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Abstract. Block-to-block and block-to-point kriging predictions based on block
data are proposed. Blocks may be regular (mesh data) or of more general shapes.
Under the assumptions of second-order stationarity and isotropicity, we show how
to lessen the number of calculations of relevant block-to-block covariances. As illus-
trations, a mesh data of population and a simulated block data on convex polygons
are analyzed.
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1 Introduction

Geostatistics has the origin in the pioneering work of South African mining
engineer D. G. Krige in 1950’s who introduced a statistical methodology to
evaluate gold ore grade based on boring core samples. In 1970’s, French
mathematician G. Matheron formulated a regression based spatial predic-
tion method for which he coined the term ”kriging”. Although it has been
developed mainly in application fields and outside of the usual statistical
community, now kriging method has become an indispensable statistical tool
in variety of fields such as epidemiology, environment science, ecology, agri-
culture, geology, civil engineering, social sciences, geography, fishery science,
oceanography and so on where available data are only small portions of a
large spatial structure and one want to know the global spatial distribution
of a feature.

The probabilistic basis of geostatistics is a random field Z(z), € R?,
d being typically two or three. Available data is a set of observations Z(x)
at specified locations © = x1, s, ..., T, and one wants to predict the value
Z(xg) for arbitrary locations xg. Hence it can be thought as a spatial inter-
polation and/or extrapolation of data. By the way, the term “estimation”
instead of “prediction” has been frequently used in geostatistics literature
from a historical reason.

As well as predicting a point value Z(xq) (point kriging), it is sometimes
required to predict a block value Z(B) = |B|™! [, Z(x)dz (block kriging)
which is the mean of Z(x) over a block B. As to these kriging problems,
there are well-established results, see, e.g. Chiles and Delfiner[2], Cressie|[3]
and Wackernagel[5]. In this paper, we will discuss the converse problem, that
is, kriging predictions of point or block values based on block data. The use of
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data of type Z(B) rather than original Z(x) is sometimes called “the change
of support problem” in the literature and known to cause various problems,
see Cressie[4] and Chiles and Delfiner|[2].

2 Second-order stationary random fields

In the following, random fields Z(x) are assumed to be second-order station-
ary, that is, the mean E{Z(x)} is a constant p irrespective of & and the
covariance Cov{Z(x), Z(y)} is a function C(x — y) of the difference x — y
only. C' is called the covariance function of Z. It is even and is characterized
by the positive-definiteness

iicicj()'(wi —x;) >0

i=1 j=1

for any {x;} and constants {c;}, where the equality holds only for ¢; = ¢ =
...=c¢p = 0. A second-order stationary random field is said to be isotropic
if its covariance function is the function of the norm |x — y| of the difference
T —y.

The followings are three typical isotropic covariance functions. They have
two positive parameters a, b. The exponential covariance family is Cezp(h) =
bexp(—|h|/a).

_ [ b(1 =3|h|/(2a) + |h*/(2a*)), |h| < a,
Copn(h) = {0, |h| > a.

And the Gaussian covariance family is Cyqy(h) = bexp(—|h|?/a).
In geostatistics, the concept of intrinsic stationarity has been preferred to
second-order stationarity. A random field is intrinsic stationary if

E{Z(xz) - Z(y)} =0, E{|Z(z) - Z(y)]’} =2v(z —y)

for all &, y. The even function 7 which depends only on the difference
x — y is called the (semi)variogram which may be unbounded contrary to
covariance functions. The use of variograms is intended to cancel a possible
linear trend which seems frequent in mining data. The concept of intrinsic
stationarity is more general than second-order stationarity in principle since
it does not assume the existence of the mean and variance of Z(x). If Z
is second-order stationary, it is intrinsic stationary and the relation y(h) =
C(0) — C(h) holds. In variogram based kriging, it is usual to estimate model
parameters by fitting theoretical variograms to binned sample variograms
using the method of least squares. In order to apply this method, it is
essential to know distances between locations of each pair of data. But it is
impossible or ambiguous to define distances between two blocks. This is the
main reason why we use the second-order stationarity assumption and the
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maximum likelihood approach to estimate model parameters assuming the
normality of random fields in this paper. This has further advantages that
we need not classify data and can reduce three parameters models to one
parameter models, see Prop. 3.

3 Ordinary kriging for block data

Let Z = Z(x) be a second-order stationary random field with a covariance
function C'(h) and a mean p. Let B be a block (i.e., a bounded region with
positive volume). The block data of Z for the block B is defined as follows

1
Z(B) = —/ Z(x)dx,
1Bl /5
where |B| is the volume of B. The mean of Z(B) is p. Let By, Ba,..., B,

be a set of blocks. They are not necessary disjoint. The covariance between
two block data Z(B,,) and Z(Bg) is given by

1
Cg,, :7// Cov{Z(x), Z(y) }dzdy
B.,Bg |BaHBﬁ| xBj { ( ) ( )}

/]
= — C(x — y)dxdy.
BBl ) o, €@ 7Y

Let By be a new block and we want to predict Z(By) by a linear combination
of block data Zg = (Z(B1), Z(Bs), ..., Z(Bn))T:

Z(BO) = Z Wo Z(Ba).

This block-to-block kriging prediction can be constructed according to the
standard procedure of the ordinary kriging based on point data as explained
in Cressie[3], Wackernagel[5], or Chiles and Delfiner [2]. In order to guarantee
the unbiasedness, we put the constraint >, w; = 1 on weights wy, wa, ..., w,
(ordinary kriging). Hence

E {Z(Bo)} - Zn: waE {Z(B,)} = uzn:wa = 4

Its mean squared prediction error 0% = E {(Z(BO) - Z(Bo))Q} is
n n n

Z Z wawgCB, By + CBy,By — 2 Z waCB, B,

a=1 =1 a=1
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Since we have to minimize 0% under the constraint Y w, = 1, consider the
objective function with the Lagrange multiplier A:

O{wa}, \) = % — 2 (z_j w 1),

Proposition 1. Weights {wa} of the ordinary block-to-block kriging predic-
tor Z(By) are the solution of the following equation:

Cpy.B, --- Cpy,B, 1\ (w1 CB,,Bo
CBn,Bl CBn,Bn ]. Wn, CBmBo
1 1 0 - 1

where X is the Lagrange multiplier. This system is authentic, i.e., Z(Bi) =
Z(B;) fori=1,2,...,n. The corresponding mean squared prediction error
18 O'2E =+ CBOaBO — ZZ:l wQCBmBO.

In a similar way, we can consider the block-to-point ordinary kriging. The
covariance between block and point data Z(B) and Z(y) is given by

1 1
Cpy= Bl /B Cov{Z(x), Z(y)}dx = @/BC(:B —y)dex.

The block-to-point ordinary kriging predictor of Z () takes the form Z () =
> waZ(Bg) with constraint Y, w; = 1.

Proposition 2. Weights {wa} of the ordinary block-to-point kriging predic-
tor Z(xo) are the solution of the following equation:

CBl,Bl CBl,Bn 1 w1 CmaU
CB7L7BI e CBn7Bn 1 Wn, CB7L7w0
1 e 1 0 - 1

where X\ is the Lagrange multiplier. The corresponding mean squared predic-
tion error is 0%, = A+ C(0) = > " _ waCp, a0-

4 Estimation of model parameters

As to kriging model parameter estimations, there are two main methods.
One is the traditional least square fitting of theoretical variograms to sample
variograms and the other is the maximum likelihood estimation assuming the
normality of data. In order to use least square fittings, one needs to define
distances between blocks, but this is impossible or ambiguous for blocks.
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So we employ the maximum likelihood estimation assuming Z is a Gaussian
random field. A merit of this approach is one can use original data themselves
directly. On the other hand, variogram based fittings have to change data
into suitable class means.

Proposition 3. Let Z be a stationary Gaussian random field with mean p
and covariance function bC(a='x), a,b > 0. Let Zp = (Z(B1), Z(Ba),...,Z(Bn))
be a block data vector. Then the maximum likelihood estimators a, b and i
satisfy the relations

. eTﬂgl(a, 1)ZB

= (1)

eTx5 (a,1)e

b= (75— pe)’ T5'(0,1)(Z — pee), (2)
TdZ‘B(a7 1)
da

—Dbtr <2§1(a,1)dz’3d(j1))

0= {Z5"(a,1)(Z5 - pe)} {Z5'(a.1)(Zs — ne))

3)

where e = (1,1,...,1)T and Xg(a,b) is the covariance matriz of Zg. In
particular, (3), after p and b being eliminated using (1) and (2), is an equation
of variable a only and we have a by solving this equation. Then [i and b can
be calculated immediately from relations (1) and (2).

5 Mesh data case

In order to apply block data kriging and model parameter estimations, it is
essential to compute block covariance matrix efficiently. In general, this is
difficult and time-consuming if not impossible. If there is n blocks, we need
to calculate n(n + 1)/2 covariances numerically in principle.

Many spatial data are given as aggregates of original data per mesh.
Typical examples are demographic data. For mesh-type blocks, we can reduce
the number of necessary computations using stationarity and isotropy.

Proposition 4. If By and By are disjoint, Ca . p,uB, = Ca,B, + Ca,B,. Let
Z be a stationary random fields. Then Ca,p = Cayn,B+h- 1If, moreover, Z
is 1sotropic and T 1s a congruent transformation, Ca g = Cra),1(B)-

If B1,Bs,...,B,, n = ni X ng, are rectangles which consists of n; by
ny congruent division of a rectangle, we need to compute only ny + ny —
14 2(ny — 1)(n2 — 1) covariances Cp, B, instead of n(n + 1)/2 ones if Z is
second-order stationary. If, moreover, Z is isotropic, we need to compute only
n1 +mn2 — 1+ (ng — 1)(n2 — 1) covariances. For example, if ny = ny = 10, we
need to compute only 100 and 181 covariances respectively instead of 5,500
ones.
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Proposition 5. If Z is a two-dimensional second-order stationary random
field and A is a rectangle with width s and height t,

Canin =142 [ [ (5= [a)t = WC(Ga.0)” — hydody.

As an application, we apply the block-to-point kriging to a 10 by 10
mesh data, which are populations (1,000/km?) of Tokyo metropolitan area
(Japanese Statistics Bureau (2000)). Strictly speaking, this is not a block
data but count data per mesh. We assume a hypothetical field of popula-
tion density and pretend this is a resulting block data. We fitted spherical,
exponential and Gaussian models. Fig. 1 shows resulting contour images of
block-to-point kriging predictions. Three results show fairly similar features.

6 General regions case

Computation of block-to-block or block-to-point covariance matrices is quite
difficult if block shapes are arbitrary. In this section, we propose an algorithm
of computing these covariances approximately. We assume that Z is second-
order stationary and isotropic.

Proposition 6. Assume Z is a two-dimensional stationary and isotropic
random field. Then the block-to-block covariance Ca p is

CA,B:/ G p(r)C(r)rdr,

where

27
Ga. / ) A B|do. 4)
50) = 121, | (

ro > 0 (resp. ri) is the minimum (resp. maximum) of the set {r > 0 :
(A—re®)NB#030}. ry is always finite.
Also the block-to-point covariance Cyaqy is Caqy = f Ga,y(r)C(r)rdr

where G4 y(r) = |A| f 14(y+7re?®)df andrg > 0 (resp. r1) is the minimum
(resp. ma:mmum) of the set {r > 0: y+re?) € A 30}. ry is again finite.

As an application, we show a simulation result for block data kriging for
convex regions. The basic region D is the square [0,10] x [0,10] and we
generated Voronoi cells B; with centers generated using a simple sequential
inhibition point process. Actually those 83 Voronoi cells completely included
in D were used, see Fig. 2. Gaussian random fields were generated on D with
the exponential model with parameters b = 10, a = 1,2,3 and the spherical
model with parameters b = 10, a = 4,5 and block data approximated by
discrete sums were generated.
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Both G4 (1) and G4 4(r) have no simple closed expressions in general.
A practical procedure is to compute their values at sufficiently many r’s and
interpolate them. Since these functions depend only on A, B (resp. A,vy) and
does not depend on covariance functions C(r), we need compute them only
once. Also the area |(A—re'®)N Bl in (4) needs two-dimensional integrations
over irregular sets which can be efficiently evaluated by a quasi-Monte Carlo
integration using low-discrepancy sequences.

Fig. 2 shows used Voronoi cells (top left), the original random field image
(top right), the corresponding block image (bottom left), and the block-to-
point kriging prediction result (bottom right).

7 Conclusion

Block data kriging, in particular, block-to-point kriging seems useful since
many data such as in demography and epidemiology are often publicized
as aggregates per municipalities or as mesh data from the first. Such data
may be also analyzed using so-called hierarchical Bayes models with Markov
Chain Monte Carlos as explained in detail in [1]. Applicability of this method
may be more general than the present one since it does not necessary assume
a stationary random field framework. On the other hand, it requires a data
specific hierarchical Bayes model.

It should be borne in mind that block data are smoothed from the first
and, therefore, one cannot expect to recover finer details of the original data.
Also blocks with too irregular shapes may lessen the discriminative power of
covariance matrices apart from numerical inefficiency.

In order to apply block-to-block and block-to-point kriging, one has to
compute a lot of block covariances efficiently. In this paper, we showed that
this is feasible at least for the two-dimensional second-order isotropic and
isotropic case. For non-isotropic cases, parallel computations are probably
the last resort.
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Fig. 1. Mesh data of populations (1,000/km?) (top left). Block-to-point kriging
result using the spherical model (top right), the exponential model (bottom left),
and the Gaussian model (bottom right).

Fig. 2. Voronoi cells (top left), the original random field image (top right), the
block data (bottom left) and the block-to-point kriging result (bottom right). Note
that color levels for three images are slightly different.
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Abstract: Following the successful launch in Spring 2009 of the GOCE satellite (Gravity
field and steady-state Ocean Circulation Explorer), a more ambitious mission consisting in a
satellite formation of two satellite separated by (a minimum) 10 km distance, is under study
at the European Space Agency, aiming at monitoring the Earth's gravity field fluctuations,
during a (at least) 6-year mission. Since GOCE is the first flying drag-free satellite, the
envisaged formation might be the first drag-free formation, posing a suite of challenging
technology and control problems under study and solution. The paper concentrates on a triad
of control problems to be solved and coordinated (formation, drag-free and attitude), all of
them being constrained by a long-life low-Earth-orbit mission, imposing low propellant
mass, scarce electric propulsion throttability and limited electric power. Driving
requirements are presented and discussed, showing how they can be met through Embedded
Model Control design. Finally, realistic simulated results are included.

Keywords: Satellite formation, control, drag-free, attitude, low-Earth-orbit, gravity
monitoring,

1 Introduction

One of the possible future Earth gravity monitoring missions after GOCE (Gravity
field and steady-state Ocean Circulation Explorer), recently launched and
successfully operating (Canuto, 2008, Canuto and Massotti, 2009, Canuto,
Massotti and Molano, 2010), will be based on laser interferometry, in order to
extend the gravity-gradient baseline to tens of km. A formation of at least two
satellites is needed to implement long-baseline interferometry. In addition, a long
mission is desirable to complement gravity spatial variations with time, and the
orbit must be sufficiently low-altitude, to reveal high-order gravity harmonics. A
mission of this kind is under study at the European Space Agency: in the last study
(at the moment of this publication) a 10-km baseline and a mission length of 6
years have been selected. To allow scientific advancements, each satellite shall be
drag-free, implying the residual CoM (Centre-of-Mass) non gravitational
acceleration to be lower than 0.01 pm/s? in a frequency band from 1 to 10 mHz.
Similarly, proportionate requirements apply to angular accelerations, angular rates
and attitude. Residuals are progressively relaxed below and above the mid-
frequency band. In addition, a 3D formation must be kept, with loose requirements
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at first glance: variations of the relative formation position must stay in a box
500 x50x 50 m® wide, the sequence of coordinates being along-track, cross-track
and radial. Several technology problems have to be solved including propulsion,
since the latter, even if essential for formation and drag-free, must be employed for
attitude control too. Electric propulsion is mandatory in order to reduce propellant
mass around 10% of the satellite mass (500 kg). Second, throttability (the
max/min thrust ratio) must be sufficiently high to cope with a highly variable drag
imposed by long-term and short-term solar activity. Already-flown, scalable
though with insufficient throttability, micro-RIT (radio-frequency) thruster
technology (Loeb, Schartner, Weiss, Feili and Meyer, 2004) is under study and test
at Thales Alenia Space Italia premises. Since throttability looks one of the most
critical technology constraints, control strategies must be designed so as to
minimize thrust peak. Thruster layout, sketched in Fig. 1, must repeat the early
GOCE design (Canuto and Massotti, 2009).

Fig. 1. Satellite shape and thruster layout.

A pair of larger thrusters (mini-thrusters, 0.4 mN to 18 mN range), in cold

redundancy like on-board GOCE, will take care of along track drag-free and

formation control (in i direction, see Fig. 1), while eight smaller thrusters (micro-
thrusters, 0.05 mN to 2 mN range) will accomplish lateral formation and drag-free

control (j and k directions in Fig. 1), as well as attitude control for a total of 5

degrees-of-freedom (DoF).

Four classes of sensors are available on-board.

1. A pair of GPS receivers (1-Hz data rate) on each satellite will be employed for
formation control and attitude reference generation. They should also be
employed to calibrate accelerometer bias, as mentioned below.

2. A pair of GOCE-type accelerometers (10-Hz data rate) will be the sensors of
the CoM drag-free control, and the wide-band attitude sensors for the attitude
control, on each satellite. Accelerometer bias and drift are the main sources of
formation separation (about 500 m at day), to be counteracted by formation
control. Since the bias corresponds to 0.06 +6 mN thrust range, the larger
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value looks incompatible with micro-thruster range, thus asking either re-
design or on-board calibration.

3. Two star trackers (2-Hz data rate) in cold redundancy for aligning attitude to
the orbital reference frame. Since a single star tracker does not guarantee 3D
uniform error, some problems can arise in attitude control.

4. On-board optical metrology, equally replicated on each satellite. Optical
metrology allows to accurately measure distance variations along the optical
interferometer baseline, as well as the 2D tilt of the satellite along-track axis
(i) with respect to the optical baseline. Consequently, the lateral displacement
may be real-time monitored with the help of the attitude obtained from star
trackers, and the optical distance from the metrology itself. In this way, an
alternative metrology with respect to the differential GPS will be capable of
providing formation relative position.

The paper is devoted to give an overview of the control strategies, namely 3D

formation, drag-free and attitude. First, reference frames and satellite sensor and

actuator dynamics are briefly reported, paying attention to disturbance and
measurement error classes. Then control requirements and design are outlined. The
paper ends with the most significant simulated results.

Control strategies are designed within the Embedded Model Control framework

(Canuto, 2007), where control algorithms are built around a real-time Embedded

Model, and split into reference generator, noise estimator and control law. Key to

noise estimator is the definition of the noise channels (Canuto, Massotti and

Molano, 2010). Noise estimator and Embedded Model may be interpreted as state

observers. Embedded Model and control design are directly tackled in the discrete-

time domain. Here continuous time is adopted.

2 Frames and dynamics

Dynamics is provided in the simplified form suitable to Embedded Model. The
mean Local Orbital Reference Frame (LORF) %, ={C,fo,jo,f<o} , centred in the
formation CoM C, is defined by the instantaneous orbit orientation V/|V|, v
being the CoM velocity, and by the orbital plane orthogonal to the normalized
angular momentum h=¥x¥V, where ¥ = (¥, +)/2 is the formation CoM under
equal satellite masses. Each satellite CoM position is denoted with 1, , where
k =0 refers to the leader and k =1 to the follower.

The LOREF is the reference frame for science and attitude control: LORF axes are
defined by

i = VI|V],Jo = FxV/[Fx V|, Kq = g % Jo - 1)
Axes from i, to k. are respectively referred as along-track, cross-track and
radial. Dropping arrows when inertial coordinates are considered, the matrix
Ro =[io jo ko], directly obtained from GPS measurements, accomplishes the
LORF-to-inertial coordinate transformation, and defines a common reference
attitude to be tracked by both spacecrafts (k = 0,1) during all over the mission.
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L LORF
kO

Mean CoM Qrbit

Spacecraft 1

Fig. 2. Formation geometry and local orbital frame.

LORF dynamics may be either described through CoM dynamics, or through
LORF quaternion g, , the latter directly obtained from R, . Treating orbit angular
rate @, and acceleration a, =, as state variables, the following LORF
equations hold

do (1) =5 40 (1) @6 (1), 4o (0) = doo

g () =2 (t)+wo (1), @ (0) =g, (2
a5 (1) =50 (), a5 (0) =aq,

9o (1) = g0 (1) @ e (1)

where ® denotes quaternion product, w, is a wide-band noise (white noise in
discrete-time domain), s, is the angular jerk, and ¢, is the orbit quaternion
measurement obtained through (1) from GPS range and range rate less the error
quaternion e, . Feedback of the error quaternion to w, and s, allows to recover
quaternion estimate together with orbit angular rate and acceleration, thus
providing reference attitude trajectories. An equation similar to (2) applies to body
quaternion ¢, (k=0,1) , retrieved from the inertial coordinates of the body axes
collected in R =[i, J. k] (seeFig. 1):

(): % )®wk() % (0) =400

(t
1( t)xJ,o, (t ))+uqk (t)+ag (t)+wy (1), © (0)=0, )
( ) Sq (t) ( ) Agko
@lqk( ) (t ) (t TSK)

where @, a,,, s,, and w, have the same meaning as in Eq. (2), with the
exception that now a,, accounts for un-modelled angular accelerations (Canuto,
2008). Command torques provided by thrusters are into the command acceleration
vector u,, . J, is the inertia matrix, close to be diagonal, but largely unbalanced
because of a slender spacecraft as GOCE. Quaternion is retrieved from the star

2
J
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tracker quaternion ¢, less the error e, and a delay z, . The same equation applies
to each satellite upon different notations. Attitude control is actuated ideally
less a tracking error

&
Spacecraft and formation CoM dynamics may be written using a manipulated
version of Hill’s equation (Canuto, Massotti and Molano, 2010, Inalhan, Tillerson
and How, 2002). With reference to Fig. 2, let us denote the Cartesian coordinates
of the spacecraft k in the LORF frame with Ar, and the (local) rate with Av, .
Due to LOREF rotation, the following relative dynamics applies
Ak (t) = av, (1), A (0) = Ar,
AV, (1) = =0 x Ar — 0 x (g x A, +24v,)
~Vg(r)ar, +R, (¢ )(u, +d, +W,), 4v, (0)=A4v,,

d, (t)=s,(t), d, (0)=d,,
where gravity acceleration is reduces to the tidal component Vg(r)4r,, and non
gravitational accelerations have been split into command wu, , disturbance d, and
noise w, (Canuto, 2008). Transformation R, (e ) maps body coordinates into
LORF. Now defining the LORF formation coordinate as
Ar = Ary — Ar,, )

and likely the differential rate Av, non gravitational acceleration Ad , command
Au and noise Aw , the formation equation may be written

A (t)=4v(t), 4r(0) = 4r,

A\"(t) = -0, x Ar —m, x(mo x Ar + 2AV)

~Vg(r)4r+R(e)(4u+4d+4w), Av(0)=Av,

Ad(t)=4s(t), 4d(0)=4d,
Accelerometer dynamics is essentially due to anti-aliasing filter characterizing the
f2 shape noise (Canuto and Massotti, 2009) and transmission delay.

