

 β = 0,40 49,30% 4,34% 

β*FOIM+ β = 0,50 49,30% 4,34% 

(1-β)*DTM β = 0,60 49,30% 4,34% 
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 β = 0,80 48,40% 2,64% 

 β = 1 (FOIM) 49,90% 5,47% 

Table 6. CCB data set results (test sample) 

 

6. Conclusions and perspectives  
In the present work we propose using the combination of two DDA models (FOIM 
and DTM) and use the HIERM algorithm to address classification problems. We 
compare results obtained with CART results into two data sets: simulated data (250 
observations) and real data (988 observations). We use indicators of classification 
precision obtained in the test set (we consider 50% and 35% of observations for the 
smaller and larger data set, respectively). 
According to the obtained results, the proposed approach performs slightly better 
than CART, on both simulated and real data. However, the classification precision 
attained barely attains the precision corresponding to the majority class rule in the 
real data set. In fact, in this case we are dealing with very sparse data (46% of the 
multinomial cells have no observed data in any of the groups considered) which 
turns the classification task very difficult. 
In future research, the number of numerical experiments should be increased, both 
using real and simulated data sets and considering several sample dimensions. The 
number of variables considered (binary and non-binary) should not originate an 
excessive number of states (around a thousand) due to the number of parameters 
that need to be estimated. Alternative strategies to estimate the β parameter, such 
as least squares regression, likelihood ratio or committee of methods, should also 
be considered. 
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