Accelerometer error e, is the combination of bias b, , drift d, , white noise
(including quantization) w,, , and high-frequency f *-proportional noise h,, :

ey (1) =by (1)+dy (1) +w, (t)+h, (1) 9)
A simplified model just accounts for delay and neglect high-frequency noise,
because of anti-aliasing filter

Ya (t) = (t_Ta)+eak (t_Ta)

a (t)=u, (t)+d, (t)+w, (1)
where a, is the total non gravitational acceleration in body coordinates. Relative
position and rate may be obtained from GPS receivers and inter-satellite radio

(6)

®)

(10)
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transmission, and, in parallel, by the on-board optical metrology. Only the former
is considered here. Let us denote GPS range and rate measurements as

Yo (1) =1 (1) +eq (1)

Yu (1) = v, () +e, (1) '

Formation measurements are obtained from (11) through LORF-to-inertial matrix
R(go) and LORF rate @,

Ay, (t) =R’ (‘Io )(Yro _Yr1)(t)

4y, (1) =R (g0)(Yso = ¥u) (1) =00 X (Y10 = ¥1u ) (1)
Considering electrical propulsion for thrust range and lifetime issues, the thruster
dynamics can be seen as a combination of flow dynamics (slow) and beam current
dynamics (fast rise time < 0.1 s). The latter dominates close to drag-free and
attitude bandwidth, below 1 Hz, and therefore thrust-to-force and torque relations
may be accounted as static. Splitting the force/torque vector into three components,
the static relations result in

(11)

(12)

m, U, F by, =0 W +d
My () =] Fy [(t)=| by By [l;“kmmk}(t), (13)
Joug M, by By |-

where u, in (6) has been split into along-track u, and cross-track & radial u,, ,
4b,, is due misalignment, and by, is due to mini-thruster nominal inclination (as
in Fig. 1). Note that u,,,u, denote mini and micro commanded thrusts affected
by noise d,,.d, respectively, the latter being components of d, in Eq. (6) and of

a, in Eq. (3).

3 Requirements and control design

Control requirements split into
1. drag-free requirement from (10) and (6)

a, (1)=0, k=01, (14)
2. attitude requirement from (3) and (4)
Ay (t)=a(t)=a,(t)
oy (t)=a(t) = 0o (t), (15)
% (1)=9(t) =90 (1)
3. formation requirement
Ar(t)=ar=[d 0 0] . (16)
Actual requirements admit residuals, which are expressed through spectral density
bounds in case of attitude and drag-free variables, the latter being applicable to non

gravitational CoM and angular accelerations. Formation residuals must be bounded
by a box defined as

|Arj (t)—Ar.|= O o I =X Y02 17)

—
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Requirements must be completed with thrust bounds imposed by technology, as
previously addressed in the introduction. Specifically
0 < Upip S U (1) S Upay

min — 18
O<u (18)

tITIIn -

<max, |u, (t)| <u

t,max

Any overshot of the computed command is managed by control strategy, in order
to not destroy the drag-free flight conditions, thus jeopardizing science. Propellant
optimization may be added as a further objective (see Canuto, 2008).

Drag-free control may be designed as a pure disturbance rejection, with the
constraints that accelerometer drift and bias are automatically rejected. The
formation command u,, can be seen as follows

u (t)=—d, (t)=b, (t)—dy (t)+uy(t), (19)
and the corresponding acceleration residuals hold (from (6) and (10))
a (t)=w, (t)=by (t)—d, (t)—w, (t)—h, (t). (20)

Equations (19) and (20) clearly impose formation command and accelerometer
noise to stay below drag-free bound. Drift in (20) is no detrimental as in a single
spacecraft like GOCE, since the corresponding acceleration is bounded (drift is due
basically to thermal fluctuations of the electronics) and largely lower than gravity,
but it may destroy the formation in less than one day if not counteracted.

A detail design of formation control is presented in Canuto, Molano and Jimenez
(2010). A generic formulation combines, in a multivariate law, drift cancellation
and formation tracking so as to respect (17)

Aug =4b, +Ad, - K, (4r—Ar)-K, 4v, (21)
where Au; =u,,—u, . A pair of challenging problems arise in implementing and
tuning (21), as mentioned in Canuto, Molano and Jimenez (2010):

1. differential accelerometer drift and bias 4b, + Ad, are not the only disturbance
components in (8), since the main contribution comes from J, (Earth flattening)
- the static component contributes to Hill dynamics together with
0, x(@g x A, +24v, ) -, and from the orbit eccentricity, entering —@q x Ar.
Such components must be fully excluded from (21) for both drag-free and
thruster bounding reasons, which leads to a form of differential drag-free control.

2.thrust is minimized by an ad-hoc multivariate design of the feedback gains
K,, K, . which exploits the cross-coupling properties of Hill’s equation in a
novel way (see Canuto, Molano and Jimenez, 2010).

Attitude control exploits both electric propulsion (micro-thrusters) and magnetic

torquers. The resulting commanded acceleration has a similar form to (21) and

holds, from (3) and (5),

uqk(t) 3q+05 ak & ()/§0k+Kwk(m (‘)k)"‘
+( ( (t)xJ o (1)-a, (1) (22)
P

( o, (t)xJo,(t))-a, (t))
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where feedback gains K, K, allow LORF tracking and stability, whereas B, is
the projection of the rejected disturbance vector (Silani and Lovera, 2005),
including gyro torque, on the subspace orthogonal to the instantaneous Earth
magnetic field b.. The projected torque is contrasted by magnetic-torquer
commanded acceleration u,, . All state variables entering the control laws (19),
(21) and (22) are obtained from appropriate noise estimators in discrete time
domain, which constitute the Embedded Model with the subset (2), (3), (6), (8),
(10) and (13). All previous control law have been proved such to guarantee
performance and stability. Space constraints prevent formal demonstration in the
present paper.

4 Simulated results

All simulate results were obtained under the worst expected environment
conditions, dictated by the highest solar activity, likely to be met during a 6-year
mission. Spectral densities of drag-free residuals and target bound are shown in
Fig. 3: at a first glance, drag-free bound is not respected at lower frequencies due
to resonance peaks at orbit frequency, 0.2 mHz, and 2™ harmonics (J2). Actually
spectral bound does not apply to periodic components, which must be bounded in
terms of RMS. Thus, except for the orbit harmonics, bound is largely respected.

e e o
X ’T\* ‘H‘ m‘f‘* - ‘“ Hﬂ‘ m‘*‘f - ‘“ ‘“ﬁ ——Rev. thrust - T=10s -Max HSA -x axis
e e ; H

1055,&5%555@%&5556 yaxis
EIISOOI-COOOT-CLCd zaxis
’TT»WW*VTWWW*VFMMH T T T T @ T T T

o TTIINT T T:‘“HTHT’TT\T\THT’!’F\TW\T/”

10 2+ = [ T T U I R )

(S Crr e

Is?IYHz

—-
o

£
S CEEA®EEREYEEZEETEES
2 Y I N (TR N Y YR NV VR R I BN STy VY
) \ S
10 \ /%F
; il
CIIO i
Fr+rn o R
Wl IRNRIII
EEzHE EQHE=-E
i e o o e s
FrrHHIf = fHHIE = FIF e = F I — = F I =1
e e e o e e o e e e o A e B 1l
4 3 2 1 0
10 10 10 10 10

Frequency [Hz)

Fig. 3. Spectral density of drag-free residuals (single spacecraft).

3D formation tracking errors are shown in Fig. 4, which enlightens the long-term
natural formation beat motion due to Earth flattening and eccentricity. It cannot be
destroyed less a large increase in thrust peak. The beat motion carrier is the orbit
period of about 5500 s. Note the peak of the radial motion being close to box limit
in (17): 30 m versus 50 bound, entailing formation requirements were not loose.
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Fig. 4. Two-months formation relative position.

Table 1 reports thruster performance and target under the expected worst-case
conditions. Note propellant mass and peak power are outside target, which
underlines mission requirements being at a technology border.

Table 1. Thruster performance
No. Type Unit Value Target
0 Propellant mass kg 70 50
1 Average power W 460 500
2 Peak power W 1250 1000

5 Conclusions and acknowledgments

An overview of the control challenges in view of a long-distance, drag-free, low-
Earth-orbit spacecraft formation, together with an outline of their solution have
been presented, supported by simulation results. Part of the work has been done
under a grant of the European Space Agency to Politecnico di Torino in
collaboration with Thales Alenia Space Italia, Turin, Italy.
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Abstract. The Flexible Dirichlet distribution (Ongaro et al., 2008, [5]) has been
recently introduced to model compositional data. It is a generalization of the
Dirichlet which preserves some of its good mathematical properties and, at the
same time, exhibits a richer dependence structure which allows various forms of
dependence relevant for compositional data, independence cases being identified by
suitable parameter configurations.

Here we investigate the nature of the dependence introduced by the new dis-
tribution. Furthermore we develop suitable likelihood-based testing procedures to
assess the presence of dependence relations of particular impact in applications.
Their performances will be evaluated by means of Monte Carlo experiments.
Keywords: Generalizations of Dirichlet distribution, Finite mixture, Composi-
tional data, Neutrality, Likelihood.

1 Introduction

In many problems data consist of vectors of proportions, such as chemical
constituents of a substance, and are, therefore, subject to a unit sum con-
straint. This type of data, called compositional, arise naturally in a great
variety of disciplines such as archeology, biology, economics, environmetrics,
psephology, medicine, psychology, etc..

The most well known distribution for compositional data is the Dirichlet
which possesses several good statistical and mathematical properties, such
as closure under amalgamation and subcomposition, as well as easiness of
parameter interpretation. However it is only suitable for modeling data ex-
hibiting the maximum degree of independence compatible with compositions.

The Flexible Dirichlet (FD) distribution (Ongaro et al., 2008, [5]) allows
to overcome such serious drawback by accounting for various types of depen-
dence.

After reviewing some properties of such distribution (Sections 2 and 3)
we focus on its (in)dependence structure. On the one hand we study the type
of non neutrality provided for by the model by analyzing the influence of a
given subset of variables on the subcomposition formed by the other ones
(Section 4). On the other we develop suitable testing procedures to assess
the presence of independence relations of particular impact in applications
(Section 5).
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2 Migliorati et al.

2 The Flexible Dirichlet distribution

The Dirichlet distribution X ~ DP(a), with a = (ay,..., ap) € Rf, takes
values on the unitary simplex S = {g cx; >0,i=1,...,D and E T =
=1}

Such distribution can be obtained by normalizing a vector (basis) of in-
dependent, equally scaled Gamma random variables (r.v.s) and it is closed
under operations of marginalization, conditioning, amalgamation and sub-
composition, the consequent distributions being simply related to the full
one.

The FD distribution is achieved by normalizing a basis of dependent r.v.s
which contains equally scaled Gamma independent variates as a particular
case. Let W; ~ Ga(a;) («; > 0) denote such Gammar.v.s (i = 1,..., D) and
let U ~ Ga(r) (1 > 0) denote a further independent Gamma r.v. which is
allocated to the #*" component of the basis with probability p; (0 < p; < 1
and 2?:1 p; = 1). Then, the new basis Y = (Y1,...,Yp) is defined as
Y, =W, +Z,U,i=1,...,D, where Z = (Z1,...,Zp) is a multinomial vector
independent from U and from the W;’s which is equal to e; with probability
p; where e; is a vector of zeros except for the i*" element which is one.

The normalized vector X = (3, ..., +2), (where Y = ZZ 1Y;), has a
FD distribution denoted by FD® (a, p, 7) and it is a finite mixture of Dirichlet
distributions: B

FD"(a,p,7 sz (a+Te;). (1)

Therefore, its density function can be expressed as

. 7F(OZ++T) a,«fl = T

where z belongs to the unitary simplex and ot = 2?:1 Q.

Here we have adopted a slightly smaller parameter space (the interior
of the original one) than in Ongaro et al. 2008 [5] which is more tractable
from a mathematical point of view without loosing in generality in terms of
independence relations.

For completeness we now report some useful properties of the FD suitably
adjusted to the new parameter space.

The FD includes the Dirichlet as an inner point: FD? (a,p,7) = DP(a)
if and only if 7 =1 and p; = o /a™, Vi=1,...,D. a

The first two moments can be expressed as:

_ B(Xi)(1- B(X)) Tpi(1 - pi)
e T I T [ )
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E(X;)E(X 2p;
Cov(X;, X,)=— (XDEX,) Pibr .
(at+7+1) (at+7)(aT+7+1)
Thus, unlike the Dirichlet, the FD distribution accounts for components with
the same mean but different variances or for covariances which do not show
proportionality with respect to the product of means.

In order to characterize marginal and conditional distributions, it is use-
ful to adopt the following notation. Given a partition (of order 1) X =
(X1, Xkl Xks1,-..,Xp) = (X;,X,) we shall denote the corresponding
totals by X" = Zle X; and X = Zikﬂ X; and, in an analogous way,
we shall define the quantities oy, a,, o, aF, P Py pl and pi. More-
(X150, Xk)

Xy

Sy = (X"*;{%D) and the amalgamation (vector of totals) by T = (X", XJ").

2
First of all, the FD distribution is closed under marginalization, i.e.:

over we shall indicate the two subcompositions by S; = and

(Xl,lef_)NFDk+1(g1,Oz+7041"_,£1,17p1"_,7'). (3)

Furthermore, its (normalized) conditional distributions are mixtures of a
FD and of a Dirichlet. More precisely:

X
1j;3_ | Xp =2, ~ 5| Xy=1
has distribution:
p
e D (20, B r) + (- b)) (@) (4)
1
where
p(l ) =T
2 pi +alz)
and

Oé+ T D (e 7]

q(z,) = W pZF(ai +7_)9U¢~

i=k+1

The FD is also closed under permutation (the parameters of the per-
muted random vector being simply the permutation of the original parame-
ters) and under amalgamation (where the parameters of the amalgamation
can be easily obtained by summing up the o;’s and p;’s within each group of
the partition).

Finally, the distribution of subcompositions from a FD can be easily de-
rived. For example: S, ~ pf FDF (gl, %,T) + (1 — p)D*(ay).

Notice also that properties concernilng amalgamation and subcomposi-
tions do hold for partitions of any order (i.e. into an arbitrary number of
subsets).
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3 Independence relationships

Clearly the components of a random vector defined on the simplex cannot be
independent because of the unit-sum constraint. That is why a large variety
of ad hoc forms of independence has been developed in the literature (see for
example Aitchison, 1980, [1], and 2003, [2]), most of which can be expressed in
terms of subcompositions and amalgamation. Focusing on partitions of order
1 for the sake of simplicity, we shall mainly consider partition independence
(S; L Sy, L T, where L stands for independence), neutrality on the right
(Sy L (S1,T)) and neutrality on the left (S; L (S,,T)).

The Dirichlet distribution can be shown to possess all the above indepen-
dence properties and it can be properly considered as the model of maximum
independence compatible with unit-sum constrained r.v.s.

Vice versa the FD exhibits a rich dependence structure, various forms
of independence corresponding to suitable parameter configurations. Let us
focus on the following ones which will prove to be the most interesting:

1. 7=1and p; = o;/at, (i=1,...,D),ie. X ~DP(a);
2. 7r=1land B =% (i=1,...,k);

Py Qy
d.r=land &= =% (i=k+1,...,D).
) Qg

It can be proved that the F D (a, p, 7) is neutral on the left, i.e. S; 1(S,,T),
if and only if either condition 1. or condition 2. is satisfied. Analogously,
conditions for right neutrality can be obtained: we have S, 1(S;,T) if and
only if either condition 1. or condition 3. is satisfied. Furthermore, the
FDP(a,p,7) shows partition independence, i.e. S, 18, LT, if and only if
either condition 1. or both condition 2. and 3. are satisfied.

Finally, it is noticeable that conditions for independence relations to hold
can be generalized to higher order partitions. For example, a partition of
order 2 shows partition independence if and only if either condition 1. is sat-
isfied or 7 = 1 and in at least two of the three subsets the «;’s are proportional
to the p;’s.

4 Dependence pattern

Whenever in a given model a type of independence is absent, it is of statistical
interest to analyze the form of the consequent dependence. This gives rise to
a number of relationships of potential importance. Here we shall focus on the
independence concept of neutrality whose relevance and generality, both from
a theoretical and an applicative perspective, clearly emerges from the litera-
ture. Such concept, first introduced by Connor and Mosimann, 1969 [3], has
to do with the consequences of eliminating a certain number of components
on the relative proportions of the remaining ones (i.e. the corresponding
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subcomposition). To illustrate the concept, suppose that the researcher’s in-
terest is on (Xy,...,Xp_1); then Xp is said neutral, and it can therefore be
neglected, only if it has no influence on (X;/(1 — Xp),...,Xp-1/(1 — Xp)).
For example, consider a household budget analysis where the total expendi-
tures are classified into a number of commodity categories. Then it may be of
interest to understand whether, for instance, the amount spent on foodstuffs
affects the expenditure pattern (subcomposition) of the other categories.

More generally, using our notation, a vector X, is neutral if it is indepen-
dent of S;. It is important to observe that such notion coincides with the
above introduced neutrality on the left due to the one-to-one correspondence
between X, and (S,,T).

If X, is not neutral, then it is of obvious interest to analyze how it does
affect the composition of the remaining variables. Such issue can be explored
within the FD model by considering the conditional mean effect.

Proposition 1
Let S; = (S11,.-.,51k), then fori=1,...,k

E (S| Xy = @9) = (1 — p(z)w) —= + plzy)wLe (7)
aq P1

where p(z,) is given by (5) and w = 7/(7 + ).

Proof
The result follows, after some algebraic work, from (4) and knowledge of
the first moment of the FD. O

The conditional mean is easily seen monotone in p(z,) and therefore in
each z;, (j = k+1,...,D), being p(z,) decreasing in each z,;. More precisely,

it varies from (1 —w)% + w2 when x = 0 to % when 7 — 1. In
ay by [e3

1

particular, it is increasing (decreasing) when ;’i < 5 ( ;’i > ;ﬁ) and it
1 1 1 1

, thus making simple to model both positive and

is constant when 2 = &£
Py @

negative dependences.
The parameter 7 determines the range of variation of the conditional
mean, the bigger 7 the larger such range. Particularly simple expressions are
obtained when 7 = 1; if moreover p; is proportional to «; fori = k+1,...,D,

then the conditional mean depends on z, only through the sum :103r

5 Testing independence

A convenient strategy to analyze the various forms of independence is to
order them from the strongest to the weakest and then to test them in such
order, proceeding to the next level only in case of rejection of the preceding
one.
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In general the first hypothesis to be tested is the Dirichlet model one
as it implies any other independence. Then, given a partition of order 1 of
interest, one can test partition independence first and finally, at the same
level, neutrality on the left and/or on the right. Notice that the last two
properties are equivalent to partition independence.

Any of the above hypotheses can be tested through a suitable likelihood
ratio test with asymptotic chi-square distribution.

Obviously there is no guarantee of a complete coherence among decisions
taken at the various steps: for example rejection of partition independence
may occur without rejecting neither neutrality on the left nor neutrality on
the right. If such coherence is thought essential then one might look for
alternative strategies such as intersection-union tests: reject partition inde-
pendence iff at least one of the two neutrality likelihood ratio tests rejects.
In this case, to obtain a level « test for partition independence a level «/2
can be adopted for the other two tests. Anyway, notice that such solution
leads to a conservative test.

Clearly, if the researcher is interested in just one particular type of inde-
pendence, i.e. neutrality, she/he does not need to follow the above scheme.

The construction of the above mentioned likelihood ratio tests requires
the unconstrained maximization of the likelihood as well as the constrained
maximization under the various hypotheses, which are critical issues given
the mixture structure of the model. The former problem has been tackled
in Migliorati et al. 2008 [4] where an E-M- algorithm has been adopted
with initial values obtained by combining the k-mean clustering algorithm
for estimating the p;’s and a two step method of moments for 7 and a.

Let us now focus on the issues arising from constrained maximization.
First let us consider the null hypothesis relative to condition 1., i.e. Hy :
X ~ DP(a). The maximization of the likelihood under Hy has been per-
formed by applying the Newton-Raphson algorithm (Ronning,1989 [6]) using
the method of moments to obtain the starting values. The test statistic dis-
tribution has been approximated by a chi-square with D degrees of freedom
according to Wilks’ theorem.

The other hypotheses require a more complex procedure. Maximization
of the likelihood under such null hypotheses is best achieved by constructing
suitable profile likelihoods which exploit specific factorization properties of
the FD model. In particular, under the null hypothesis of partition indepen-
dence

Di ;. Di (07
HO57':1;7:7&(1:13"'k);7:7’(2:k+1""D)
i of Py ay

the distribution of X can be conveniently represented through the distri-
bution of S;, S, and T, which are independent with S; ~ D¥(a;), Sy ~
DP=*(a,) and T ~ FD?(af,af ,pf,p3,7 = 1) (for a proof see Section 5 of
Ongaro et al. 2008 [5]). Such formulation has the advantage of automati-
cally incorporating the null hypothesis constraints. Furthermore it suggests
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to consider the profile likelihood for ozf' and g as only such parameters ap-
pear in more than one of the above distributions. The profile can be easily
constructed by separate maximization of the likelihood relative to the three
distributions. The test statistic distribution has been approximated by a
chi-square with D — 1 degrees of freedom.

The null hypothesis of left neutrality:

Di o
Hy:7=1—F=—,(i=1,...k)
pi of

can be dealt with a similar method: X is best represented through the
distribution of S; and X, which are independent with S; ~ D¥(a;) and
X, ~ FDP~*(ayi1,...,ap,af,pry1,--.,pp,pl, 7 = 1). This leads to con-
sider the profile for af which is the only parameter shared by the two distri-
butions. The test statistic distribution has been approximated by a chi-square
with k degrees of freedom. Clearly the hypothesis of right neutrality can be
tested in an analogous way.

A simulation study of the performances of the above tests has been carried
out with 10,000 replications for different values of n and of the parameter
vector. The following tables report the simulated (real) significance levels
against a 5% nominal one and some values of the simulated power.

Table 1 refers to Hy : X ~ DP(a) and takes into consideration the
following parameter configurations where the null hypothesis is true only in
cases (a), (b) and (c):

(a) X~ D*(a=(1,1,1))

(b) X ~ D*(a = (0.5,0.3,0.7,0.6))

(C) X~ Ds(f = (674a 3, 178))

(d) X ~ FD¥a = (1,1,1),p = (0.45,0.25,0.3), 7 = 2)

(¢) X ~ FD*a = (0.6,0.3,0.5,0.2),p = (0.15,0.35,0.3,0.2), 7 = 4)
(f) X ~ FD%(a = (8,3,4,2,10),p = (0.15,.35,0.15,0.2,0.15), 7 = 6)

Table 1. Proportion of rejections at 5% level.

case|n = 50(n = 100|n = 300
(a) | 0.058 | 0.061 | 0.052
(b) | 0.047 | 0.05 0.048
(c) | 0.054 | 0.046 | 0.047
(d) | 0.217 | 0.336 | 0.757
(e) 10.996 | 0.998 1

(f) ] 0.991 1 1

The first three rows highlight a good performance of the simulated signifi-
cance level for all models considered and all sample sizes. It is also noticeable
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that the power quickly converges to 1 for increasing sample sizes except for
the case (d) whose parameter configuration is however quite close to the null.

For lack of space we report simulations only for the neutrality case as
it is computationally more demanding than the partition independence one.
Table 2 reports the simulation results referred to the left neutrality hypothesis
where the original composition has been partitioned as (X7, X, X3| X4, X5).
We considered the following parameter configurations:

(a) X ~ FD5(a = (6,5,13,10,6),p = (0.4 - (6,5,13)/24,0.3,0.3) , 7 = 1)
(b) X ~ FD%(a = (5,10,20,6,9), p = (0.5 - (5,10,20)/35,0.4,0.1) , 7 = 1)
(¢) X ~ FD%(a = (0.5,2,5,0.6,1),p = (0.25,0.3,0.2,0.1,0.15), 7 = 2)

(d) X ~ FD%(a = (5,10,20,6,9),p = (0.3,0.2,0.1,0.1,0.3),7 = 3)

where the null hypothesis is true only in cases (a) and (b).

Table 2. Proportion of rejections at 5% level.

case|n = 300|n = 500|n = 1000
(a) | 0.101 | 0.075 0.064

(b) | 0.109 | 0.069 0.062
(c) | 0.468 | 0.695 0.966
(d) | 0.198 | 0.215 0.366

The performance of the simulated significance level appears to be satis-
factory even though the convergence is slower than in the case of Table 1.
Concerning the power of the test, some convergence difficulties emerge in
case (d) which deserves further investigation.
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Abstract. In this note the counting process in the insurance risk model is a com-
pound Binomial process. The particular case of geometric compounding distribu-
tion is analyzed. The counting process is called Inflated-parameter binomial process
(I - Binomial process). Some basic properties are given. The corresponding risk
model is called I - Binomial risk model. The joint probability distribution of the
time to ruin and the deficit after ruin occurs is studied. The case of exponentially
distributed claims is given.

Keywords: Discrete distributions,, inflated - parameter distributions,, compound
distribution.

1 Introduction

Consider the standard risk model {X(t), t > 0}, defined on the complete
probability space (§2, F, P) and given by

N(t) 0
X(t)=ct—> Z, (Z:o). (1)
k=1 1
Here c is a positive real constant representing the risk premium rate. The se-
quence {Z;}%2, of non-negative mutually independent identically distributed
random variables is independent of the counting process N(t), ¢ > 0. The
claim sizes {Z;}{2, are distributed as the random variable Z with distribu-
tion function F, F'(0) = 0 and mean value p = EZ < co.

In this paper we suppose that the counting process N(t) has a com-
pound binomial distribution, see [1]. Suppose that N (¢) = Z?Ql(t) Y;, where
Y1,Ys, ... are independent identically distributed random variables, indepen-
dent of Ny(t) and for @ > 0 and n > 1, Ny(t) ~ Bi(n,L). Let Y denote the
compounding random variable. Here we suppose that for p € [0,1), Y ~
Ge1(1 — p) with probability mass function

PY =m)=(1—-p)p™' m=12....

The compound binomial process N (¢) has Inflated - parameter binomial dis-
tribution ([3] and [5]) and is called I-Binomial process.

* This paper is partially supported by Sofia University grant 028/2009
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2 L. D. Minkova

In this paper the counting process N (t) is defined as a birth process. Some
properties are given and the application in insurance risk model is analyzed.
We consider the particular case of exponentially distributed claims.

2 I-Binomial process

The I-Binomial process as a generalized birth process is defined in [4]. The
transition probabilities are given by the following postulates:

P(N(t+h)=n|N(t)=m)=

o0 k—1
11— g [1—(1—@5‘4 hto(h), n=m,
k=1

(a0 — )2 -
no a 151
1—p)—|[1—-(1—p) —— h h = kk=1,2,...
(- 1= hvet), m=mkk=12
for every m =0, 1,..., where o(h) — 0 as h — 0.

If P,(t) = P(N(t) =m), m =0,1,2,..., the above postulates yield the
following Kolmogorov forward equations:
Po(t),

n
a—t

Ri(t) = -

RO R NORNURIL G 1 o VIR R R0}

a—t a—t
k=1
(2)
for m =1,2,.... The solution of (2) with conditions

Py(0)=1 and P,(0)=0, m=12,...

t n
<1—> , m=20
«

P(N, =m) = %(?) (T—_f) {(1_p)(ﬂi (1_2>”ipm—g m=12,....

i=1
(3)
This is just the Inflated - parameter binomial distribution with parameters
L pand n, say IBi(%, p,n) (see [3] and [5]). In the case of p = 0 (3) coincides
with the usual binomial distribution.
This leads to the following definition

is given by

Definition 1 The counting process {N(t), t > 0} is said to be I - Binomial
process, if it starts at zero, N(0) = 0 and for each t > 0, the distribution of
N(t) is given by (3).
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Compound Binomial Risk Model 3

2.1 Properties of the I-Binomial process

Denote S,, =T1 +To + ...+ T, m = 1,2,..., the waiting time until the
mth event. One of the basic properties of the I-Binomial process is given in
the next theorem.

Theorem 1 Let N(t) has the IBi(%, p,n)distribution (3). Then the waiting
time until the mth event has the following probability density function (p.d.f.)

(m—=1)A(n—1)

= E (D ] (o)

(4)

2.2 Moments

The mean value and the variance of I - Binomial process are given by

nt
VO =0
and
n t t L+p t
Var(N(t)) = a=pe [1—Q+P] o = EN(t) L_p T 1-pa

3 Application to Risk Theory

We consider the risk model (1), where N(¢) is I - Binomial process and will
call this process I - Binomial risk model.
The relative safety loading 6 is defined by

,_call=p)
np

)

np
a(l—p)-°

We are interested in the probability that ruin occ(ursp)and the deficit at
the time of ruin does not exeedes a given amount y > 0.

Let 7 = inf{¢ : X(t) < —u} with the convention of inf ) = co be the time
to ruin of an insurance company having initial capital © > 0. We denote by
U(u) = P(T < o0) the ruin probability and #(u) = 1 — ¥(u) the nonruin
probability.

In the following we use the notation of [2]. Let G(u,y) be the joint
probability distribution of the time to ruin 7 and the deficit in prior to ruin
D =|U(7)] ie.

and in the case of positive safety loading 8 > 0, ¢ >

G(u,y)=P(r <t,D <y). (5)

533



4 L. D. Minkova

and
lim G(u,y) =¥ (u).

Yy—>00

Using the postulates we have

G(“’v y) =

= (1 — #h) G(u+ ch,y) + (1 —p)% (Ofit)thzil [1 —(1 _p)ait}k_l

y [/u+ch G(u+ch_x,y)dF*k(37)+ (F*k(u+ch+y) _F*k(u+ch)) +0(h)7
0

where F**(z), k =1,2,... is the distribution function of Z; + Zy + ... Zj.
Rearanging the terms leads to

G(u+ ch,y) — G(u,y)

ch
2 oo k-1
= (a t>cG(U+Ch7y) -(1- P)& <M> 2 [1 -(1- P)a_J
u+ch 0] h)
X [/ G(u+ ch — z,y)dF*™*(z) + (F**(u + ch +y) — F**(u+ch)) | + 5
0

Let

o — a—t
k=1

a o) o k—1
Ao =1-p 5 Y (1-0-02%) Fe o)

be the non defective probability distribution function of the claims with

H(0)=0, H(oo)=1.
By letting h — 0 we obtain the following differential equation

0G(u,y)  n “
bt |Gt~ [ Glu e () ~ ) - H<u>(17)-
Theorem 2 The function G(0,y) is given by
Gl0.) = o | 1= H ) (8)
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Proof. Integrating (7) from 0 to co with G(o0,y) = 0 leads to

_G<O’ y) =

= s [ st [T [ o an [T - a@w

The change of variables in the double integral and simple calculations yield

G0.9) = o [T y) - ()l
and (8).
A
Theorem 3 The ruin probability with v = 0 is given by
w(0) = —F (9)

= plac
Proof. According (8)

w(0) = lim G(0,y) = —

Yy— 00 C(Oé —t

)/000[1 ~ H(2)]da.

Let X be a random variable with distribution function H(x). By the
definition of H(z) and EZ = p we obtain

pla —t)

=Ty

Using the fact that EX = [[*[1 — H(z)]dx we obtain (9).

3.1 Exponentially distributed claims

Let us consider the case of exponentially distributed claim sizes, i.e. F(u) =
1—e », w>0, p>0.In this case,

(07

76_(1_@%
pla —t)

h(z) = (1-p)

and

H(z)=1- eI | 2 > 0.
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6 L. D. Minkova

The first order differential equation (7) is given by

0G (u,y) n B
du  fa—pCwy) =

2 G 0 [ Gt
o —1)? 0

" e [1 _ e—(l—p)ﬁ%]
c(a—t)
Differentiating by u leads to the second order differential equation

92G(u, ) n (1 (- p)a6> 9G (u,y)

oz cla—t) ni ou

The initial condition (8) in the case of exponential distribution is

~0. (10)

G(0,y) = ﬁ (1 - e_(l—/’)ﬁ%) , (11)

The equation (7) gives the second condition

aGﬁ(?j 2 - c(ot”i t) (c(ln—up)a a 1) (1 B e‘“‘ﬂﬁ%) ' (12)

The solution of (10) with the initial conditions (11) and (12) is

_ ()52 2 ey (S22 - 1)u
G(u, _7(1— patu) ca—nH\ " n .

The ruin probability in the exponential case is given by

TL/j _ n (C(l—/’)”il)u
/3 i S c(a—t) n .
(u) e(l - p)ae ’
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Abstract. This paper proposed a new general family of continuous of distributions
motivated by the distributions of record statistics. Its distributional properties
including the distribution function, moments, symmetry and modality are studied.
One special case, when F' is the exponential distribution is considered and at the
end two real data sets are used for fitting the suitability of our proposed model in
the special case.
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1 Introduction

Let {X;, ¢ > 1} be a sequence of continuous random variables from the
cumulative distribution function (cdf) F'(x) and probability density function
(pdf) f(z). Then the pdf of n-th upper record values, U,,, and n-th lower
record values, L,,, are given by

@) = OB F@I @) —so<z<oo (1
and 1
fr, (x) = W[_ log F(z)]" ' f(x) —0o< T <o (2)

respectively, where I'(-) is the complete gamma function. See Arnold et al.
(1998) for more details about the theory and applications of record values.
Several authors have considered the problems of generalized continuous prob-
ability distributions. The generalized gamma distribution, Pareto distribu-
tion and beta distribution have been studied by Amoroso (1925), Ljubo
(1965) and McDonald (1984), respectively. Since then other authors have
developed the previous results. Recently, Eugene et al. (2002) introduced
a new family of distributions generated from the logit of the beta random
variable:

_ I'(e+5)
L))

* This paper is supported in part by the Iranian National Foundation of Elites.

gr(t; @, B) [FO1 L= F@)7 (). 3)
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2 S. M. T. K. Mirmostafaee and Jafar Ahmadi

They studied a special case of (3) when F(x) is the cdf of the normal dis-
tribution. Jones (2004) proposed (3) as a family of distributions motivated
by order statistics. He studied its distributional properties as well as po-
tential for exciting statistical applications. Previous researches, (1) and (2)
caused us to try to introduce a new family of distributions which arises from
the distributions of record statistics. We propose the new general family of
continuous distributions that generated by F' as follows:

he(ta, ) = [~ log F()]* [~ log F(t)]"~1 £ (1), (4)

1
v(e, B)

where o and 3 are positive real constants and y(«, 3) is

A, ) = / Ty log(1 — e )P e vy, (5)

we call it extended gamma function. It is clear that v(a,1) = I'(a) and
~v(1,8) = ['(B). From (1), (2) and (4) it is obvious that if 5 =1 and « € N,
as a natural number, then the probability distribution in (4) takes the same
form as the a-th upper record values. Also for « =1 and g € N the pdf in
(4) is the pdf of lower record values coming from cdf F' and pdf f. Thus in
the case of @ = 1, one example of family (4) is the gamma distribution itself
which arises immediately if F' is taken to be the exponential distribution.
Also, hp(z;1,1) = f(x). The main reason for extending a distribution as
in (4) is that the form in (4) provides more flexibility in modelling observed
data.

We study some distributional properties of the introduced family in Sec-
tion 2. These properties include the distribution function, moments, symme-
try, modality and estimation of o and (3. One special case, when F' is the
exponential distribution is considered in Section 3. At the end two real data
sets are used for fitting the suitability of our proposed model in the special
case.

2 Distribution Properties

In this section we intend to study the general properties of members of family
(4). First of all we present some properties of v(c, ).

2.1 Some properties of y(a, 3)

Lemma 1. For any positive real values of o and 3 we have:

o [y(a,B)?<I'(2a — 1)I(28 — 1) and the equality holds iff « = 3 = 1.

o y(a,B) =~(6,).

The proof of the above lemma is simple and therefore is omitted. From (5)

it is obvious that y(«, 1) = I'(«) and in the following lemma, we obtain the
exact expression for v(c, 2) which will be used in this paper.
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Lemma 2. For 3 =2 and o > 0, we have

o0

y(e,2) = I'(@) )

j=1

1
3G+ 1D
Proof. The result immediately follows by notifying that
o'} e_iy

log(l—e¥)=— Z :

=1

2.2 Distribution Function

From (4) and putting y = —log F'(z) we have

v(av, B, —log F(x))
v(a, B) ’

where v(«, 3,t) is the incomplete extended gamma function, i.e.,

HF(x;aaﬁ) =

t
,Y(aa67 t) = / ya_l[_ lOg(l - e_y)]ﬂ_le_ydy.
0

Now, we calculate Hp(z, o, 3) for some special cases.
e Suppose 3 — 1 is a natural number (5 — 1 € N), then

’V(Oé, ﬁ? - IOgF(.’L'))

HF(JI;Oé,,B) = ')/(01 ﬂ)

—log F(x)
= fy_l(a,ﬁ)/ Yy —log(1 — e_y)]ﬁ_le_y dy
0

= o\ B-1
— log F'(z) s e~
27_1(a,6)/ y* ! (Z - ) e Y dy
0

i=1

o0

—log F(x) ]
_ ,y—l(a’ﬁ)/ yol Z C;(8 - 1)6—(J+1)y dy
0

j=1

= ’7_1(04’6) ch(ﬁ - 1)F(Ot,j +1, —logF(x)),

where Cj;(n) in (6) is the coefficient of w’ in the expansion of (Z

0ot
=1 1

(6)

X

and I'(a, 3,t) is the incomplete gamma function. Notice that the coefficients
C;j(n) can be generated in a recursive manner as follows: C;(1) = 1/j for

j=1,2,--- and

Ci(n)= Y Cr(n—1)/(j — k),

k=n—1
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see Arnold et al. (1998), pp. 70-71.

e Suppose that « is a natural number in (6), by using the following identity

t n o k
A n—1_—Az _ ()‘t) -\t
/OF(n)x e dx—g X e .

k=n

We can rewrite (6) as follows
Hp(z;0, 8) = ZZ )[F(x)]j[—logﬁ(a:)]i.

For 8 =2 and o € N, Hp(x, a,2) simplifies as:

N 1ogF< )
oo - () S8 PR

j=li=a

2.3 Moments

A sufficient condition for existence of the moments of the family in (4) is
provided by the following lemma. We say that the kth moment of X exists
if E(|X|*) < o0

Lemma 3. Let U have a distribution with pdf (4) and X have a distribution
with cdf F(z). If E(|X|*) < oo, k is any non-negative integer and & > 0,
then E(|U|*) < oo, for all a >0, 8> 0.

Proof. Suppose that p > 1 and % + % = 1, then from (4) and taking y =
—log F(u) we have

E(U*) = 7*1(045)/ [ul*[~log F(u)]* [~ log F(u)]"~" f(u)du

—0o0

=) [ TP - ) log(1 — e )P e vy Ny
0

<o) { | o - e-yﬂﬂ-l}%-ydy}é

g ey }

x{/o IF~1(1—e¥)[*PeVdy -
_ ag—q+1,8¢—q+1)]7 [ [ . 1 i
— v(a, B) {/_DO |30\k+ f(:r:)dx} , where k+ 0 = kp
_[’Y(aq—q+1,ﬁq_q+1)]§ .

- Y@ 5) [E(|X |07,

The inequality in (7) Holder’s inequality.

So by Lemma 3 the existence of the moments of F' will guarantee existence
of the moments of lower order of the corresponding generated family in (4).
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2.4 Symmetry and Modality

In this section we seek to provide a sufficient condition for preserving sym-
metry and unimodality properties by hp.

Lemma 4. Let F be symmetric about zero, then hp remains symmetric
whenever a = 3.

The proof of the above lemma is simple and therefore is omitted. It is not
difficult to show that vy(«, «) in (5) is a increasing function with respect to
a. So whenever a = 3, hp remains symmetric but with tails getting lighter
as «a increases and heavier as a decreases. If a # 3, skewness is introduced,
the amount of skewness depends on the difference between « and 3, and its
sign on the sign of 8 — a.

Lemma 5. Let F be symmetric and unimodal, then hg is also unimodal, if
a=p.
Proof. Let M be the mode of F, then by assumptions F(M) = 1. From (4)
for a = (3,

he(z; o, 0) =5 Ha, ) [log F(x)log F(x)]*! f(x). (8)

So, it is enough to show that the expression in the bracket on the right
hand side of (8) gets its only maximum at x = M. To this end, let g(z) =
log F(z)log F(x), then

§(0) = IS ) og Fla) = Fla) og Fla)
and
g"(@) = =S@){f ()2 + log(F'(z)F ()]} + R(z)S' (),
where S(z) = F(i‘;?(x) and R(z) = F(z)log F(x) — F(z)log F(x). We have
i _g/(@) =l Ra) =0, (9)

and as S(z) > 0, ¢’(z) = 0 whenever R(z) = 0. Clearly R(M) = 0, and
g"'(M) < 0, so by (9) it is enough to show that R'(z) has only two finite
roots. We have

R'(z) = —f(x)[2 + log(F(z) F (x))]. (10)
. B _ _ —1 2¢~ 1
The right hand side of (10) equals to zero whenever x = x1 = F (7\/@“)
orx =x9 = F1 (\/6227%4176) It is clear that M € (x1,2) and the proof is
complete.

In Lemma 4 and 5, we show that the properties of symmetry and unimodality
preserve by hr when o = 3. The parameters o and § are shape parameters,
which determines the skewness of the distribution. When F' is unimodal, hg
is skewed to the right when 8 > «, the degree of right skewness increases
as (8 increases. Also hp is skewed to the left when § < «, the degree of left
skewness increases as (3 decreases.
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2.5 Estimation of a and 3

Let F be free of parameters and suppose X1, Xs, ..., X, constitute a random
sample of size n from (4), then the likelihood function is given by:

n

L(a, 8) = [y(e, )" [ /(@) exp{(a—1) log(— log F(2;))+(8—1) log(— log F(x;))}.
i=1

Then, clearly W1 (X) = Y"1, log(—log F(X;)) and W5 (X) = "7, log(— log F(X;))

are complete sufficient statistics for a and 3, respectively. The maximum like-

lihood estimator (MLE) of @ and (3 can be obtained by solving the following
two equations:

(e, B)

Wi (x) — nT/V(% B) =0, and Wa(x)— nBV(av f)

—ap /@) =0.

The Fisher Information matrix for («, 3) is given by
Pv(a.B) 8%(%6)]

_ a2 0adf
I(a, ) = lazv(a,ﬁ) )
9008 957

If one of the parameters is known, say 3, then it is obvious that Ix(a) =

% and by MLE properties

V(@ —a) — N(0,Ix' (@)

3 Special Case (Extended gamma distribution)

As pointed in section 1, recently several new distributions were introduced
in the literature. Here, we consider a special case of (4), 8 = 2 and suppose
X has exponential distribution, i.e. F(x) = exp(—Az) A > 0, in our model.
Then from (4) we find

hp(z;a,2) = %xa_le_m[— log(1 —e )], x>0, (11)
where from Lemma 2, n(a) = v(a,2) = I'(a) Z;’;l 7j(ji1)”' Here o is the
shape parameter and A is the scale parameter. When o = 1, the model
(11) follows the distribution of the second lower record values from the expo-
nential distribution. We say that random variable X has extended gamma
distribution (EG) and denote X ~ EG(a, ), if its pdf is as in (11). Then
we have

n(a+ k)

E(X’“):W, k> 0.
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So the moment estimators of A and a can be obtained as A = 29+ where

(@)X’
& satisfies the following identity

D@+ 20(0) 45 2

[n(é + 1)]?
Let X1, X5, ..., X,, be a random sample of size n from EG, then the log like-

lihood function can be written as:

L(a,\) = —nlogn(a) + (o — 1) Zlogmi +n alog A

i=1
+Zlog —log(1 — e~ “"))—)xzw:xz
i=1

On taking partial derivatives of the log likelihood with respect to o and A
respectively and equating the derivatives to zero we get

OL on(a)

_— = — 1 =

9% 9 ; +nlogA =0,

0L na« 2 xie M

oA (1—6)‘I)log(1—e)‘z sz_o

i=1

Therefore, we can obtain the MLE’s of a and A by solving the above non-
linear normal equations. From the second equation & can be obtained as a
function of A as follows:

T

Ay - e
o (Z; . Z (1 —e i) log(1 — e/\mi)> : (12)

i=1

Let o(a) = 8 n(«). So if both of the parameters are unknown, first the MLE

a
A, say ), can be obtained by maximizing directly

n n —Az;
g(A) = L(&(N),\) =-ng (2 <Z Z (1— e—/\ml log(l _ e—Am)))

+Zlogmi + nlog A.

i=1

with respect to A. Once A is obtained, & can be obtained from (12).

3.1 Data Analysis

In order to fit EG to data, we used two real data sets represent the failure
times of the air conditioning systems of two different air planes (see Bain
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and Engelhart, 1991). Gupta and Kundu (2003) fitted both the gamma
distribution and exponentiated exponential (EE) distribution to these data.
Data 1: Plane 7912: 1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23,
42,47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246, 261.

Data 2: Plane 7911: 33, 47, 55, 56, 104, 176, 182, 220, 239, 246, 320.

We fit gamma, EE and EG distribution functions to these data. We also
estimate the unknown parameters in all these cases by maximum likelihood
method. Moreover we present the y? statistics for these three cases. The
results are summarized in Table 1. From Table 1 it is observed that, by

Data set|Distribution| A & x>
Gamma |0.0136]0.8134| 3.302
1 EE 0.0145|0.8130( 3.383

EG 0.0066(1.0766| 3.181
Gamma | 0.014 |2.1457]0.9929
2 EE 0.104 |2.2427(1.0917
EG 0.007 {2.5136|0.9928

Table 1. The goodness of fit of gamma, EE and EG distributions to data sets 1
and 2.

empirical evidence, in both cases the EG distribution is fitted better than that
gamma and EE distributions. It may be noted that in the second data set the
x? statistic for EG distribution is very close to that for gamma distribution.
Notice that the results of this section not guarantee that the EG will always
better than EE or gamma distributions, but at least it can be said that in
some cases, it is better. One or two examples do not tell us much more.
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Abstract. This paper deals with stochastic modeling through branching models.
It is our purpose to model the probabilistic evolution of populations where females
and males coexist and form couples. In particular, the class of two-sex branching
models with offspring and mating depending on the number of couples in the pop-
ulation is considered. This class has practical implications, especially in population
dynamics. For such a class of models, by considering different approaches, we pro-
vide some necessary and sufficient conditions for the almost sure extinction of the
process.

Keywords: Branching models, Two-sex models, Extinction probability.

1 Introduction

With the purpose to model the probabilistic evolution of populations where
females and males coexist and form couples (female-male) several classes of
discrete time branching models have been investigated, including the bisex-
ual Galton-Watson model (see Alsmeyer and Résler (1996) [1], (2002) [2],
Bruss (1984) [3], Daley (1968) [4], Daley et al. (1986) [5]), two-sex mod-
els with immigration (see Gonzalez et al. (2000) [6], (2001) [7], Ma and
Xing (2006) [10]), in varying environments (see Molina et al. (2003) [13]), in
random environments (see Ma (2006) [8], Ma and Molina (2009) [9]), with
population-size depending mating (see Molina et al. (2002) [12], (2004) [14],
(2006) [15], Xing (2005) [18]), or with a control function (see Molina et al.
[16]). Recently, it has been introduced, see Molina et al. (2008) [11], the
class of two-sex branching models with offspring and mating depending on
the number of couples in the population. Several relationships among the
probability generating functions involved in the stochastic model have been
determined and some limiting results derived. The aim of this paper is to
continue the research about such a class of two-sex models, investigating
necessary and sufficient conditions for its almost sure extinction.

545



2 M. Molina et al.

The paper is organized as follow. In Section 2, the two-sex process is
described formally and interpreted intuitively. Section 3 is devoted to de-
termining some results concerning the extinction probability of the model.
Finally, the proofs are included in Section 4.

2 The two-sex model

Let us consider the two-sex branching model {(F,, M,,)}n>1 defined in the
form:

Zn—l
(FnaMn) = Z (fn,i(Zn—l)amn,i(Zn—l))a Zn = LZn,l(FnaMn)v n= 1727 s

i=1

(1)
where the empty sum is considered to be (0,0). The random vector (F,,, M,,)
represents the number of females and males in the nth generation. These
females and males form Z,, couples. A couple consists of a female and a male
from the same generation who came with the purpose of generating offspring.
It is assumed that initially there are Ny > 1 couples in the population, i.e.,
Zy = Ny. Let us denote by ZT and R*, respectively, the non-negative integer
and real numbers. Given that, in the (n—1)th generation there are N couples,
namely Z,_1 = N, then:

(a) Ly is the function which governs the mating between females and males.
It is a non-negative real function, defined on R™ x R™, assumed to be
non-decreasing in each argument, integer-valued on the integers, and such
that, for x,y € R*, Ly(z,0) = Ly(0,y) = 0.

(b) {(fns(N),mp(N)),i = 1,...,N} are independent and identically dis-
tributed non-negative, integer-valued random vectors. Intuitively, the
random vector (fy ;(IN), my, i(N)) represents the number of females and
males descending from the ith couple of the (n — 1)th generation. Its
probability law will be referred as the offspring probability distribu-
tion when there are N progenitor couples in the population. Clearly,
P(f1,1(0) = 0,m1,1(0) =0) = 1.

Note that {(F,, My)}n>1 may be interpreted as a stochastic model devel-
oping in an environment which changes in time according to the number of
couples in the population. In each generation, both the offspring probability
distribution and the mating function are affected by the number of couples
in the previous generation. In addition to its theoretical interest, this class
of two-sex models also has practical implications, especially in population
dynamics. In facts, by environmental, social, or other factors, the offspring
and the mating between females and males may be affected by the number
of couples in the population. Indeed, the motivation behind this class of pro-
cesses has been the interest in developing models to describe such behaviors.
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The class of models given in (1) includes, as particular cases, the two-sex
models introduced in Daley (1968) [5], Molina et al. (2002) [12], and Xing
and Wang (2005) [18].

In order to establish some results about its extinction probability, we
shall consider the following requirements about the mating functions and the
offspring probability distributions:

(al): {Ln}n>0 is such that Ly is a superadditive function, namely,
Ln(z1 + 2,51 +y2) > Ln(21,91) + L (22, 42), @i,y € RY, i =1,2.

(a2) {Ln(z,y)}N>0, where z,y € RT are fixed, is a non-decreasing sequence.

(@3) fir(N) = fii(N+1);mi1(N)=my1(N+1), NeZt.

Remark 1. Assumption (al) expresses the intuitive notion that z; + x5 fe-
males and y; + y2 males coexisting together will form a number of couples
that is at least as great as the total number of couples formed by x; fe-
males and y; males, and x5 females and y» males, living separately. Most
of mating functions considered in two-sex branching model theory are super-
additive. Assumption (a2) represents the usual behavior in many biological
populations in which the mating is promoted as the number of couples grows.
According to (a3), the variables f11(V) and mq 1 (V) take large values with
a lower probability than f1,1(N + 1) and mq,1(IV + 1) do, respectively. This
expresses the intuitive fact that when the number of couples in the popula-
tion grows then the corresponding numbers of originated females and males
take large values with higher probabilities.

Throughout this work, we will assume the classical duality extinction-
explosion in branching model theory, namely, for N > 1,

P(lim Z,=0|Zy=N)+P(lim Z, =00 | Zg=N)=1. (2
n oo n, oo

Under this framework, some sufficient conditions for the non-extinction of
{(Fy, M) }n>1 have been determined in [11] where some general settings
which guarantee (2) holds have been established. Also, it has been proved
that R := limy_.o, Ry exists where

Ry =N"'E[Z,|Z,.1=N], N=1,2,...

Next, we continue the research about the extinction probability concern-
ing such a class of two-sex branching models.

! Given the random variables X and Y, we say that X is stochastically smaller
than Y, written X <Y, if P(X >t) < P(Y >t),t€R.
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3 Extinction probability

In this section we shall derive some necessary and sufficient conditions con-
cerning the extinction probability of the class of models presented in (1). To
this end, we shall use two different approaches. First, by considering the
asymptotic growth rate R (Proposition 1) and then, by using the comparison
with a simpler two-sex model (Proposition 2).

Remark 2. If for some n > 1, Z, = 0 then, from (1), one deduces that
Zntm = 0 and (Fypm, Mpim) = (0,0), m > 1. Hence the two-sex model
does not survive.

Definition 1. For every N > 1, let

Qv =P(lim Z,=0|Z =N)

be the extinction probability when initially there are N couples in the pop-
ulation.

Proposition 1. Assume (al), (a2) and (a3).
(i) If R<1 then Qn =1 for N > 1.

(ii) If R > 1 then there exists Ko > 1 such that Qn < 1 for N > K.

Remark 3. In the following result, by using a methodology based in the
stochastic comparison with a two-sex model with only mating depending on
the number of couples in the population, necessary and sufficient condition
for the almost sure extinction are also determined. First, we shall introduce
the following modification in requirement (a3):

(a4): FOI‘ N S Z+7 f171(N) j fl,l(N —+ 1), m171(N) j le(N —+ 1) and there
exist random variables f1; and my 1 such that imy oo f11(V) = f11
and limy oo m1,1(N) = mq 1 almost surely.

Taking into account (a4), one deduces,
fia(N) = fin, mii(N) <my, NeZt

Let (1 (N), m(IN)) and (g5, fm) be the mean vectors of (f11(IN), m1 1(N))
and (f1,1,m1,1), respectively, both assumed to be finite. Again, by (a4), one
derives that {ps(N)}n>0 and {pm(N)}n>0 are non-decreasing sequences.
Hence, by the monotone convergence theorem,

Ngnoouf( ) = Wy g (N) =p

Let {(F, M})}n>1 be the two-sex model initiated with Z§ = No:

548



Extinction Probability for Two-Sex Branching Models 5

7%

n—1

(F;’M;:) = Z (fn,i’mmi)v Z, = LZ:,I(F':aM;)’ n=12,... (3)

i=1

where {(fn,i;Mn.i)}n,i>1 is a sequence of independent and identically dis-
tributed random vectors with the same probability law of (f1 1,m1,1). Model
(3) was introduced in Molina et al. (2002) [12] where it was established that
R* := limg oo R} = supyso R} exists, R} = k™ 'E[Z; | Z}_, = k], k> 1
and, moreover, R* < 1 if and only if

Qy:=P(lim Z: =02, =N)=1, N>1
n, oo

Proposition 2. Assume (al), (a2) and (ad).
(i) If R* <1 then Qn =1 for N > 1.

(ii) If R* > 1 then there exists Ko > 1 such that Qn <1 for N > K.

4 Proofs

4.1 Proof of Proposition 1
By using (al), (a2), and (a3), it is deduced, see Molina et al.(2008)[11], that
R =supysq Rn.
(i) If R <1 then {E[Z,]}n>0 is a non-increasing sequence. In fact,

E[Zyi1|=E[E[Znt1 | Zn) | = E[ZyRz,) < E[Z,R] < E|Z,], n € VA
Hence,

P(lim Z, =00 | Zy=N)=0, N >1

and, by (2), one has that ¢y =1, N > 1.

(#4) Assume R > 1. Since R = limy »o Ry, there exists K > 0 such that
for N > K, Ry > 1. Let us consider the auxiliar process: {(F,,, M})}n>1,

VA

n—1

(Fh, M) = (Fo, M)z < 5y + > (FailK),mni(K) Iz > Ky,

i=1
Z;l = ZnI{Z;,,lf K} +LK(F7/WM7/L)I{Z;L71> K}y M= 1,2,...

where Z) = Ny and I4 denotes the indicator function of the set A. It is
verified that Z! < Z,, n € Z*. Hence, taking into account Miiller and
Stoyan (2002), p. 3 [17], it is derived that, for N > 1,
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P(li/mZn:oo|Z0:N)2P(li/mZ;L:oo|Z6:N). (4)

Let { (F,(LK), M,SK))},Lzl be the bisexual Galton-Watson process initiated

with Z(()K) = Ny couples and defined, for n=1,2,. .., in the form:

(K)
n—1

(P M) = 3 (oK) . 2859 = Lic (FE, 2150
i=1
By Daley et al. (1986) [5], one deduces that
(K)

RE) .— 1im R = sup RO,
N oo N N>% N

Clearly R > R(If)~ Now,
R — g-1p {Zyo | ZU) = K} =K 'E[Zy| Zn_1 = K| =Rg > 1.

Thus, by bisexual Galton-Watson process theory, one deduces the exis-
tence of K* € ZT such that, for N > K*

P (nli/n;o ZE) = 00 | Z{K) = N) > 0.
Let Ky := max{K, K*}. Then,
P <nh/ngo ZK) = 00 | Z{F) = KO) >0
and using the fact that {Zy(LK)}nZO is a homogeneous Markov chain,
P <n11/n010 ZF) =00, ZF) > K, n>0| 2z = KO) > 0. (5)
Hence, by comparing {Z, },>0 and {Z,(LK)}nZO and by (5),
P(nli/‘rr;o Zl =0 | Zy = Ko) > 0. (6)
Finally, from (4) and (6),

P(hm Z,L:OO|Z0:N)>O, NZKO

n oo

By (2), one obtains that gy < 1 for N > K.
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4.2 Proof of Proposition 2

From Proposition 1, it is sufficient to prove that R* = R. By (al), (a2) and
(a4), the existence of R is assumed.

For each N € ZT, let {(FAN),MTSN))},@ be the process, initiated with
ZéN) = Ny, and defined, for n > 1:
z
(F7(LN)7 MT(I,N)) = Z (fn,l(N)a mn,Z(N))v ZT(LN) =L

i=1

oo (SN M)y (7)

n—1

Z

Process (7) is again a two-sex model with only mating depending on the
number of couples, being the offspring distribution the probability law of
(f1.1(N),m11(N)). Hence, for N € Z*, there exists R™Y) := limy oo R;N)
and

R™ —sup R R — k1 B[z | 20 = k], k=1,2,...
k>0

Now, from (a4), taking into account stochastic order properties,

N N N N
ST FaiN) 2D i D omni(N) 2D ma
=1 1=1 =1 =1
and

E <FE

Ly (Z fni(IN), Z mm(N)>

Therefore

N N
Ly (Z} frsis Z} mn,i) ]

R =limsup Ry < limsup Ry = R".
N oo N oo

On the other hand, given j > 1 fixed, one derives for N > j,

LN (mez(N)’Zmn,Z(N)) LN (anﬂ(.?),zmn,z(j))} .

i=1 i=1

E >F

Thus
R =liminf Ry > liminf R = RV
N Jco N oo

Taking limit as j " oo, one derives that R > lim; »o RU). Finally, it is
matter of straightforward calculation to deduce that lim; ., RY) = R*, and
consequently the proof is completed.
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Abstract. The class of two-sex branching models with random control on the
number of progenitor couples is considered. For such a class, by considering that
no assumptions are made about the functional form of the underlying offspring
probability distribution, we obtain Bayes estimators for the offspring probability
law and for its main moments. Also, we determine the corresponding 95% highest
posterior density credibility sets. By way of illustration, we present some simulated
examples where we check the accuracy of both the estimates and their correspond-
ing 95% highest posterior density credibility sets.

Keywords: Branching models, Two-sex models, Controlled models, Nonparamet-
ric inference, Bayesian inference.

1 Introduction

Inside the general context of stochastic modelling, the branching process
theory provides mathematical models to describe the probabilistic evolution
of systems whose components (cells, particles, individuals in general) after
certain life period reproduce and die. It is an active research area of both
theoretical interest and applicability to such fields as biology, demography,
ecology, epidemiology, genetics, medicine, population dynamics, and physics.
Some classical monographs about this theory are Asmussen and Hering[2],
Athreya and Ney([3], Guttorp[8] and Harris[10]. From an applied point of view
one may cite the books by Jagers[12], Kimmel and Axelrod[13], Pakes[21]
and Haccou et al.[9] which include practical applications to cell kinetics, cell
biology, chemotherapy, gene amplification, human evolution, and molecular
biology.

In particular, with the purpose to model the probabilistic evolution of
populations where females and males coexist and form couples (femalemale),
several classes of discrete time two-sex branching models have been studied.
They include the bisexual Galton-Watson model (see Alsmeyer and Rosler[1],
Bruss[4], Daley|[5], Daley et al.[6]), models with immigration (see Gonzalez et
al.[7], Ma and Xing[15]), in varying or in random environments (see Molina
et al.[18], Ma and Molina[14]) and those models depending on the number
of couples in the population (see Molina et al.[17], Xing and Wang[22]). We
refer the reader to Hull[11] or Haccou et al.[9] for surveys of two-sex branching
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models. However, the range of processes studied is not large enough in order
to get an optimum modelling in many two-sex populations where a control
on the number of couples in the population is required. It can be stated
that significant efforts have been made regarding random control branching
models with asexual reproduction. Now similar efforts should be made to
develop models with a random control where reproduction is bisexual. We
consider a class of controlled two-sex models where, in each generation, a
random control on the number of couples that take part in the reproduction
(progenitor couples) introduced in Molina et al.[19].

The paper is organized as follows: In the Section 2, the controlled two-
sex model is described formally and interpreted intuitively. In Section 3,
considering that no assumptions are made about the functional form of the
underlying offspring distribution, we provide some results about the Bayesian
estimation concerning the offspring law and its main moments. We also
determine the corresponding 95% highest posterior density credibility sets.

2 The controlled two-sex model

The controlled two-sex branching process {(F,, M,)}n>1 is defined in the
following form:

Dz
(Fn+1a Mn+1) == Z(fn,iamn,i)v Zn+1 = LZn (Fn+17 Mn+1)7 n e Z+ (1)

=1

where the empty sum is considered to be (0,0) and Z* denotes the set of
nonnegative integers. The random vector (Fj,41, M, 1) represents the num-
ber of females and males in the (n 4 1)th generation. These females and
males form Z,i; couples. Initially, we assume that there are a positive
number ko of couples in the population, i.e. Zy = kg. The random vec-
tors {(fn,isMn.i) tn>0:>1 are nonnegative, independent and identically dis-
tributed. Intuitively, (fy;, My ;) represents the number of females and males
descending from the ith couple of the nth generation. If, for some positive
integer n and k € ZT, Z,, = k, then:

(a) Ly is a mating function. It is defined on R™ x RT and taking values in
R*, where RT is the set of nonnegative real numbers, and it is assumed
to be nondecreasing in each argument, integer-valued on the integers, and
such that, for x,y € R*, Ly(x,0) = Ly(0,y) = 0.

(b) ¢ is a nonnegative integer-valued random control variable. The role
of ¢ is to control the number of couples which will take part in the
reproduction process. In fact, if ¢ > k then ¢ — k new couples are
introduced in the population; if ¢ < k then k — ¢ couples leave the
population and consequently, they do not participate in the reproduction
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process; and no control is made if ¢ = k. We will assume that P(¢g =
0)=1.

It then follows that in addition to its theoretical interest, this class of
two-sex models also has clear practical implications, especially in population
dynamics. For certain sexually reproducing animal population, it is reason-
able to assume that the number of progenitor couples could be affected, in
each generation, by random factors as weather conditions, food supply, fer-
tility parameters, and so on. For example, in making policy decisions as
to whether to introduce or re-introduce certain animal species into an envi-
ronment, this class of models may provide appropriate mathematical models
with which to describe the probabilistic behaviour of the population. Indeed,
the motivation behind the class of models presented in 1 is the interest in
developing two-sex models for such phenomena. As particular case, it in-
cludes the two-sex models introduced by Daley[5] and by Molina et al.[17],
and generalizes to random control setting the model considered by Molina et
al.[20].

3 Nonparametric estimation

We now consider a controlled two-sex branching process such that no as-
sumption is made about the functional form of the underlying offspring dis-
tribution, so we consider a nonparametric setting. By simplicity, such a
distribution will be denoted as p = (pg; = P(fo1 = k,mo1=1): (k,1) €.5)
where the support S = {(k,l) € Z* x ZT : py; > 0} is a finite set.

Let be (,ul,,u2) = E[(f()’l,m()’l)] and (O’Z‘j)i’jzlyg = COU[(f()’l,m()’l)}, the
offspring mean vector and covariance matrix, respectively. We assume that
Oij < 00, i,j = 1,2.

We shall assume the observation of the entire family tree, up to the n—th
generation, namely {¢z,, (fi;j,mi;); i=0,...,n, j=1,...,¢z}. Let us
denote by

67,

Zi (k1) = Z L(pismi )=y (k1) €S
=1

the number of couples in the i-th generation giving rise to exactly k females
and [ males. It is clear that

Z; = Z Zi gy and  (Fipr, Miy) = Z CROVARTNE
(k,1)es (k,1)es

It is easy to verify that the likelihood function satisfies

Yo, (ko
(p) o H pk,z< ) (2)

(k,1)es

555



4 M. Molina et al.

where Y,, (1) = Z Z; (k1) represents the total number of couples in the first

n generations Wthh have produced exactly k females and [ males.
Considering (2), an appropriate conjugate class of prior distributions is
the Dirichlet family,
D H Tk 1—1 (3)

(k,1)eS

where 7 = (70 (k1) € 5), 7oy > 0, D7 = [l 1yes (1) (1) and
Te = X (ks Thi- We refer the reader to Mendoza and Gutierrez-Pefia[16]
where some comments about the convenience of this class of distributions
are given and some methods for deriving noninformative priors, including
Jeffrey’s rule, reference analysis and vague priors, are discussed.

Denoting by F;: = o ((fi,j,mij), ¢ =0,...,n; j=1,...,¢z) and taking
into account (2) and (3), we deduce that the posterior distribution is the

Dirichlet law,
ﬂ_(p|]_—* H 'Yk 1—1
(k les

with vector of parameters v = (v, : (k,1) € S) where v = 7o, 1 +Y,, (1)- In
particular, the marginal posterior distribution of p;; is a Beta law with pa-

n
rameters v and v, — Y1, where v, = Z(k Nes Vhi = Tx + > Z;. Assuming
’ i=0
squared error loss function, we obtain the Bayes estimator for py ,

N —1
et = Eprs | Fil =7ty = <Z Z; + 7'*> (Thg + Yo ) - (4)
i=0

Next result provides the Bayes estimators of the offspring mean vector and

the offspring covariance matrix.

Proposition 1. Given a controlled two-sex branching model, the Bayes es-
timators of p; and oy, 1,5 = 1,2, under squared error loss function and
assuming the class of conjugate prior distributions given in (3), are:

(i)
ﬁi = ’7;1 Z ki’Ykl,kzv i=1,2.

(k1,k2)€S
(i1)
Tij 27(1 n e Y Rk — YL kil Tk ke Yk
) (k1 ka2)€S (k1,ka),(11,12)€S
i,j=1,2.
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Proof.

(i) Using (4), we have for i = 1,2,

Gi=E Y kpaw | Fil = Y kiElpr | F
(k1,k2)eS (k1,k2)€ES
=7 Z iy ks -
(k‘l,kz)es

(ii)) Fori,j=1,2,

Gy =E| Y (ki—pi) (ki — 18Pk ks | Fip

(k1,k2)€S
= Y kikiElpe,x, | Fil = > kikiEp} 4, | 7
(k1,k2)€S (k1,k2)€ES

- Z kile[pkhkzpll,lz | F;]
(k1,k2)#(l1,12)

Using the fact that

E[pil,kz ‘ -7:;} = (’7*(’7* + 1))_17161,162 (’ykhk& + 1)

and

E[pk17k2pll7lz | ‘FT*L] = (’Y*(’y* + 1))71’-)%1,’62711,[27 (klka) 7é (l1a12)7
the proof is completed.

Using the posterior distribution 7 (6,62 | F,,) we can determine sets of
probable values of (67, 60s). The most common procedure is based on looking
at the points where the posterior density takes the highest values, namely
I(c) = {(61,02) : w(61,02 | F,) > c} where the constant ¢ is chosen such
that, given a credibility coefficient 1 — «,

/ 7T(91, 92 | fn)d01d92 =1—-aqa.
I(c)

We say that I(c) is a high posterior density (HPD) credibility set.

In particular, from the posterior marginal densities of y; and 05, 4,j = 1,2
we could derive HPD credibility sets. However, it is not easy to compute
the posterior densities for such parameters. In these cases, Monte Carlo
approximations can be calculated, by simulating a sufficiently large number
of values for (01, 63) according to the posterior density m (6,62 | F).
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Abstract- This article compares two techniques: Data
Envelopment Analysis (DEA) and Factor Analysis (FA)
to aggregate multiple inputs and outputs in the
evaluation of decision making units (DMU). Data
envelopment analysis (DEA), a popular linear
programming technique, is useful to rate comparatively
operational efficiency of DMUs based on their
deterministic or stochastic input—output data. Factor
analysis techniques, such as Principal Components
Analysis, have been proposed as data reduction and
classification technique, which can be applied to
evaluate of decision making units (DMUs). FA, as a
multivariate statistical method, combines new multiple
measures defined by inputs/outputs. Nonparametric
statistical tests are employed to validate the consistency
between the ranking obtained from DEA and FA. Also,
the results have been compared with PCA approach.
Results of numerical reveal that new approach shows a
consistency in ranking with DEA.

Keywords: Decision Making; Data Envelopment Analysis;
Factor Analysis, Principal Component Analysis.

I-  Introduction

This article proposes a Factor Analysis (FA) approach to
evaluate of decision making units (DMUs). In this method,
FA is used as a new approach to ranking of decision making
units and data reduction. Moreover, correlation between
rankings obtained by FA and DEA techniques is much
higher than what is gained from the PCA&DEA method,
which is introduce by Zhu [2].

The rest of this article is organized as follows. In Section 2,
a brief description of the DEA models used for ranking of
DMUs is presented. Section 3 gives the fundamental of FA
technique. The FA approach is developed in Section 4.
Numerical comparison of the proposed FA method versus
DEA and PCA procedures is presented in Section 5, using
several benchmark data to evaluate consistency of each
method. Finally, Section 6 concludes this research.
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II- Data Envelopment Analysis

Data envelopment analysis (DEA), is analytical tool which
first introduced by Charnes et al.[l], in 1978. It is the
performance measurement technique that applies to
evaluation the relative efficiency of decision-making units
(DMU's) in organization such as banks, dental services,
police, motor registries, hospitals etc.

Various models, used for ranking of DMUs, such as CCR
[1], BCC [3] and ADD [4] are applied. The standard DEA
method assigns an efficiency score less than one to
inefficient DMUs, from which a ranking can be derived.
However, efficient DMUs all have an efficiency of 1, so
that for these units no ranking can be given. Andersen and
Petersen (AP model) achieve a full ranking by undertaking
a DEA without assessing the DMU itself[5]. In fact, they
proposed the idea of modifying the envelopment LP
formulation so that the corresponding column of the DMU
being scored is removed from the coefficients matrix. Thus
we use the AP-model as a basis to rank the relative
efficiency of DMUs with unit efficiency, in order to
compare validity of other assessment techniques in this
paper. AP-model, (1), can be written as follows:

* .
J, =min w,

subject to

m

Z a;x, < x w,,

i=1

iek (1.
m

Ddoa.y, =y,

i=1

i#k

a, 20 i=1,.m

i
The program depends on evaluating the K™ unit; where
xk:[xlj;XZj: ...,x,,,j],and

Yielpyap -y, denote the nonnegative vector of input
and output values for DMU respectively. Hence, each JZ
lies between 0 and +o. Also, In model (1), a; is the Factor

weights.
However, the super-efficient methodology can give
“specialized” DMUs an excessively high ranking.




Consequently, in this paper we apply the Factor Analysis
(FA) to reduce data; indeed, we use this method to evaluate
and rank DMUs while minimizing loss of the information.

III- Factor Analysis (FA)

Factor Analysis is a statistical method that is based on the
correlation analysis of multi-variables. The main
applications of factor analytic techniques are: (1) to reduce
the number of variables and (2) to detect structure in the
relationships between variables, in order to classify
variables. Therefore, factor analysis is applied as a data
reduction or structure detection method.

It can be used as a method to data reduction. R. Nadimi, F.
Jolai[12] applied combination of factor analysis and data
envelopment analysis to data reduction in decision making
units. They used factor analysis as a method to lessen the
number of data. In follow, data envelopment analysis was
used with combination of factor analysis to data ranking.
But in this paper factor analysis only is used as a new
method in ranking of data.

There are two major types of FA: exploratory and
confirmatory. In exploratory FA, one seeks to describe and
summarize data by grouping together variables that are
correlated. The variables themselves may or may not have
been chosen with potential underlying processes in mind.
Exploratory FA is usually performed in the early stages of
research, when it provides a tool for consolidating variables
and for generating hypotheses about underlying processes.
Confirmatory FA is a much more sophisticated technique
used in the advanced stages of the research process to test a
theory about latent processes. Variables are carefully and
specifically chosen to reveal underlying processes [6].

To explain the method, a few terms are defined. The first
terms involve correlation matrices. The correlation matrix
produced by the observed variables is called the observed
correlation matrix. The correlation matrix produced from
factors is called the reproduced correlation matrix. The
difference between observed and reproduced correlation
matrices is called residual correlation matrix. In a good
FA, correlations in the residual matrix are small, indicating
a close fit between the observed and reproduced matrices
[6]. Then, factors are formed by grouping the variables that
have higher correlation with each other.

Let dg,x;) be a random vector with a mean of u and a
covariance matrix named ZX,.,., where d; specifies
efficiency or an overall performance index of the /™ DMU.
Then a
k-factor model holds for d, if it can be written in the
following form:

d=Hf+u+p 2),
where H, . is a matrix of constants and f(;«i) and u,x, are
random vectors. The elements of f are called common
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factors and the elements of u are specific or unique factors.
In this study we shall suppose that:
E(f)=0,Cov(f)=1

E(u)=0, Cov(u,u;) = 0; i#
Cov(f,u)=0

Thus, if (2) holds, the covariance matrix of d can be split
into two parts, as follows:

S=HH"+ & 4),
where H H " is called the communality and represents the
variance of ¢; which is shared with the other variables via
the common factors and @=Cov(u) is called the specific or
unique variance and is due to the unique factors u. This
matrix explains the variability in each g; that is not shared
with the other variables. The main goal of FA is to apply f
instead of d for assessing DMUs. To do this, mainly there
are three main stages in a typical FA technique [7]:

Q).

1. Initial solution: Variables, as indexes of DMU
performance measures, are selected and an inter-correlation
matrix is generated. An inter-correlation matrix is a pXp
array of the correlation coefficients of p variables with each
other. Usually, each variable is standardized by a certain
formula, e.g. to have a mean of 0.0 and a standard deviation
of 1.0. When the degree of correlation between the variables
is weak, it is not feasible for these variables to have a
common factor, and a correlation between these variables is
not studied. Kaiser—Meyer—Olkin (KMO) and Bartlett’s
tests of sphericity (BTS) are then applied to the studied
variables in order to validate if the remaining variables are
factorable.

2. Extracting the factors: An appropriate number of
components (Factors) are extracted from the inter-
correlation matrix based on the initial solution. Due to the
standardization method, there should be a certain rule to
extract the selected effective factors.

3. Rotating the factors: Sometimes one or more variables
may load about the same on more than one factor, making
the interpretation of the factors ambiguous. Thus, factors are
rotated in order to clarify the relationship between the
variables and the factors. While various methods can be
used for factor rotation, the Varimax method is the most
commonly used one.

Let’s summarize and formulize the above steps as follows.
In this study, we skip the rotation step.

First, the correlation matrix, namely R, is computed on the
basis of data due to the standardized variables, dj;:
R=Corr(D)=D'D

where, D is an nx p matrix of p variables for n DMU’s.
This matrix can be decomposed to a product of three
matrices:

R=vLV" (6),
where, V is the pxp matrix of eigenvectors and
L =Diag([41, ..., 4,]) is a diagonal matrix of the
eigenvalues, assorted descendingly.
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At the second step, different criteria may be applied to
extract the most important factors. Since sum of the first
eigenvalues divided by the sum of all the eigenvalues,
(Mt 0 (Mt +A,), represents the
“proportion of total variation” explained by the first r
factor components, we select  principal components as the
factors, if (Aj+Aot...+ A)/( Ai+hot...+A,) > 90%. Another
criterion is to cut the matrix L from a point that the ratio of
A;/ A1 1s maximized. However, r eigenvalues are defined as
dominant eigenvalues. The dominant eigenvalues are saved
and the other are skipped. To explain more, suppose L and
V are decomposed as follows:

L_{Ll 0

0 Lj

where L, (r<r) and L, are diagonal matrixes. Consequently,
the eigenvectors V" will be separated into two parts too:
V=[V,V] (®),
Similarly, V; and V, are pxr and pXx(p-r) matrices,
respectively. Suppose (6) is rewritten as follows:

R=(L)WLv™) )

Then, replacing L with the form given by (7), the first
partV,/L, 1is called the Factor Loading matrix and

denoted by A (,.,. Equation (9) is frequently called the
fundamental equation for FA. It represents the assertion that
the correlation matrix is a product of the factor loading
matrix, 4, and its transpose [6]. It can be shown that an
estimate of the unique or specific variance matrix, @, in (4)
is:

B=1-44"

where 1, is the identity matrix.
So far our study of the factor model has been concerned
with the way in which the observed variables are functions
of the (unknown) factors, f. Instead, factor scores can be
estimated by the following pseudo-inverse method:
S'T=4"B'4)'4A" B! (11),
F=DS (12),
where F is a nxr matrix, each row of which corresponds to
a DMU. The estimate in (12) is known as Bartlett’s factor
score, and § is called the factor score coefficient matrix.

In this paper, we use the FA technique to evaluate DMUs by
reducing inputs and outputs whilst minimizing the loss of
information. This will be introduced in the next section.

(D,

(10),

IV- New approach: FA method

In here, ratios of individual output to individual input is
used to describe of proposed approach.  Thus this
proportion is applied to evaluate and rank DMUs according
to their performances which are given as follows:

J — L A .
d; _y;y'/xl'j i=l, omyr=1, .., s,

(13),
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Jj=1,...n

for each DMU;. Where the d; gives the ratio between

every output and every input. Obviously, the bigger the d’

i
the better the performance of DMU; in terms of the A

output and the i input [8].
Now let d] =d

ir

with, e.g. k=1 corresponds to =1, r=1

and £=2 corresponds to i=1, »=2, etc., where k=1,..., p' ;

p'=mxs; for example: d, = / / ,
Xy

We need to find some weights that combine those p'
individual ratios of d ,j for DMU;. Consider the following

dp'] nxp' s

where each row represents p' individual ratios of d ,f for

nxp' data matrix, composed by d,'{/ st D'=1[d,, ...,

each DMU and each column represents a specific

output/input ratio, i.e. d, =[d1,...,d,:']T. In a modified

approach, proposed by Premachandra [9], D" is re-defined
as an augmented matrix, the ending column of which is
equivalent to the sum of the elements in the first p' columns
of the original matrix:

p' .
dly=>dl j=l..n
k=1

The new added variable, is supposed to take into account
the overall performance of each DMU with respect to all the

(14).

variables d lﬁ As a normalizing skill, each column is then

divided by its least element, thus a new matrix, D ., ;
p=p'+1, is generated which will be processed from now on.
In this paper, the factor analysis is employed to find out new
independent measures which are respectively different
linear combinations of d,, ..., d,. In fact, we apply the
estimation given by (12) to obtain factor scores, thus, the
FA process of D is carried out as follows:

Step 1: Calculate the sample correlation matrix, given by
(5), to obtain eigenvalues and eigenvectors (solutions to |R
—A1,|=0 where 1,is a pxp identity matrix), as introduced
in (6).

Step 2: Considering 4> 4,>

..> A, as the sorted

eigenvalues, compute the following weightings, which
determine share of each factor in the model:

A, .
w, = ;i=1,..,p

2 (15).

2 A
k=1

Each weighting actually determines the share of each
eigenvalue out of a whole. This approach uses the same
method of Zhu [3] to obtain sign of the weightings w;, i.e. if



sum of the corresponding eigenvector elements is positive,
then w; is considered positive, otherwise it is negative.

Step 3: Apply FA technique on D to obtain S" and then F,
as defined by (11) and (14).

Step 4: Select the factor components by determination of
the dominant eigenvalues according to one of the criteria
proposed in Section 3.

Step 5: Compute:

zzzrlwifi
)

where f; is the i column of the matrix F in (14) and r is the
number of the dominant eigenvalues. The value of z gives a
combined measure to evaluate and rank performance of
DMUs.

(16),

V- Numerical results

The proposed method is applied to several sets of sample
data, the numerical results of which are illustrated and
compared to other methods in this section.

Examplel: In this example, we apply data set used by
Wong et al. [11], to compare efficiencies of seven
university departments. Three inputs and three outputs are
defined as follows, data of which is listed in Table 1.

x;: Number of academic staff

x,: Academic staff salaries

x3: Support of undergraduate students

y1: Number of undergraduate students
v, Number of postgraduate students

»3: Number of research papers published

[11]: Data set used by Wong et al.1Table

DMU X X X3 Y1 Y2 V3
dmul 12 400 20 60 35 17
dmu2 19 750 70 139 41 40
dmu3 42 1500 70 225 68 75
dmu4 15 600 100 90 12 17
dmu5 45 2000 250 253 145 130
dmu6 19 730 50 132 45 45
dmu7 41 2350 600 305 159 97

The same procedure of section 4 is followed. The matrix D
is generated by 10 variables extracted out of data in Table 1,
and four dominant eigenvectors are selected. Table 2
illustrates eigen-analysis applied for PCA and FA, and
Table 3 includes the results of ranking.
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: Eigen-analysis for FA and PCA 2Table

approaches
Eigen values 4.15 3.09 1.73 0.85
Shj;‘fze"sf('fvis’en 0.41 0.31 0.17 -0.08
Eigen vector |2 V) V3 V4
Vil -0.08 0.33 0.53 -0.40
Vio 0.11 -0.23 0.63 -0.26
Vis 0.33 -0.41 0.09 -0.02
Via 0.24 0.43 -0.25 -0.28
Vis 0.39 0.20 -0.29 -0.29
Vie 0.38 -0.28 -0.24 -0.23

In this example the correlation between results obtained by
PCA (Zhu) and DEA is 0.321, while correlation between
DEA&PCA (PM) is 0.678. However, the new approach of
FA riches to a higher correlation with the DEA, that is 0.75,
due to the scores given to the dmu5 and dmu6. This
example shows that the FA approach can lead to better
results, in the sense of DEA ranking, compared to the both
PCA approaches proposed by Zhu and Premachandra.

Example 2: As the last case, we compared the PCA (Zhu),
PCA (PM) and FA approaches on the base of the DEA
approach as performed in Kim et al. [10] for 33 telephone
offices in S. Korea ( See Table 4 for more information).
Corresponding correlations which are given in Table 5, are
0.63, 0.75, and 0.77 respectively. While all the methods are
statistically significant at 1% level, the new method based
on FA shows better capability for ranking.

VI- CONCLUSION

The current article presents alternative approach to rank and
evaluate DMUs which have multiple outputs and multiple
inputs. The DEA -non-statistical method— uses linear
programming technique to obtain a ratio between weighted
outputs and weighted inputs. The new approach proposed in
this paper is applied to evaluate efficiencies and rank
DMUs. Factor analysis is a multivariate statistical method
that uses information obtained from eignvalues to reduce
data. Results obtained by numerical experiments employed,
show that there is a high correlation between DEA and FA
methods, even higher than what obtained by the PCA
methods. Thus, we can use FA to evaluate efficiency and
ranking DMUs instead of DEA with significance and
minimum lose of information.




: Efficiencies and rankings obtained by the three methods3Table

oMU DEA PCA(Zhu) PCA(PM) FA(New method)
Score Rank Score Rank Score Rank Score Rank
dmul 1.829615 1 0.51261 2 4.13838 1 2.011187 1
dmu2 1.048895 6 0.288772 4 3.315666 5 1.712316 5
dmu3 1.198308 4 0.011661 5 3.25405 6 1.559566 6
dmu4 0.819737 7 -1.9633 7 1.616393 7 0.895427 7
dmu5 1.219992 3 0.456634 3 3.801057 3 1.943119 2
dmu6 1.190642 5 0.918423 1 3.846452 2 1.917534 3
dmu? 1.266094 2 -0.2248 6 3.47953 4 1.883721 4

(1]

(2]

(4]

(7]
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Table 4: Data for Telephone Office

DMU X X, X3 Y, Y, Y; Y, Ys
dmul 239 7.03 158 47.1 16.67 34 28 2
dmu2 261 3.94 163 37.5 14.11 20 26 3
dmu3 170 2.1 90 20.7 6.8 12.6 19 3
dmu4 290 451 201 41.8 11.07 6.27 23 4
dmu5 200 3.99 140 334 9.81 6.49 30 2
dmu6 283 4.65 214 42.4 11.34 5.16 21 4
dmu? 286 6.54 197 47 14.62 13 9 2
dmu8 375 6.22 314 55.5 16.39 7.31 14 1
dmu9 301 4.82 257 49.2 16.15 6.33 8 3
dmul0 333 6.87 235 47.1 13.86 6.51 6 2
dmull 346 6.46 244 49.4 15.88 8.87 18 2
dmul2 175 2.06 112 20.4 4.95 1.67 32 5
dmul3 217 4.11 131 29.4 11.39 438 33 2
dmul4 441 7.71 214 61.2 25.59 33 16 3
dmul5 204 3.64 163 32.3 9.57 3.65 15 4
dmulé6 216 2.24 154 32.8 11.46 9.02 25 2
dmul? 347 5.65 301 59 17.82 8.19 29 1
dmul8 288 4.66 212 423 14.52 7.33 24 4
dmul9 185 3.37 178 33 9.46 291 7 2
dmu20 242 5.12 270 65.1 24.57 20.7 17 1
dmu21 234 2.52 126 31.6 8.55 7.27 27 2
dmu22 204 4.24 174 32.5 11.15 2.95 22 3
dmu23 356 7.95 299 66 22.25 14.9 13 2
dmu24 292 4.52 236 50 14.77 6.35 12 3
dmu25 141 5.21 63 21.5 9.76 16.3 11 2
dmu26 220 6.09 179 47.9 17.25 22.1 31 2
dmu27 298 3.44 225 42.4 11.14 4.25 4 2
dmu28 261 4.3 213 41.7 11.13 4.68 20 5
dmu29 216 3.86 156 31.6 11.89 10.5 3 3
dmu30 171 2.45 150 24.1 9.08 2.6 10 5
dmu3l 123 1.72 61 12 4.78 2.95 1
dmu32 89 0.88 42 6.4 3.18 1.48 2 5
dmu33 109 1.35 57 10.6 3.43 2 4
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: Efficiencies and rankings obtained by the three methodsSTable

oMU DEA PCA(Zhu) PCA(PM) FA(New method)
Score Rank Score Rank Score Rank Score Rank

dmul 1.00000 3 2.11492 1 11.48890 1 0.67729 2
dmu2 1.00000 13 1.34052 7 9.39700 5 0.49045

dmu3 1.00000 11 1.48560 5| 1113670 2 0.75307 1
dmu4 0.86818 20 -0.51486 20 5.25150 17 -0.13271 16
dmu5 0.99367 18 0.49112 10 7.19350 11 0.19885 12
dmu6 0.84137 24 -0.69660 24 | 474490 22 -0.22910 21
dmu7 0.86995 29 -0.45802 18 4.52720 23 -0.27669 25
dmu3 0.72081 33 -1.04620 29 2.99440 31 -0.59070 32
dmu9 0.82025 26 -0.71586 25 3.44640 29 -0.38017 28
dmul0 0.75450 32 -1.33681 32 2.69360 33 -0.62922 33
dmull 0.77697 31 -0.72447 26 4.01270 27 -0.40117 29
dmul2 1.00000 1 0.22024 12 9.27820 6 0.47063 8
dmul3 1.00000 12 0.46137 11 7.01790 13 0.15976 13
dmul4 1.00000 2 0.99676 8 7.62280 10 0.28591 10
dmul5 0.87213 23 -0.62439 21 4.96000 20 -0.16108 19
dmul6é 1.00000 9 1.47139 6 8.31010 8 0.54230 4
dmul? 0.83311 -0.20785 14 4.50530 25 -0.25663 24
dmul3 0.84828 17 -0.18136 13 5.56040 14 -0.08199 14
dmul9 0.79771 30 -0.93114 28 3.23510 30 -0.44558 30
dmu20 1.00000 4 170960 4 7.08100 12 0.33851 9
dmu21 1.00000 16 0.89027 7.86410 9 0.47226

dmu22 0.84563 27 -0.43421 17 5.08270 18 -0.21236 20
dmu23 0.85252 14 -0.28974 15 4.25360 26 -0.29092 26
dmu24 0.89417 21 -0.47861 19 3.96960 28 -0.23178 23
dmu25 1.00000 10 178330 2| 1107270 3 0.67505 3
dmu26 1.00000 8 1.71207 9.54430 4 0.50040 5
dmu27 0.86546 22 -1.07657 30 2.70010 32 -0.48153 31
dmu28 0.88027 6 -0.63001 22 5.04150 19 -0.14681 17
dmu29 0.83361 28 -0.42143 16 4.92900 21 -0.23122 22
dmu30 0.91892 15 -0.63932 23 5.28470 16 -0.11320 15
dmu31 0.77394 25 -0.73120 27 451310 24 -0.35090 27
dmu32 1.00000 5 -1.11510 31 8.52320 7 0.23242 11
dmu33 0.93490 19 -1.42338 33 5.55320 15 -0.15314 18
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Abstract- Possibility of equality between two or more
fuzzy numbers is a popular method to consider their
degree of fitness. Possibility of equality may be applied
to establish the constraints of fuzzy linear regression in
which conjunction problem is under consideration. In
this study, a new concept of the possibility of equality,
that creates new restrictions, will be introduced and
applied in fuzzy regression model, and then a more
precise method will be represented to calculate the
amount of error. To compare the performance of the
proposed approach with the other methods, numerical
examples are given. Total amount of error is calculated
to confirm the efficiency of the proposed approach.

Keywords: Fuzzy linear regression; Possibility of equality;
Fuzzy number.

I- INTRODUCTION

Regression analysis is a statistical method applied to
consider the relationship between the dependent and
independent variables. Fuzzy regression model is an
extension of common regression in which one of the input
and output data or both of them are regarded as fuzzy
numbers. Probability distribution function is used to
estimate parameters in classical regression and possibility
theory which was introduced by[26] is applied to estimate
fuzzy regression parameters.

Fuzzy linear regression was introduced by Tanaka et al.[25]
in which the input and output data were crisp and fuzzy,
respectively. It has been successfully implemented in
several fields of forecasting ([21],[17][18], [14],[2] ,[13]
,[10] ,[16] ,[3],[201,[19],[24]). In general, fuzzy regression
models are classified into two classes:

1) The possibilistic model: Minimize the fuzziness of the
model by minimizing the total spreads of its fuzzy
coefficients, subject to covering the observed data by the
estimated data of the model ([25], [23],[22]).

2) The least-squares model: Minimize the distance between
estimated output of the model and the observed amount,
based on their modes and spreads ([6], [11],[8],[4],[17]).
Fuzzy Number: Based on Dubois and Prade[7] 4 is
defined a fuzzy number which satisfies the following
criteria:

First: normality, 3xeR such that u;(x)=1

Second: convexity, Vx;,x,eR, Vhe[0;1]
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R maChxy +(1-h)x)>min(u i(x1), i(x2))

A = (¢, a, cp)rr is a LR-type fuzzy number where a, c¢; and
cp are the center, left spread and right spread of fuzzy
number, respectively (c;& cz >0 ). When ¢;=czr=c, we have
a symmetric triangular fuzzy number. Thus, 4 = (4, ¢); is a
symmetric triangular fuzzy number if:

(=1l )1,

c
In this paper symmetric triangular fuzzy numbers is only
considered for simplicity.

a—c<x<a+c

Problem_Definition: In order to define the possibility of
equality between two fuzzy numbers, (Dubois and Prade
[7]) proposed the following index:

Poss(4; = 4,) = sup min{u; (x), 45 ()}

xeR!

2)

where Poss is short for Possibility.

Finding out a suitable mathematical model along with the
best fitting coefficients of the model from the observed data
is one of the fuzzy regression analysis goals.

The Min, Max and Conjunction problems are three types of
possiblistic linear regression analysis to gain the mentioned
aim that dealt with by Tanaka et al.[24].

Conjunction problem is a popular method that uses the
concept of fuzzy number inclusion to find the best fitting
coefficients. Some papers evolve conjunction problem's
constraints by the definition of the possibility equality of
two fuzzy numbers (for more information see Shakouri G.
and Nadimi [17],[12]). Besides that, Shakouri G. and
Nadimi[17] introduced Non-equality possibility to designed
a new objective function.

The scope of this paper is limited to the conjunction
problem. It deals with some problems about the possibility
equality index. Afterward, a new possibility equality index
is presented to encounter the problems and to establish new
constraints in fuzzy linear regression.

Figure 1 is considered based on the mentioned aim. A is
supposed a fuzzy number in a set of fuzzy number
observations. Different objective functions will lead to
different estimated parameters in which the above index is
considered as a criterion to find out the best estimated
coefficients. For instance, 4, and A5 can be two optional
estimated fuzzy numbers for 4,. The possibility equality
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Poss(A, =4,)
= Poss(A~ 1 :A~3)

index is the same for both 4,& A, and 4,& A; but the
common area is different for them. Meanwhile the spread of
A, is wider than A;.Therefore estimating fuzzy linear
regression parameters is caused a little deviation to actual
amount of parameters considering the mentioned index. It
drives us out of the fuzzy regression analysis aim. Proposed
approach is stated to solve this problem in section 4.

u
A

Difference Area between two Poss Indexes

Figure 1: Equality Measure of three fuzzy numbers

This study introduces a new possibility equality index to
establish new constraints in fuzzy regression analysis with
an optimal confidence level, named /% —level, in which
conjunction problem is under consideration. Besides that a
more precise method is described to calculate the amount of
error calculation.

II- FUZZY LINEAR REGRESSION MODELS

Fuzzy Linear Regression (FLR) model was introduced
initially by Tanaka et al. (1982) as:

Y'i=A4,X,+AX, +..+4,X, = AX, )

Where ¥, ,i=1,...,m, are the estimated data, Iéf,:(a,, )L
j=0,1, ..., n are the set of symmetric fuzzy coefficients, and
X = Xo, Xitye.., X ]T are the vector of independent
variables.

The extension principle ([27]) plays basic role in the fuzzy
set theory. It provides a fundamental for all manipulations
on fuzzy sets. By applying it for the fuzzy linear regression
model, the membership function of ¥; can be defined as:
)= max ) min sy (o)) @
According to the extension principle, the optimization
process is formulated as follows:
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min Z(h)zizn:cj‘)([j

i=1 j=0

subject to

ia.ini +‘L71(h)‘ iC/‘Xﬁ
j=0 Jj=0

<y =L

Ya X, —|L'h)| Y elx,
j=0 j=0
¢; ZO,aj e R j=0,1,..,n

Where Y=(y,e;) i=1,2,...m  are the fuzzy output
observations. |L(k)| is supposed to be equal with
IL(h)|=1—h; 0 <h <1, provided that the coefficients to be
triangular fuzzy numbers. The role of A here is like a
confidence level controller. In fact, it is close to zero in
which more risk isn't acceptable and vice versa, it goes to
one when the problem is considered at an optimistic point of
view. Later, restriction, ¢|Xj| > 0; i=1, ..., m, (where ¢ = [c,,
C1,..., ¢;]) was substituted instead of ¢ >0 by (Change and
Lee, 1994b), where m is the number of observations
(Change and Lee [5]).

III- THE NEW APPROACH

A small change in constrictions regarding to new definition
of the possibility of equality is taken into account here.
Introducing new definition about the possibility equality
index brings about some variation in constrains, especially
the influence of %-level on the fuzzy regression model.

The conjunction problem, (6), guarantees that there will be
always an overlap between the given outputs, ¥;, and the
estimated fuzzy numbers, Y.

[V, N[Y,], 20 ©)

A possibility of equality definition is given in follow based
on Problem Definition which was described above, to
identify more precise estimated parameters with
establishing new constraints in fuzzy linear regression
models. For this reason the centers and spreads of two fuzzy
numbers are regarded simultaneously.

Proposed Definition:

la, —a|+|c, — ¢

Poss (Al = Az)z 1-
ey + ¢ +]e, — ¢l

Where A,=(aj,c;) and A,=(a»,c;) are two symmetric

triangular fuzzy numbers.

According to proposed definition, possibility of equality

between two fuzzy numbers is one, if both of the following

conditions are to be correct at the same time.
(i): aX; =y

>y, +[ L (W) €y i=1.2,.m

e,i=12,.,m

(6))



(ii): elX; | = e,
Where aX; and c|X; | are the center and spread of the
estimated symmetric triangular fuzzy numbers, respectively
(Y'=(aX; , ¢/X; |)). The spreads of two fuzzy numbers are
regarded as the criteria to compare them in which the first
condition is right but the second is not. So that increasing of
estimated spread, c|X;|, with keeping constant of common
area between two fuzzy numbers, causes to lessen the
amount of possibility of equality, whereas this issue isn't
seen in the possibility of equality index which has been
introduce by (Dubois and Prade[7]). In other position,
distance between the centers of two fuzzy numbers will be
important factor when the spread of estimated data is to be
equal with the spread of the output observation. Moreover,
the maximum distance between aX; and y; (the centers of
two fuzzy numbers) in which the Conjunction problem is
applying, equals to (c|X; | + e;). Thus, it guarantees that the
numerator of fraction in proposed definition is less than its
denominator and proposed index is ever less than or equal
to one.

Lemma 1: with respect to proposed definition,
h, = Poss (17; = Z*)Z h,i=1,.,m,if and only if

ZaX -z (h)\)Zc\

yvi+e, i=12..m

Yax, -3 x| < -1-2r e, i=12.m
) =0
Yax, =Y lx,| -2 )z v -e, i=120m
=0 =0
Sax,+Ye|x,| 2y 1= e, i=120m
=0 )

where i = min{hy, hy,...,hny}.
Proof:

@ X, |+l el
|cT|X|+e|+|cT|X| |
|aTXi _yi| +|CT|‘)(1'| ¢

poss(¥,=¥)=1~

_|cT|Xi|+e,. cT|Xi|—e,. =h
TXi — Vit T‘)(i & ~
R rAr e RILREC
0 X, — | +["|X |~ <[ (] || X |+ e +[e" x|,
" X, —y|+|c"|X] e, (i | (h)|)g 12 (R)||c"|x| +e

Last equation is divided into four cases which are listed as
follows:

a'X, 2y, X |ze, =a’ X, X -2 )<y, ve,
a’X, >y, <o, =a'X,~|X|<y, (-2 h))e,
a'X, <y, L C|X|2e, =a X, X [1-2L 0))2 v, e,
a'X, <y, ,c|X|<e, =a'X +c (-2 ))e,

Objective Function: To achieve best objective function, it
is necessary to consider the distance between centers,
spreads and /-level, all together in order to get more reliable
results. Shakouri G. and Nadimi [17] proposed an objective
function based on Non-equality possibility index with
considering the mentioned factors. It is applied here, which
is given as follows:

min Y(la X; + L (h) ¢ |X|-
c|Xi| —yi+ L (Wed)

Based on (12) and Lemma 1, the optimization problem is
summarized as follows:

_(yi

min i‘aTX‘. + L' (0" X = (v, + L' (h)e,| +|a” X, ~ L' (n)e"| X
i=l

—L'(h) e +|a X;— L™ (h)

s.t.

Za,X,ﬁ(l 2| (h)\)Zc X,|<yte, i=12..m

Za‘ ij Zc/')(ifgyi_(l_z‘ . )ei, i=12,..m
j=0

(7)
(-2l )2, e,

Z: i ZC/X:'/'
Zl U+ZC

hSl,
¢ 1X,]>0, a,ceR and c#0

y+ =2 e,

ij

Kim and Bishu [9]) proposed a criterion to evaluate fuzzy
regression result, it is defined by the following index:

D (14)
[ s Timay’
Y

i

E, =

where D is difference between the two observed and
estimated membership functions, which is obtained as
follows:

D= s us, V() - V)|,
Yoi i

where S?_* and S}? are the supports of observed value, Y,

and estimated value, ¥ *,-, respectively.

®)
(€))
(10)
(In

-L (h)el]



But there are some problems in this criterion, which are
described as follows:

Denominator of (14) is an observed value which is
constant. It can be estimated with different fuzzy numbers.
For instance, Figure 2 shows three fuzzy numbers, that A, is
an observed value, which has to be estimated. 4, and 4 can
be dealt with as two options for the estimation of 4. As you
can see, A, and A4; have common areas with 4, but the
spread of A, is wider than A;, while there is a little
difference in the intersection area. According to mentioned
criteria both estimated fuzzy numbers, 4, and 45, may be
assumed suitable for the observed fuzzy number,4;, with
regard to some amount of error. Whereas to calculate the
amount of error, not only it is required to consider the area
of common region, but also it is necessary to take into
account the unshared area, too. With regard to Kim and
Bishu's criteria, the total amount of error for 4,& 4, to 4,&
Ay isn't greater because there is no difference in their
common area.

u
A

Difference in common area

Figure 3: Compare Measure of three fuzzy numbers

To solve this problem which rises from the constant value
of denominator in E, it is necessary to consider estimated
and observed membership functions, together in the
denominator of E.

Figure 4: Concept of Union and Intersection in fuzzy numbers

So union and intersection concept (as shown in Figure 4) is
applied to compare and evaluate two fuzzy numbers
equality as follows: (for more information, see [26], [27])

min fu. (v), 1y (v);

Ei=1- max {,Uy*‘ ()’)’ﬂf,(y)}

i

(16)

By adding the union concept in the denominator of (16) the
abovementioned problem can be solved. The numerical
examples will confirm the improvement of the model.

IV- NUMERICAL EXAMPLE

Four examples are considered to evaluate the new approach
and to compare them with other methods. Tanaka’s method
(TM) (Tanaka et al.[24]), Savic and Pedrycz method (SP)
(Savic and Pedrycz [15]), Kim and Bishu method (KB)
(Kim and Bishu [9]), Modarres Approach (MA) (Modarres
et al. [12]), Shakouri and Nadimi method (NA) (Shakouri
G. and Nadimi[17]) are chosen to evaluate and compare
with the New Approach (NAI).

Example 1. Tanaka's data (Tanaka et al.[24]), shown in
Table 1, is used as the first example. Applying NA! to these
data, the following fuzzy regression model is obtained:

~

Y =(5.209, 4.962), + (1.558, -0.512), x , h =0.535

where the fuzzy coefficients are given according to the
format of /fj:(aj, ¢;)L. Corresponding errors of this method is
also given in the same table, where it is compared to the
other methods. It is demonstrated that the total error of NAJ
is 2.469, which is the least as compared to all other
methods, which shows better performance.

Table 1: Original Data and the Estimation Errors for Example 1
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Errors in estimation

I | x; i )

™ SP KB MA NA NAIL

1 |1 (8,1.8),, 0.745 0.691 0.735 | 0.780 | 0.746 0.699

2 |2 (6.4,2.2), 0.640 0.687 0.827 | 0.780 | 0.804 0.692

313 (9.5,2.6), 0.431 0.467 0.369 | 0.205 | 0.259 0.322

4 | 4] (13.52.0), 0.519 0.605 0.729 | 0.782 | 0.804 0.756

5 (13.0,2.4), 0.569 0.512 0.328 | 0.091 | 0.000 0.000

Total errors 2.905 2.962 2988 | 2.962 | 2.614 2.469

Table 2: Data for Example 2
Inside control Outside control
Response time room room Education
experience experience

Team 1 (5.83,3.56), 2.0 0.0 15.25
Team 2 (0.85, 0.52), 0.0 5.0 14.13
Team 3 (13.93,8.5), 1.13 1.5 14.13
Team 4 4,244), 2.0 1.25 13.63
Team 5 (1.65,1.01), 2.19 3.75 14.75
Team 6 (1.58,0.96),, 0.25 3.5 13.75
Team 7 (8.18,4.99),, 0.75 5.25 15.25
Team 8 (1.85,1.13), 4.25 2.0 13.5

Table 3: Comparison between Estimation Errors for Example 2

Errors in estimation
Team Number

™ SP KB MA NA NAL

Team 1 0.84 0.82 0.76 0.87 0.58 0.00
Team 2 0.99 0.99 1.00 0.79 0.34 0.19
Team 3 0.26 0.57 0.92 0.91 1.00 1.00
Team 4 0.92 0.81 0.44 0.43 0.36 0.33
Team 5 0.93 0.95 0.92 0.83 0.93 0.55
Team 6 0.98 0.96 0.97 0.83 0.03 0.17
Team 7 0.60 0.63 0.84 0.92 1.00 1.00
Team 8 0.93 0.87 0.72 0.75 0.00 0.00
Total errors 6.45 6.61 6.56 6.34 4.25 3.23

following fuzzy regression model is obtained by applying
Example 2. Kim and Bihu (Kim and Bishu [9]) applied data NAI approach to the data given in Table 2:
relative to the nuclear power plant control room crew. The

573



Y = (10499, 9.425) , — (0.192, 0.399) , x, — (0.816,
0.421); x,+ (1.096, 0.857) ; x3

Which 4 = 0.0010 is the optimum value. The error for each
sample output and the total error are obtained by (16) and
illustrated in Table 3.

The results show that the proposed method, NAI, has
considerably reduced the total error in comparison with
other methods.

Example 3. Shakouri and Nadimi [17] considered an
example to compare their approach with other methods
based on the fuzzy regression for which the fuzzy
parameters were available, as well as the inputs. The
example is given as:

Y: (2, 1)L + (3, OS)L X
where:

Ao =(ap, c)) 1= (2,1, A1=(a1,¢1)1=3,0.5)

Therein the fuzzy regression model is regarded in diverse
way. In brief, they presupposed that fuzzy regression model
is available and then they estimated the parameters of the
model to calculate error terms and accuracy of their
approach. Here the results of proposed approach are
compared with other methods. The fuzzy outputs, however,
can be calculated by the given model. NA/ approach is used
to compare with the NA and MA methods. Results for ¥
= (y, e), are given in Table 4 based on corresponding x.

)

Table 4: Crisp inputs and the corresponding fuzzy
outputs for model (17)

X y E
1 5 1.5
2 8 2
3 11 2.5
4 14 3
5 17 3.5

Three methods are applied to estimate the fuzzy parameters
and the results of each approach are summarized in the
following table:

Table 5 : Fuzzy Parameters Estimates by MA, NA
and NA/

Original Parameters

Parameters estimated
by MA

Parameters estimated
by NA

Parameters estimated
by NAI

(2.000000,
1.000000) ,

(1.998005,
1.840016) ,,

(2.000000,
1.000111)

(2.000000,
1.000000) ,

(3.000000,
0.500000)

(3.000000,
0.160000) ,,

(3.000000,
0.500089) ,,

(3.000000,
0.500000)

Here, MA method is calculated with a tolerance of & =
0.000001 to find the optimal A-level by iteration Modarres
et al. (2005). In this example the amount of & for MA, NA
and NAI, is equal to 0.9985722, 0.8623157 and 0.2512473,
respectively. Table 5 shows that the proposed approach is
closer to the real data as compared to MA. There are

however a few differences between

NA and NAl

approaches. C, and c; are two cases with differences of
0.000111 and 0.000089, respectively. Based on the results
which were demonstrated in Table 5, NA/ approach is more

precise than NA method.

Example 4. In this example MA method is left out, NA and
NAI results are taken into account and compared as follows.
Tanaka's data, (Tanaka [22]) which has been shown in
Table 6, is considered here to evaluate and compare the
NAI approach with NA method.

Table 6: crisp input and fuzzy output with fuzzy

error

X1 X X3 Y e
3 5 9 96 42
14 8 3 120 47
7 1 4 52 33
11 7 3 106 45
7 12 15 189 79
8 15 10 194 65
3 9 6 107 42
12 15 11 216 78
10 5 8 108 52
9 7 4 103 44

Herein, at first, fuzzy linear regression model is considered
with the assumption of A, afterwards it is dropped off the
model. Equations (18) and (19) demonstrate the results of

Method Ao = (ap, co) L

A, = (ay, Cl)L

NA ,
H=0.93
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1,

NA and NA ! approaches, respectively.

7= (2.9574,2.8893), x,+ (8.2470,
1.2419); x, +(4.6636, 2.3257); x;

(18)




NAI
=0.

7=(2.9712,2.8793), x,+ (8.2057,
1.0338), x, +(4.7143, 2.6460), x;

s (19)

o>

E

Above fuzzy linear regressions were achieved without
considering 4;. The model parameters are estimated once
more by the NA and NA/ methods with inclusion of A4
which are given as follows:

Table 7 demonstrates the error of each approach in two
different states. It is evident from the data that there are
some differences between NA and NAI approaches. Here,

NA  7=(8.2670,0.4792), +(2.3613,2.0617), (20)
X1t (8.1775, 0.9281), x, +(4.4179,
3.4107), x3
h=0. 891,
NAI  7=(7.1071, 13.3249), + (2.4299, 1.2944), Q1)

X1+ (8.1821,0.9020), x, +(4.4722,
2.7789), x5 ,h=0.906,

the total errors for the proposed approach in each state are
also less than the NA method.

Table 7 : Comparison between Estimation Errors with two methods
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Errors in estimation
Number With 4, Without 4,
NAI NA NAIL NA
1 0.0000 0.1012 0.1043 0.1474
2 0.0000 0.0000 0.1886 0.2000
3 0.1426 0.1008 0.2202 0.2350
4 0.1136 0.0619 0.0394 0.0517
5 0.0251 0.0566 0.0968 0.1207
6 0.0000 0.0000 0.0000 0.0000
7 0.1552 0.0174 0.1948 0.1953
8 0.1859 0.1831 0.1265 0.1290
9 0.0193 0.0191 0.0568 0.0318
10 0.1097 0.0363 0.0061 0.0000
Sum of the Output Errors 0.57624 0.75137 1.03338 1.11089
V- CONCLUSION REMARKS

Possibility of equality was developed with its application in
fuzzy regression analysis in this study. It was then used to
formulate new constraints in fuzzy regression model based
on conjunction problem. Meanwhile an accurate criterion,
based on union and intersection concept, was introduced to
assess a fuzzy regression result. The results of examples
confirmed the accuracy and improvement of proposed
approach as compared to the other methods.
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Strategies and methodologies of Experimental
Design in the online environment
by
Teresa Oliveira and Amilcar Oliveira
CEAUL and DCeT - Universidade Aberta, Lisboa

Abstract

Experimental Design is a branch of research in many areas, very varied structures and
with many answers not yet known, being one of the most fascinating fields of research in
Statistics. It has underlying ideas as important and in vogue as the optimization of factors,
models and features, quality and competitiveness. It is a current powerful technique,
indispensable in any experience, either in the definition of data to study — what type of
data and how much data, or to choose the method and conditions of gathering the
samples, always looking for the maximization of feedback information and minimizing
costs.

Experimental Design applications are known from experiments in areas as diverse as
Medicine, Engineering, Cryptography, Bioinformatics, Social Sciences and Education
Sciences.

The technological innovations of today allowed prodigious advances in all areas of
research and in particular at the level of Statistics and Experimental Design. Besides the
usual computer programs such as STATISTICA, SPSS and SAS, with a relevant role in
the programs of classroom teaching, researchers and teachers felt the need to create
simple software, free, open to the community and manageable according to the specific
needs in each case. R emerges as the current program for more investment in the scientific
community of Statistics, making it especially attractive in education programs online.
This paper investigates strategies and methods of Experimental Design, as well as R
developments, aimed at applications in e-Learning/e-Teaching of these important themes

in Masters courses online. Examples of experiences at UAb-Portugal will be presented.
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1. Introduction

The importance of Statistics and Experimental Design in the education of future
professionals in the various fields of scientific and technological knowledge is very well
known as a current challenge. In general, teaching in these areas tends to be increasingly
based on the use of Web resources and Software for specific assistance, because they
are both popular and quite attractive, and also because they allow the development of an
experimental and interacting components to the learning process, that was largely absent
from the pedagogical tools and approaches previously used. We observe the online
teaching programs with a growing trend, so it urges to pay special attention to
developments aiming at new features which may complement the more traditional way
of teaching. To this end, we will review the main resources available to support the
online teaching of Experimental Design topics, emphasizing the role of Software R in
this context. We will try to point out ways that lead to good practices for the future in
this area, presenting the brief history of e-learning/e-teaching in the Master Course on

Statistics, Maths and Computation at the Universidade Aberta (UAD), Portugal.

2. The impact of current Experimental Design

The strong impact of Experimental Design currently is mainly due to the fact that it has
underlying ideas as important and in vogue as quality, competitiveness and optimization
of resources, of factors and of models. It is a powerful methodology, indispensable in any
experience, either in the definition of samples and data to study, what type of data and
sample size, whether in choosing the method and conditions of sampling. The main
objectives of Experimental Design are the maximization of information response and the
minimization of the costs involved. The role on well designed experiences is crucial and
applications of Experimental Design are known in areas as diverse as Medicine,
Engineering, Cryptography, Bioinformatics, Social Sciences and Education Sciences.

In the twenty-first century we have been assisting to the fact that many of the best-
qualified jobs place as a reality the need of developing new skills in mathematical,
statistical and computational abilities. So, whether in developed or developing countries,
we assist in the last decade to a trend of increasing demand in respect of courses and

subjects related to Statistics in general and Experimental Design in particular.
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Simultaneously, in the last decade we are witnessing the success of the impact of online
learning, emerging to address the difficulties inherent in traditional presence and in
traditional distance education, now allowing students to follow lectures in any place, at
anytime and at a very affordable cost.

All these developments and changes are very recent, and although there are many strong
research teams looking for new results and advances in Experimental Design, less
attention has been paid to the need of developing new tools and new methodologies to
better accomplish the teaching of these techniques, according to the new century trends
and demands of E-learning/E-teaching courses. This is a very challenging new field of

research with many open problems to be known and answered.

It was already noticed besides from short time experience that, for students on the online
learning of statistics and experimental design topics, it is very stimulating to develop
interactive activities, involving student-student and student-teacher-student interactions.
Particularly in Master courses the role of the teacher increasingly assumes the character of
a companion study, of course in parallel with the transmission of knowledge, but always
encouraging the process of self-learning. The role of software R becomes here
fundamental. Software R proves to be a powerful tool, bridging the needs felt by
researchers and teachers on the creation of free software, open to the community, simple

and manageable according to the specific needs in each case.

3. E-learning/E-teaching Experimental Design: Tools and computational resources

Currently Experimental Design is one of the most fascinating fields of research, providing
a powerful challenge and opportunity to obtain new results on theses and on research
projects with links to many different areas. This leads to the increasing development of
Experimental Design issues in Graduate and Master Courses, not only in Maths and
Statistics, but also in areas such as Engineering, Environmental Sciences, Health Sciences

and Feeding Consuming Sciences.

The use of Web and of computational resources to support education deserves special
attention, especially when it comes to online learning, since in this scenario it will
certainly be an important complement to the student. We will present a retrospective
summary of the main resources currently available on the Web to support the online

teaching of Experimental Design, especially those of free access. Currently it is easy to
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find online interesting virtual labs to support teachers and students, interactive applets as
tools of great potential for learning, electronic books and the particular software adequate
to the e-learning/e-teaching of Statistics and Experimental Design - R: a free open source

for Statistics learning.

Among other available e-books in Statistics, MD*BOOKS site present a very good

selection on statistical subjects at the website:

http://www .xplore-stat.de/ebooks/ebooks.html .

Canavos and Koutrouvelis(2009) present an e-book on the introduction to the Design and
Analysis of Experiments and some other important e-books on Experimental Design can

be found at the websites:

http://www.math.vu.nl/sto/onderwijs/doeanova/notes.pdf;

http://instructors.coursesmart.com/0136158633 ;

http://www.itl.nist.gov/div898/handbook/index.htm;

http://www.itl.nist.gov/div898/handbook/pri/pri.htm

Particular emphasis to the potential of R software on the support to the teaching of
Experimental Design in the online environment is now stated together with a brief
introduction. Information about the project and how to download the program, as well as

sources of documentation are available at http://www.r-project.org .

R is an integrated project involving, among other means, a language and environment for
statistical computing. As a part of the GNU Project it is an affordability free source to the
entire scientific community, and the community that supports it, provide access to state-
of-the-art of statistical graphics, visualization and computing, considering many levels of
users expertise. This project was initiated and developed from the language S by Ross
Ihaka and Robert Gentleman from the 1990s. R provides a wide range of resources, from
packages developed by researchers on a worldwide network, with applications in most
areas of science, e-books in several languages and on different themes in the field of
Statistics and Experimental Design. It presents an integrated environment for data

manipulation, calculations and graphical representations and is highly extensible.
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Advantages of using R on online teaching programs, instead of classical computer
programs such as STATISTICA, SPSS and SAS are then obvious, mainly considering the

expensive cost licences, difficulting their usage at public education institutions.

In what concerns to Experimental Design issues using R the website

http://www.stat.washington.edu/fritzZDATAFILES/Stat421Rintro.pdf presents a brief and

very simple introduction and at http://cran.r-project.org/doc/contrib/Vikneswaran-

ED_companion.pdf we find the basic methodologies of Experimental Design using R,

which gives an important help on the students approach.

R has a nice amount of functionality for Experimental Design or Design of Experiments
(DOE) which appears in various R packages. Gromping, U. (2008-2009) present the
CRAN Task View on Design of Experiments, available at http://cran.r-

project.org/web/views/ExperimentalDesign.html. Several packages were developed

concerning to solve DOE problems, such as AlgDesign which creates full Factorial
Designs and Mixture Designs, among others; Conf.design which is a package adequate to
create a design with certain interaction effects confounded with blocks, allowing combine
designs in several ways; Package blockTools which is adequate to assign units to blocks
in a Block Design and Package agricolae which was especially developed to solve
agricultural and plant breeding experiments. Some further packages handle special
situations in DOE, but still some Designs have open fields to look for adequate software

developments.

Baier and Neuwirth (2007) refer to the convenience of integrating R in Microsoft Excel
since this provides a good way to combine the advantages of a spreadsheet with the
flexibility of R. This seems very interesting since it will help to provide solutions for
some non-regular situations of Designs for which still there are not yet R convenient

available packages.

4. Practices and strategies on teaching Experimental Design topics online: examples

We present strategies adopted to teach Experimental Design online, considering classes

with a big number of students and classes with not so big number of students, which
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sometimes allow to go a bit further and fit students needs according to their professional

fields.

In the first case, we refer to Darius and Schrevens (2006), where a very interesting
experience was presented. The authors alert to that students typically have little
opportunity to get experience in the ability to design experiments, since in most of the
courses there is more emphasis on the analysis of data already collected than on the actual
design process. Also usually in classes, exercises are presented to students with data
supplied, and luck of information on the reasons that led to the particular way of obtaining
data. This concern is also present in several classical books, as Dean and Voss (1998) and
Montgomery (2009). In literature many authors stressed the importance of including
projects into the courses, in which students have to perform and analyse a real
experiment, but such projects are unfeasible for classes with a big number of students. To
go over this situation Darius and Schrevens (2006) present as strategy the use of virtual
experiments in teaching design and analysis of experiments. A tool is explored for gaining
design experience: computer virtual experiments. This consist in “software environments
which mimic a real situation of interest, pose a research question, then invite the user to
collect associated data which, when statistically analysed, will shed light on the research
question”. A collection of sorts referred to as ENV2EXP, available at

http://www.kuleuven.be/ucs/env2exp have been experimented and three of the applets

were discussed in this work: The Factory Applet (adequate to study designs such as
Fractional Factorial or other Screening Designs, Full Factorial Designs, Box-Behnken) ;
the Greenhouse Applet (this applet allows the user to get comparative experience with
almost all classical designs, as completely randomized, complete or incomplete block
designs and Latin Square Designs) and the Shooting Applets (very simple, can be used in
the context of an introductory statistics course). With these applets is was shown that
nowadays technology allows the creation of accessible and rich environments, adequate to
improve the online teaching, providing students with new experience skills. Darius and
Schrevens (2006) recommend a companion collection of programs referred to as

VESTAC (Darius et al., 2000, and at http://www.kuleuven.be/ucs/java) to illustrate many

associated statistical concepts.

In the second case we present and discuss our work experience on teaching Experimental

Design issues at Universidade Aberta - UAb, Portugal in a Master course for the last three
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years. After a long period of teaching in distance education in its most traditional form,
the UAb implemented a new pedagogical online teaching model in 2007, which uses
Moodle - Modular Object Oriented Dynamic Learning Environment- as a platform to
teach and conduct under graduate and Master courses online. The yet short experience so
far already allows us to draw some conclusions and ideas for the future. The Department
of Science and Technology is currently responsible for teaching the third Edition of the
online Master in Statistics, Maths and Computation (MSMC). One of this Masters Course

options is Computational Statistics and for this we have the following curricula:

Table I Master in Statistics, Maths and Computation - Computational Statistics: A
structure overview

Semester I Semester 11

Statistics | Statistics 11

Sampling and Data Analysis Multivariate Data Analysis and
Applications

Quality Control Numerical Methods

Statistical Computation I Statistical Computation II
Significant Learning of Sciences

On the MSMC — Computational Statistics, semester II, in Statistics Il some topics of
Experimental Design are presented, based in using R packages to solve practical

problems.

To illustrate R simplicity we present a generic exercise of a Randomized Block Design

in which R and package STAT was used on variety comparison with ANOVA.

Table 2: Results on melon yield (Kg by plot), in an experiment to compare 4 varieties

(Oliveira, T.A. 2004, pg. 279)

Variety Blocks
I I 11
Green Plain 130.0 130.2 131.5
Greem Rough 131.8 125.3 131.2
White Plain 138.4 146.7 145.7
White Rough 131.3 130.0 129.7

Instructions in R should follow the input:

> y<-scan()
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1: 130.0

2: 130.2

3: 131.5

10: 131.3
11: 130.0
12: 129.7
13:

Read 12 items

Then it follows the construction of a data.frame , with the data and indicators for blocks

and varieties.
exel<-data.frame (variedade=factor (rep(l:4, each=3)), bloco=factor(rep(l:3,
4)), resp=y)

In a first approach exploring data, we have the Box-Plot:

> names (exel)
[1] "variedade" "bloco" "resp"

> summary (exel)

variedade bloco resp

1:3 1:4 Min. :125.3

2:3 2:4 1st Qu.:130.0

3:3 3:4 Median :131.2

4:3 Mean :133.5
3rd Qu.:133.4

> attach (exel)
> plot (resp~variedade+bloco)

145
1

140

135
1

130
1

125
1

Figure 1: Box Plot for the Melon yield example

And to obtain the ANOVA Table, R instructions follow:

> exel.av<-aov (resp~bloco+variedade)
> anova (exel.av)
Analysis of Variance Table

Response: resp
Df Sum Sqg Mean Sqg F value Pr (>F)
bloco 2 6.57 3.29 0.3126 0.74278

variedade 3 411.54 137.18 13.0505 0.00487 **
Residuals 6 63.07 10.51

Students are encouraged to undertake special projects to gain experience in design, data

analysis and statistical computing. In this Master we have been observing a growth
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trend in the number of students: first edition with 8 students, second edition with 20
students and third edition with 33 students. However in the optional class of Statistics
I, second semester, still the number of students in the third edition is not too big (8),
which still allow us to adopt some strategies not feasible otherwise, namely in what
concerns to the last activity proposed to the students. Along the online classes students
are introduced to the learning activities, in which they are invited to actively participate
in Forums and to do some collaborative and web research on Experimental Design
issues, according to the program: Introduction to Experimental Design; Fixed, Random
and Mix Models in Experimentation; Complete and Incomplete Block Designs;
Factorial Designs; Fractional Factorial Designs; Response Surface Methodologies and
Advanced Experimental Design Models. Exercises are proposed and through the
resolution of problems and reflexion supported by experimentation, available
computational resources are explored, namely in what concerns using R and the DOE
package. Some activities are individual and some are to be solved in group, as it is
explained to the students in a previous schedule of activities, currently described in the

platform webpage. The Moodle system, as screenshots is depicted in Figure 2.

B e s Uidad il 3 £11-22018-0910: Forum de discusséo - Microsoft Internet Explorer
o S Vcos D Y cece Toyr -(JOILADZMD Fibeio Edtar Ver Favoitos Feramentzs Auda
pi i 5 J s,
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Mestrado em Estatistica, Matematica e T
Nio hi eventos
T Computacio préinos
7‘ Ir a0 caniric..
Tema Iniciado por Respostas Ultima mensag
e Teresa Of
[cministragao Entrega do trabalho ﬁﬂﬂib?\a Costa 1 .
4 Modo de Edicio Teresa O
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i 5 - i abels
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Figure 2 Environments in the Moodle system

The methodological strategies applied during the activities development include the use
of real data bases, the resolution of problems presented in the adopted books by using R,
as well as simulations and visualizations. In the last activity we promote collaboration and

reflection on students own ideas and experiences to stimulate the use of the acquired
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knowledge as a tool to improve their professional development and skills. Students are
asked not only to perform and analyse a real experiment - using at least one of the DOE
tools explored, but are also invited to suggest an application according to their
professional fields. With the use of this strategy we provide a learning environment in
which we can be assured that students will better understand the problem and surely will
be motivated to solve it. As very interesting results of applying this strategy for three
years, some master thesis projects were designed, some papers were presented by the
students in national meetings and even some collaboration projects between the

University and some Public Institutions are going on.

5. Considerations and Perspective Research

In a highly competitive and evolving world it seems crucial fostering the interest and
involvement of research teams and universities on the solution of real world problems
experienced in various relevant public and private institutions, by designing surveys and
experimental designs, by developing and investigating stochastic models and computer
simulations. The adoption of teaching strategies aimed at solving real problems will
stimulate the professionals from many areas to look for Universities with the aim of
improving their skills.

In a prospective research it’s our aim to develop an experimental design in order to
identify significant differences between using R and using other classical software for
statistical simulations on student’s knowledge and skills achievement, considering the two

SMC-Master areas at UAb: Computational Statistics and Computational Mathematics.
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Abstract: A new statistical test for uniformity based on the sum of squared distances
between neighboring one-dimensional observations is proposed. Analytical results for the
statistics moments are presented as well as a computational recursive procedure for p-value
calculations. Examples of testing the uniformity of scattering of pathway genes along
genomes are given. The results are compared with those obtained using traditional Pearson
and Kolmogorov-Smirnov tests.

Keywords: randomness statistical test, Pearson and Kolmogorov-Smirnov tests

1 Introduction

Testing the uniformity of observations is a common problem in a great variety of
fields such as history (distribution of specific events along the time axis), biology
(distribution of special bio-markers along a chromosome), geology (time series of
earthquakes), queuing theory (arrival events for the needs of customer service),
evolution (time series of significant changes). The results of these tests can give a
new view of the field being a good argument against “full randomness”
(uniformity) while elucidating the non-uniform structure of events. In particular,
overall genes are known to be evenly (uniformly) distributed along the two strands
of chromosomes, while genes controlling a specific function tend to cluster on the
chromosomes to facilitate co-transcription or to provide stoichiometry [2,3,4,5].

The goal of this study Our goal here is to testing the hypothesis alternative to
uniformity, hypothesis (i.e. the tendency to clustering) against uniformity. For this
purpose, two traditional approaches have been traditionally used, namely, the
Pearson test and the Kolmogorov-Smirnov test (see, for example, [1]). Both of
these give a good solution under the condition that the number of observations is
large enough since because all the mathematical test results for the tests are about
of the order of their asymptotical values. That is why our goal is to fill the gap
between the case of large datasets, where the tools for mathematical analysis have
been developed, and cases with comparatively low number of observations (<50),
but with exact calculations of test characteristics such as significance or p-value.
The idea of our approach is that, for a uniform distribution, the sum of squared
distances between neighboring observations after their ordering should be small as
compared to that for the alternative situation of clustering. In the section Method
we give the formal definition of the test, the related theoretical results and a
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description of its numerical evaluation. In the Application section we compare the
proposed test with those, known tests from the literature, that could be applied to
evaluating the distribution of the same pathway genes along the E. coli K-12
MG1655 chromosome belonging to same pathways. The obtained results suggest
the advantage of our test in comparison with those of Pearson and Kolmogorov-
Smirnov.

2 Method

Let X;,X,,..., X, be independent observations of a random variable X with

unknown continuous distribution function F (X), all the observations belonging to
the interval (0,1). Our goal is checking the hypothesis
H,:F(x)=x, 0<x<1,

i.e., the uniform of the distribution under consideration against the alternative of
all other distributions. For the sake of notation simplicity, it is assumed that the

observations X,, X,,..., X, are ordered, i.e.,

0=X, <X <X, <..<X, <X,;=1.
n

Statistics S, = (n +1)Z AZ, A, =X,,,—X; isintroduced.
i=0

First of all, we will show that statistics S, satisfies inequalityl <SS, <n+1.

Using Lagrange multipliers for the minimization of function S, with the

n
restriction ZAi =1, one can easily see that 1<S_ , and from another

i=0

n '
n n

side ZAZI < (Z:Ai)2 =1. Thus the minimum is reached by observations
i=0 i=0

scattered along the interval with equal distances of between ordered

n+1
observations, while the maximum is a result of observations concentrated only at

the points 0 and 1. It is shown, thus, that statistics S can, indeed, discriminate
between two contrary levels of uniformity.
Statistical characteristics of the distribution of S, :

The random vector {A,, A, ,..., A, }follows the Dirichlet distribution [1], i.e., the
n
uniform distribution over the simplex ZAi <1cR"™ . Using standard

i=0
integration, one can easily get
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B 2
S (n+)(n+2)°

n .
n+1)’(n+2) "

EA) =20 (M)

Var(A,)=E(AY)-E*(A) = =0,...n,

and, therefore,
2(n+1)

—>2,N—> 0.
(n+2)

EG,) =
Straightforward integration gives

E(AY) = e
(n+D)(n+2)(n+3)(n+4)
E(AA%) = 4 for i=] ,
o+ D(n+2)(n+3)(n+4)

Var(A?) = E(a%) - E*(A2) =

4n(5n +11)
N+D)2(n+2)°(n+3)(n+4)

and, finally,

4n®(n® +5n+10)
(n+1)*(n+2)*(n+3)(n+4)
Thus for large values of n, the distribution of statistics S, converges to the
distribution concentrated at the point 2.

Var(S,) = =0(n™) .

n

n+1
an algorithm based on the following consideration. By definition,

For numerical evaluation of the distribution function of , we have developed

R (S)=PQ A <S) = | dA,..dA,_, A,
=0 0 _n:i;A?<szfAﬁ,_n§Ai<=1fAn

Introducing new variables Yy, =A. (1-x. )™, 0<i<n-1, we obtain

F (%) = [(@-A) | dA,..dA , |dA =
° I TN

i=0
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0 1-A)
The last formula gives the recursion for calculating the distribution function
F, (SZ) through integrating the distribution function with n-1 observations

SP—A?

F .| - |- The starting function F,(S?) is the distribution function
1-4)

for X >+ (1— X)?, where X follows the uniform distribution on (0,1). It can be

easily shown that F,(S*) = 24/0.5-S” —0.25 for 0.5<S” <1. The recursion

was implemented by means of consecutive numerical integration of (1) with 10000
nods in the interval and the results are presented in Figure 1.

on : U — ' \ T o
< s
\ . N,
L '\ N e — = 5 observations o
LY ’ .
. L — - 3 observations
\, % ‘-.\ —— 10 observations
2 \ i ~ + — 15 observations | |
T |
=2
]
-
Bl
2
g
@
A
@,
&
2
8
A | \ . \ | 3
0 0.2 0.4 0.6 0.8

Statistics value

Fig. 1. Results of recursive calculations of S, distribution, n=3,5,10,15.

3 Application

In this section we describe the application of the proposed technique to testing the
uniformity of gene scattering in two biological pathways along bacterial
chromosomes. The results are compared with those obtained by means of the
Pearson ;(2 -test and Kolmogorov-Smirnov test.

To find out if the genes of certain E. coli pathways are uniformly distributed along
the chromosome or tend to cluster, we have selected two KEGG (Kyoto
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Encyclopedia of Genes and Genomes) pathways [6] to study the gene locations on
the chromosomes. The position of each gene is presented by its ratio to the length
of the chromosome, which allows to consider the observations as following a
continuous distribution on the interval (0,1).

First we examined the small KEGG, the so-called tyrosine metabolism, pathway.
Tyrosine is one of the 20 amino acids found in the cell. It has a phenol group and
can serve as a precursor for the synthesis of other molecules of various types (such
as hormones and pigments) in the process of metabolism. In particular, the KEGG
tyrosine metabolism pathway is the one to produce tyrosine. The pathway consists
of only nine E. coli genes, three of which belong to the leading strand, whereas the
rest six belong to the lagging strand. To our knowledge, there does not exist any
test that could deal with such a small number of observations.

The results of testing the uniformity hypothesis are presented in Table 1. Our
calculations show that the p-values are 0.0116 and 0.3958 for the lagging strand
with 6 genes and for the leading strand with 4 genes, respectively. This result
enables us to unambiguously reject the hypothesis of uniformity of the pathways
genes on the lagging strand and accept this hypothesis for genes on the leading
strand. Thus our test can be employed in the case of very small datasets, where the

traditional Pearson ;(2 and Kolmogorov-Smirnov (K-S) tests are inapplicable.

Moreover, it has been demonstrated that our test allows accurate calculations of
the p-value.

The second pathway with the KEGG database is that of purine metabolism, which
contains a total 84 E. coli genes, 54 of which form 39 operons and the rest can be
regarded as single-gene operons. Purines — adenine (A) and guanine (G) - are two
of the four nucleotides which are used in building the DNA molecule. The purine
metabolism pathway consists of a series of biochemical reactions in which A and
G molecules are synthesized and degraded.

Table 1. Evaluation of p-value for the testing of uniformity of genes positions
using three different tests

Pearson ;(2 test (# of intervals)
4 5 6 7 8
49, leading strand | .0057 | .1631 | .0329 |.0027| .0039 [.0006| .0222

35, lagging strand | .0035 | .0399 | .2729 |.0046| .0255 |.0779| .0646

Number of Genes |Our Test K-S test

The results presented in Table 1 show fluctuation of the p-value in the Pearson test
with different number of intervals, while the Kolmogorov-Smirnov test provides
much higher p-values as compared to our test. Taking into account that our test is
the only one that is not asymptotic, we argue that it is much more reliable than
others for testing uniformity.
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Abstract: In this paper the present developments in the physics of complex systems, in
particular the structural relaxation of supercooled liquids and glasses, are discussed by using
a stochastic cluster-based model. We are able to depict the impact of the interface between
the nucleus considered as a cluster of a certain number of molecules and the liquid phase for
the enhancement of the overall nucleation process. In general, these mathematical models
describe the interactions of agents in heterogeneous populations and they are developed
within the framework of the recent discussions about the gap between agent-based
computational models (ABM) and stochastic analytical models. In particular, it is shown
that even a relatively simple stochastic model, which appears phenomenological if it is not
agent-based, can describe precisely the outcomes from multiple agent-based simulations
where there is a lack of probabilistic insight and which should be long enough to equilibrate
the states of large systems.

Keywords: Stochastic modeling, Phase transitions; Nucleation; ABM

1 Introduction

In terms of clusters, growth/removal is the process in which a new cluster or a free
agent is introduced/removed to/from the system. Fragmentation can be defined as a
process in which a cluster breaks up into isolated agents. Coagulation is when two
clusters join making a single one. Addition can be described as a special type of
coagulation in which a free agent already in the system is added at random to
another cluster. Attachment is the process in which new incoming agents attach
themselves to an existing cluster, and this allows both the system and the clusters
to grow in size. Only restricted combinations of these ingredients cause the models
to differ [1-3].

One purpose of this paper is to get new insights into microscopic explanations of
stochastic models which may be compared with the agent-based computational
models, and to bridge the gap between agent-based models and stochastic
processes. The application refers to the nucleation process, a widely spread
phenomenon in both nature and technology, which may be considered as a
representative of the aggregation phenomena in complex systems. The recent
discovery of the generation and extinction of crystal nuclei at very low
temperatures [4, 5] suggests that stochastic generation of crystal nuclei would be
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considered as the result of fluctuation of complex cluster structure of the
supercooled liquid. Considering that the crystal nucleation is just one extreme
event in the fluctuation of a clustered structure, for example, another metastable
liquid phase with a different structure from the ordinary one would also be
potentially nucleated in a similar procedure. Stochastic generation of crystal nuclei
may thus be considered as the result of fluctuation of cluster structure of a
supercooled liquid.

The role of both heterogeneity and the interface between clusters in the
enhancement of nucleation rate has still to be explained. In particular, it was
observed that nuclei could almost always be formed near the surface of the cluster
instead of in the interior, and one factor favoring nucleation near the surface would
be the greater freedom of motion and, hence, a larger nucleation probability [6].
This is surprising because it is known that the surface layers of the nuclei tend to
be disordered and melt at significantly lower temperatures than their cores.

2 The Model

Let us consider N atoms which can be in 3 different states (cluster, liquid and their
interface), and can perform 4 possible moves: liquid to interface, interface to
liquid, interface to cluster, and cluster to interface. One can identify 4 different
combinations denoted with probabilities p;...p,. That is, drawing randomly one
particle, it will be of type i with probability p;. Let N=1,2,... be the total number

of atoms in the system, and {nl sy, 14,1, } are their partition into 4 subsets. Each

subset can be called cluster, and the process itself — clustering. The number of

1 ,
possible partitions in this case is P(N)Z;H(N +17), where
Vi

4
n,=0,N,i=1,4 and Zni = N . For example, in a system of N=1000 atoms,
i=1

P(N) equals to 167668501! Such an interaction in the ABM model always involves
an active agent and a passive one: the agents have preferences over their states and
they can play both roles interchangeably. Accordingly, the number of repeated
computer runs due to different possible partitions would be very large.

Let’s consider further that each particle interacts with the entire group both as an
aggressor (in terms of the Kolmogorov theory) and as a passive agent (in terms of
the ABM models) as well. Then the mean 7, namely the stability index, takes here
the form

r=pp—p)+(p,+P)Ep +p+ 0 —p)+ (P — D)
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4
or, taking into account that Z p; =1, one can exclude one probability, for
i=1
example p,, from the above equation:
7=p(0=p)+(1=p =20, = p)=p P, —p) + (D> + P)1+2p, +2p).

One can represent the distribution of states as a three dimensional point

d(l,l",C) Ed(pl,p2>p3ap4) = Vlz +;,.2 +cz >

where the axes are labeled /, ¢ and r: I=p1—p;, c=prtps—p1—ps, r=psp,, Where

Hctr=0 and d € [O,ﬁ J Thus different distributions of states can lead to the
same point in the sphere, i.e. different microscopic partitions can generate the same
result on aggregate inside a sphere around the origin. Preliminary results for the
two limit cases are obviously: if all particles would show the same behavior, then
d =\/§ and there is a maximum stability of states in such a completely
asymmetrical system, but 7=0 for a homogeneous system, p;=p,=p;=ps='/s, and

for combinations such as p, = p, and p, = p, in the case of unstable steady-

states. To represent a two-dimensional graph describing the stability/instability of
the system, we consider some fixed probabilities. Fig. 1 depicts such dependence
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Fig. 1. Dependence of the cluster instability, /—z, on the
probability p; for the cases: (a) particles at the liquid-cluster
interface are missing; (b) share of atoms at the interface
represents 1/10 of their total; corresponding share of atoms at
the interface represents 3/10, i.e. p,=p3=0.15 (¢), p,=0.1, p3=0.2
(d) and p,=0.2, p;=0.1 (e). A total number of 100 agents in a
similar ABM model is considered.

of the cluster instability, 1z, on the probability p, for a system of 100 particles,
where the atoms at the liquid-cluster interface are missing, (a); share of atoms at
the interface p,tp; is just 1/10 of their total number in the system, (b); and
corresponding share of particles at the interface is equal to 3/10, i.e. p,=p3=0.15
(¢), p=0.1, p3=0.2 (d) and p,=0.2, p;=0.1 (e). Note that in the absence of an
interface between liquid and cluster, as we expected, the system is in a state of
maximum instability for p;=p,=0.5. While the number of particles at the interface,
i.e. potp; increases, the stability of the system decreases simultaneously, regardless
of whether the particle flow at the interface is achieved at the expense of the liquid
phase or particles in the cluster. However, particles at the liquid-cluster interface
definitely accelerate the formation of clusters due to the displacement of the
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maximum instability in the region of smaller values for p;. In other words, the
nucleus formation is indeed a random event with a chance largely determined by
the nucleation work which increases with the subnuclei size [7], and thus a decline
in share of atoms, p in such a cluster, namely a decline in the critical nucleus size,
would be followed by the appearance of a crossover point to the supernuclei at the
lower value of the energy spent on the cluster formation. Curves (d) and (e) in this
figure also show that a greater flow from liquid phase (p,>p;) or from cluster
(py<ps3) causes a minor increase in the instability of the related branches, but for
partps=const the value of maximum 7z remains constant too.

3 Conclusions

We have proposed a stochastic cluster-based model for crystal nucleation. It is
generally known that first-order phase transitions occur by nucleation mechanism,
and both the nucleus, a cluster of molecules or atoms, and the nucleation work, a
energy barrier to the phase transition, are basic thermodynamic quantities in the
theory of nucleation. However, the critical nucleus formation is statistically a
random event with a probability largely determined by the nucleation work. It was
shown that while the number of particles at the liquid-cluster interface increases,
the stability of the entire system decreases simultaneously, and the nucleus
formation would be definetely enhanced due to the displacement of the bifurcation
point in the region of smaller clusters. Finally, we have shown that even relatively
simple stochastic models can describe precisely the results of agent-based
computational models.
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Abstract

A simple-open-form estimator is introduced for the dynamic coefficient and it can be applied
to levels. In a dynamic model without additional regressors, a lag of order three is included
which handles the random effects. It is shown via simulations that the difference between the
two OLS coefficient estimators of order-one and order-three lags estimates consistently the
dynamic coefficient. In a model with other regressors, a method is suggested which estimates
all the coefficients individually using restricted least squares (RLS). After estimating all the
coefficients of the static regressors, the dynamic coefficient can be estimated by restricting
the coefficients of the regressors to their estimated values by the suggested method (RLS) or
by another method, e.g., transformed MLE (TMLE) or GMM. The RLS method can be applied
when the sample size N is relatively small to the number of periods T and when the methods
TMLE and GMM cannot be applied. In an application, it is shown that the RLS method
provides smaller RMSE’s than TMLE and GMM. Simulations compare RLS with TMLE and
GMM. In general, RLS performs better than GMM. TMLE gives better results than GMM and
RLS in some cases but indicates convergence problems when N and T are small.

Keywords: Restricted regression, transformed maximum likelihood, Arellano-Bond Estimator.

1. Introduction

In a regression model of panel data, we may include a lagged dependent variable as a
regressor to explain dynamic economic phenomena. The appearance of a lagged dependent
variable may be also used as a proxy variable for unobserved explanatory variables. In almost
all economic environments, latent variables appear, e.g., quality of life, government politics,
business confidence, operational risk, morale, customer satisfaction, consumer behavior,
product quality, conservatism, management, marketing, etc. As a proved result in
econometrics, the omission of such variables creates severe bias to their estimated
coefficients, when these variables are considered as main explanatory factors. Therefore, a
dynamic model would mitigate the bias of the exogenous variables included in the model. On
the other hand, the exclusion of latent variables in the model would create bias in the
dynamic term too. Thus, the dynamic panel data models could be applied in almost all
applications with panel data, if not in all.

Probably, the most important issue in panel-data models is the individual effects. Most of the
methods use first differences which theoretically wipe out those effects. Economically
thinking, it makes also sense for the first differences to have individual effects to the same
degree as it does for the levels. In most studies, applied researchers do not check if there are
effects after taking the differences based on their theoretical elimination that could be an
illusion. The application with financial ratios that we illustrate in this paper is an example with
random effects on a model with first differences in the model. Differences of some order
could be taken in order to deduct trend and to accomplish stationarity, and not only to
remove effects. On the other hand, trend and nonstationarity could be treated by other
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methods, e.g., partialing out the time variable. In this paper, the following classical dynamic
model is considered and is estimated by analyzing levels and not differences,

(1) Vi=a+py,  +X, y+e,, i=12,.. . N;t=12,..,T.

The most popular methods consider Model (1) and then take the differences to wipe out the
effects

(2) Ayi,z = ﬂAyi,r—l +sz",t7+ Aei,z'

Then, in model (2), we have to deal with correlation in the errors and correlation between the
errors, Ae,,, and Ay, . The most popular methods use GMM, e.g., Arellano Bond (1991), or

it?
maximum likelihood that takes into account the difference structure (transformed maximum
likelihood, TMLE, see, Hsiao, Pesaran and Tahmiscioglu (2002)).

In this paper we introduce a new technique to estimate consistently the coefficient of the
dynamic term, £, by just fitting the following restricted regression,

(3) Vi =TV TV st X e, i=12,.. N;t=12,..,T.
In (3) the vector parameter, ¥, can be estimated by a new method introduced in Section 3 or
by other methods, e.g., GMM, TMLE, etc. It turns out that, fl —f3, estimates consistently the

coefficient of the dynamic term, £, by restricted least squares (RLS), restricted the vector
parameter, 7, to its estimate from another step of our methodology or from another method.

In the next Section a detailed literature review is presented for panel data. In Section 3, we
present the general notation of our model with its assumptions and an open form of the
estimator. We also explain the estimation process and we give special cases as examples for
an easier understanding. Results from a simulation study are presented in Section 4, which
support our method against the existing methods. An application, considered in Section 5,
also supports our method since we apply out-of-sample prediction to several methods and
our method gives the smaller mean-square-prediction error.

2. Literature Review for Panel Data

Extensive studies in panel data started almost fifty years ago. Zellner (1962) proved that in
seemingly unrelated regression we gain more efficiency if we analyze all the equations
simultaneously and not each equation individually. Balestra and Nerlove (1966) estimated a
dynamic model and they noted bias for the pooled OLS and the LSDV estimator, assuming a
first-order time series structure for the errors. Parks (1967) for a system of regression
equations with correlated error showed asymptotic robustness for the Aitken estimator.
Wallace and Hussain (1969) for a two-way-random-effect model showed asymptotic
equivalence between covariance estimators and the Aitken estimator considered by Zellner
(1962). Nerlove (1967) considered numerically and more carefully the bias of the dynamic
modes with no effects. Thereof, Nerlove (1971) proposed a two-stage estimator for a two-
way-random-effect model. In the numerical results of Nerlove (1967), it is shown that the bias
increases as the error correlation increases. Later, Maddala (1971) considered MLE as an
estimation technique for dynamic panel data model with error components and noticed bias.

For the two-way-random-effect model, estimates were proposed for the variances of the
components by Amemiya (1971). Swamy and Arora (1972) developed a new estimator for the
covariance matrix of the errors and introduced a modified Aitken estimator. Fuller and
Battese (1973) suggested transformations that make the errors uncorrelated with constant
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variances, but such transformations produce bias to the estimates. Fuller and Battese (1974)
constructed a new estimation method for the one-way and the two-way random effects
model. Their model allows constant variables over cross section or time. Avery (1977)
extended the seeming unrelated regression model, considered by Zellner (1962), with error
components. The estimator of the latter model was proved by Baltagi (1980) to be
asymptotically inefficient and an efficient estimator was introduced by Baltagi (1980) based
on Amemiya’s (1971) work. Baltagi (1981a) for a non-dynamic two-way-error-component
model examined the performance of several tests and estimators. Baltagi (1981b) considered
simultaneous equations with error components showing that the full information estimator is
more efficient than other standard alternative estimators.

The bias in dynamic panel data models with fixed effects was expressed analytically by Nickell
(1981) in the simple case with no exogenous variables. Consistent instrumental variable
estimators at differences are suggested by Anderson and Hsiao (1981). The analysis of
differences aimed to the elimination of individual effects. Hausman and Taylor (1981) studied
the instrumental-variable estimator when the individual effects are correlated with some
exogenous variables. Various estimates were considered and compared under different
assumptions by Anderson and Hsiao (1982). Linear and non-linear multivariate model with
error components via maximum likelihood were considered by Magnus (1982). For
applications of a non-linear multivariate model, see Sickles (1985), and linear multivariate
model, see Sickles and Taubman (1986). Estimation for a linear system of simultaneous
equations by instrumental variables was considered by Amemiya and MaCurdy (1986).
Autoregressive models of high order for the endogenous and the exogenous variables were
considered by Holtz-Eakin, Newey and Rosen (1988), taking the differences and using
instrumental variables. The estimators by Hausman and Taylor (1981) and Amemiya and
MaCurdy (1986) were compared and discussed by Breusch, Mizon and Schmidt (1989). A new
estimation method for a two-way-error-component model is proposed by Wansbeek and
Kapteyn (1989) for unbalanced data. For unbalanced data, the ANOVA, MLE, and MIVQUE
estimators are compared by Baltagi and Chang (1994) and Baltagi, Song and Jung (2002).

Generalized method of moments (GMM) was used to estimate dynamic panel data by
Arellano and Bond (1991). The elimination of the individual effects is done by taking the
differences or orthogonal deviations. The efficiency for dynamic panel data under GMM can
be improved by adding linear and nonlinear moment conditions, see Ahn and Schmidt (1995)
and their method is supported by Wansbeek and Bekker (1996). Arellano and Bover (1995)
suggested a method, with predetermined variables, for efficient IV estimators for a model
with random effects. Later, Blundell and Bond (1998), suggested conditions and restrictions
that improve the performance of the first-difference GMM estimator, and their work was
further investigated by Hahn (1999). An alternative estimator, derived on a two-stage-least-
square process, was also suggested by Keane and Runkle (1992) when the instruments are
predetermined but not strictly exogenous. For more detailed discussions on all these
methodologies see Arellano (2003). Bayesian estimation method is used by Hsiao and
Tahmiscioglu (1997) and Tahmiscioglu (2001) on financial constraints and investment. A new
estimator for nonstationary panel data is proposed by Phillps and Moon (1999). Because the
LSDV estimator provides more efficiency than the GMM estimator, Kiviet (1995) proposes bias
correction for LSDV and this problem was further examined by MacKinnon and Smith (1998),
Hahn and Kuersteiner (2002), and Bun and Carree (2005). Also, Pesaran and Smith (1995)
proved, for dynamic models with different coefficients over groups, that while the pooled and
aggregated estimators are inconsistent, the cross-section estimator is consistent. Assuming T
and N going to infinity, Hahn and Kuersteiner (2002) for fixed effects, and Alvarez and
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Arellano (2003) for random effects, considered asymptotically bias corrected OLS, and GMM
and LIML, respectively. In the latter paper, it is shown that, for fixed T and N going to infinity,
GMM and LIML are consistent and asymptotically equivalent. Hsiao, Pesaran and Tahmiscioglu
(2002) showed numerically that an MLE estimator, based on a transformed likelihood for
dynamic panel data, has less bias than GMM and IV estimators. Their estimation method is
used in our simulation and their results are also verified by our numerical results. For panel-
data models with multifactor error structure, Pesaran (2006) considered common correlated
effects estimators that give satisfactory results for small samples.

The last years the panel data models have been considered with spatial correlation in the
errors, e.g., Batlagi (2006) and Kapoor, Kelejian, and Prucha (2007). On the choice of
estimating discrete-dynamic-panel-data models, see Carro (2007). A comparison of standard
errors in panel data was done by Petersen (2009) in financial data. And, many other studies
have been conducted on panel data the last fifty years. We just pointed out some of them
that had some specific impact on the area of panel data and especially on dynamic models.
Definitely, there are still many other remarkable papers not mentioned in this paper, but it is
not feasible to mention all of them. For further reference on panel data see Baltagi (2008),
Hsiao (2003), Nerlove (2002) and Wooldridge (2002).

This paper aims to contribute to the area of dynamic panel data a novel estimation method,
based on restricted regression, applicable to cases in which the existing methods cannot be
applied, when T and N are both small.

3. Model and Estimation Procedure
We assume the following panel-data model with K dynamic equations with random effects.

(4) (k) a(/»)_l_ﬁ(k) (k) +27(km) m) 4 (,];)7 k=12,...K

ltl
m=1

The k-th random variable is regressed on its first lag and on all or some of the variablesxf,’,"),

m=1,2,...,K—1. The model recognizes only one-way direction effects, as all the standard
regression models and not as a system of simultaneous equations do, which include two-way
direction effects. That is, for k>m the m-th variable x(’")may affect the k-th variable x(") but

not vice versa. The individual effects "’ are assumed to be random. The errors ¢'*’

;. are

assumed to be independent over i, t and k.

We propose the following novel estimator for Model (4). Let us define

(k) (k)
10 14
(5) xg) = b x = b | fori=12,...,1
(k) (k)
XI,O l,T
(/») (k)
1 -1 1—3
(k) _ | (k) (k) (k) — : (k) _ :
(6) X —[Xq ] X Doy xE =,
X(k) (k)

1,-1 1,—3
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(k) (k)

,,3 l,l
xXO= b [ x® = 1 |fork21
(7) " = (X(k)'x(k) )l x'x, forkz1
(8) eM =x\" — xP9® - forkz1
e, k=1, m=0
(9) y(k,m) = (Al(m), k=22, m=k-1, ,
(@™ xg e XV ] k23, m=k-2,k-3,...,2,1
A ' L
A = (y(k””) y(k””)) y*om'en  fork>2andm=k-1,k-2,...,2,1
(10)
(11) RO =[0, 00 Ly, | fork=2, m=k-2,k-3,..2,1
(12)

A fork>2,m=k-1

5 A ' -l ' ' -l ' . A A

Qe _ /lék,m) +(y(k,m) y(k,m)) Rfk,m) |:R§k,m) (y(k,m) y(k,m)) Rik,m) } (2(k,m+1) _Rik,m)ﬂ/ék,m))’
fork>2, m=k-2,k-3,...,2,1

(x(fi) x(f;) ) , fork =1

(13) 2V =" . :
(x(_l) x® X x(()‘1>),f0rk22

7y = (Z(k)rz(k)) 2V'x | fork>1

(14)
(15) R =[0,,, 0,,, I,| fork22

£, fork =1
(16) 7% = -l

-1 -1 .
f(‘)k’+(z‘k"z‘“) R‘z’”'[R(Z")(z(")'z(’”) ng)f} (ﬂkl) RY? (k)) fork>2

(17) ¢ =x{? —29" | fork =2

Actually, the unknown parameters of Model (4) are estimated by the following 2K-1+K(K-1)/2
regressions:

(18) x,.("‘) 0x® +0Px ™ +v(") k=2,...,.K

ztl tt3

(19) PP =2%mgm 4 Z AEDXD &m k=2, K, m=k-1,k-2,...,2,1

J=m+1

(k) (k) (k) k) .(k) (k,m) ( ) (k) —
(200  xP =1 +7 l,ﬁZz xMeg®, k=123,..,K

ztl
m=1

By the above regressions (18), (19), and (20), we actually estimate the following parameters in
(4):
i) by(19)for k=12,....K and m=k—1,k—2,...,2,1, itis estimated 7" by A*™ and

ii) by (20) for k=1,3,...,K it is estimated ﬁ(k) by f”‘) .
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The estimators presented in (5-17) are computed by regressions (18-20). Restricted
regressions are executed in (19) and (20), while unrestricted multiple regressions are run in
(18). The restrictions are imposed to the estimated parameters, with hat, being estimated by
previous steps. In (18) we regress only the dynamic part and we also include the extra lag of
order three. The additional lag of order three encounters the appearance of random effects in
(4). Based on our simulations, when we use the lag of order three we have small bias while
when we use the lag of order two the bias is not negligible.

A brief description about the estimation system (18-20) follows. The method consists of three
stages executed for each of the k variables included in the model. In the first stage, we
compute the residuals after regressing each variable on its dynamic term and on its lag of
order three. In the second stage, we estimate the coefficient of the k-th variable on the m-th
variable by regressing the residuals of the first stage on the residuals of the third stage from
the previous iteration, k-1. The regressors also include all the variables with indices between
m+1 and k-1 by restricting their coefficients equal to their estimated values from previous
steps. The third stage estimates the coefficient of the dynamic term. The regressors include
the regressors from the first stage plus all the variables with indices less than k-1, by
restricting their coefficients equal to their estimated values from the second stage.

Equation (19), for each k, is regressed k-1 times estimating each time one of the coefficients of

(4), )/,(,f), m=k-1,k-2,...,2,1, starting from k-1, and descending by 1 up to 1. For each k and m we

) (m+l) (k-1)

,and on x| vy X

it ’

regress the residuals from (18), e(k) on the residuals from (20), v(’”

by restricted the coefficients of the variables x(’"“) s xl.(f'” equal to the estimates obtained

by previous executions for smaller k. Also, the residuals \9;;") have been estimated by previous

iterations of Equation (20) for smaller k. It turns out that the estimator A%™ estimates
consistently the coefficient )/(k’"’) of x(’") (4) based on our simulation studies. The residuals

v(k) (m)

e are free of dynamics and random effects and q(’") are also free of the

)

and gq;;

variablesx'), .., x\\™". The residuals v}’ and ¢\ have the same units as the variables x|

7 (m) (M+D

and x"", respectively. Thus, in (19) by regressing ¥’ on ¢, x'*", (=

. and x;; 77, and by

restricting the coefficients of x('””) . xl('t‘ D on consistent estimates obtained by previous

~(m)

regressions, we estimate the direct effect of g, \fo) which is equivalent to the direct

(m) ®

effect of x;;” on x;,’, according to structures of equations (4) and (19). If we do not restrict

the coefficients of x", ..., x}™

(k)

on consistent estimates then in (19) we will not estimate

(m+l) (k=1)

the direct effect of q(”” on v, since the variables x;;" ", .., x;, " also include the variable
(m)
X

it

as it follows from (4). Note that the varlablesx(’"“) ey (k Yinclude indirect effects of

x" on x*. By this method, we can estimate the indirect effects in addition to the direct

it
effects and therefore the total effects among the variables. Similarly, in Equation (20) we
execute restricted regression with consistent estimates of 7/("””) m=1,2,...k-1 from (19). Thus

we restrict the coefficients of the variables x™, m= 1,2,..k-1 on Ak and so we obtain the

it ?
desirable direct dynamic effect. Also, Model (4) can be used for predicting all the variables at
the period t using only the variables from the previous period, t-1.
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To explain better the model we illustrate the model and the estimation process for K=4.
Model (4) in this case is:

(21) X = a4 fOXD 4y g DD @00y o)
(22) (3) _06(3)+ﬂ(3) &) +7/(31) (1)+}/(3 o)) (2) 1(3),

(23) x,-(j) (2)+ﬂ1(2) ,(3)1+7(2 D (1)+e,-(f):

(24) (1) —06(1)+ (1) (1) +el(1t)’

For the above system (21-24) the estimation method (18-20) is written:

for k=1

(25) X =0 x o)+ g

for k=2

(26) (2) 9<2> ,(f)1+‘9(2) ff)3+v(2)
@)= e

(28) ,(f) =r® 1(3>1+T<2) ,-(,2) L e, (1)+fo)

for k=3

(29) xi(j) :6’(3) 1(?1+9(3) 3 +v(3)

I et

(31) A<3> /1<31> (1> L]0, (f)+Wi(3’l)

(32) <3> T<3>x(3> +r(3) (3> +/{(3’1)x,-(,1;)+i(3’2)xl-(,2)+61(3)
and for k=4

33) (4) 9<4> ,(?)1“9(4) l(;t)3+v(4)

34) A(4> /1<4 3) A 3) +w(4 3)

(35) A<4> pyc z)q,(f)+/i(4'3)xfj)+ l(étt 2)

36) A<4> = A4 (1) /{<4,2)xl_<j>+/{<4,3>xl_<j)+wl_<;t,l>

(37) X =+ e+ A+ A 4 A 4 g
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In Table 1 it is shown how the parameters of the true model in (21-24) are estimated by the
fitted regressions (25-37).

Table 1. Estimators for the parameters of model equations (21-24) by regressions (25-37).

Estimated Estimator
parameter
=1 A #2020
7,(2,1) /i(z,l)
@ [ e
7/(3,2) 2(3,2)
K=3 7/(3,1) j:(3,1)
ﬂl(3) Z."](3) _ f3(3)
7,(4,3) 2(4,3)
K=4 42 242)
7,(4,1) 2(4,1)
pr |

4. Simulation Results for RLS, TMLE, and GMM

Data were generated by Model (4) for K=4. The model equations are given analytically in
Section 3 in Equations (21-24). In Table 2 results from simulation studies are reported by the
method of Restricted Least Squares (RLS) described in Section 3, and by two of the existing
methods, the Transformed Maximum Likelihood Estimator, (TMLE, see, Hsiao, Pesaran, and
Tahmiscioglu (2002)), and by the Generalized Method of Moments, GMM (see, Arellano and
Bond (1991)). Other methods such as bias correction methods will be considered in future
studies but such studies use the GMM estimator to estimate the bias correction. Absolute bias

and Root Mean Square Error, RMSE, for the dynamic coefficient, ,81(4) = [, and the regression

coefficients, y "=y =y
regression coefficients are not restricted to be the same but they are just given the same true
values. For simplicity, for the three regression coefficients we report the average absolute bias
and the average RMSE. To the sample sizes (7', N) we give the following values (5, 15), (5, 30),
(5, 50), (10, 35), (10,40), (10, 100), and (100, 10), and for such a case we run the same model
for true values of (4,7) as (0.1, 0.3), (0.25, 0.25), and (0.4, 0.2). We also used the following

true values for Var{e(“} =0.5 and Var{a“‘)}:O.z. The same true values were also used to

i i

(4,1) (4,2) (4,3)

=y, from Equation (21) are reported. Note that the

Equations (22-24). The model was replicated 1,000 times for each case.

In Table 2, in cases for (T,N) equal to (5, 15), (10, 35), and (100, 10), in which N is small
relative to N, the methods TMLE and GMM cannot be applied since they invert a matrix that
is not invertible in these cases. Note that “N/A” stands for “Not Applicable”. The method RLS
not only applies, but also gives satisfactory results. On the best of our knowledge, we do not
know any other method applicable for dynamic panel data models with random effects for
such small N and T. Obviously this a main advantage of the suggested method RLS. In general
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the bias of the dynamic coefficient under the GMM method is quite large and the RLS method
performs much better than the GMM method in terms of the dynamic coefficient. The TMLE
works better than the RLS method for T=10 but both methods give satisfactory results. For
T=5 and N=30 the TMLE appears convergence problems in some iterations and the problems
are more severe when N=20 and N=25. Note that the estimator of the RLS method has an
open form given in (12) and (16). The TMLE and the GMM methods perform better than the
RLS method for the regression coefficients, y, when they can be applied. The RLS method can
be combined with the TMLE or the GMM method. We can first apply the TMLE or the GMM
method and then regress Equation (20) by restricted the coefficients A%™ to the
corresponding estimated coefficients by TMLE or GMM. We apply these combined techniques
to financial data for out-of-sample predictions in the next section and they perform very well.

Table 2. Absolute Bias and Root MSE are given for parameters of Model (21) under three estimation methods, RLS, TMLE, and
GMM for different sample sizes, T, and N and different sizes for the dynamic coefficient. Note that f§ = ﬁ1(4) and that for

the three ) parameters in (21) we report the average |Bias| and RMSE. (N/A=not applicable).

Case [Bias| RMSE

T N RLS TMLE GMM RLS TMLE GMM
5 15 p=0.1 .0149 N/A N/A 2692 N/A N/A
y=0.3 0177 N/A N/A 2159 N/A N/A

p=0.25 .0230 N/A N/A .2868 N/A N/A
y=0.25 .0184 N/A N/A 2122 N/A N/A

$=0.40 .0351 N/A N/A 3104 N/A N/A

7=0.20 .0182 N/A N/A 2096 N/A N/A
5 30 $=0.1 .0189 .0510 .1948 .1900 1.502 2235
y=0.3 .0101 .0077 .0038 1412 .1995 1158
£=0.25 .0161 .0066 .1401 1793 1154 .1708
y=0.25 .0081 .0047 .0048 1427 1169 .1149
$=0.40 .0221 .0567 2608 .2002 1.266 2871
y=0.20 0112 .0061 .0072 .1400 .1885 1165
5 50 £=0.1 .0015 .0016 .0877 1354 .0841 .1193
y=0.3 .0069 .0035 .0049 1119 .0901 .0889
p=0.25 .0002 .0036 1296 .1441 .1106 .1585
y=0.25 .0101 .0034 .0051 1116 .0916 .0897
$=0.40 .0023 .0196 .1853 1529 .1939 2114
y=0.20 .0118 .0036 .0065 112 .0946 .0900

10 35 £=0.1 .0008 N/A N/A .0760 N/A N/A
y=0.3 .0071 N/A N/A .0698 N/A N/A

p=0.25 .0005 N/A N/A .0813 N/A N/A

y=0.25 .0106 N/A N/A .0692 N/A N/A

$=0.40 .0013 N/A N/A .0861 N/A N/A

7=0.20 .0125 N/A N/A .0686 N/A N/A
10 40 p=0.1 .0016 .0007 .0779 .0736 .0479 .0900
y=0.3 .0070 .0015 .0005 .0646 .0589 .0588
£=0.25 .0014 .0019 .1042 .0757 .0527 1146
y=0.25 .0095 .0016 .0038 .0655 .0596 .0603
£=0.40 .0019 .0029 1315 .0814 .0578 .1409
y=0.20 0112 .0016 .0074 .0651 .0581 .0600
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10 100 £=0.1 .0023 .0005 .0358 .0468 .0302 .0474

y=0.3 .0057 .0010 .0009 .0418 .0370 .0370
£=0.25 .0035 .0003 .0506 .0494 .0326 .0612
y=0.25 .0087 .0009 .0022 .0417 .0365 .0367
£=0.40 .0020 .0014 .0704 .0516 .0360 .0802
y=0.20 0111 .0013 .0040 .0420 .0361 .0368
100 10 £=0.1 .0006 N/A N/A .0392 N/A N/A
y=0.3 .0061 N/A N/A .0436 N/A N/A
£=0.25 .0026 N/A N/A .0367 N/A N/A
y=0.25 .0091 N/A N/A .0475 N/A N/A
£=0.40 .0045 N/A N/A .0416 N/A N/A
y=0.20 .0106 N/A N/A .0411 N/A N/A
5. Application

Panel data were analyzed for a ten-year period, (1995-2004, T=10) for 179 quoted Greek
companies for which data were available for all ten years. Credit institutions and insurance
companies were excluded. Non-consolidated annual data from the balance sheets were used.
The following variables and model were fitted

Total Operating Income - Operating Profit £22410°)

EXPOA = In( o
SSELS

Equity N

EQUOL =In 107),
Q (Liabilities )

Current Assets - Inventory 110)

LIQOL =In
Q ( Liabilities

The numerator of the ratio in EXPOA is a result from financial operations and it is a measure
for the expenses. The numerator of the ratio in L/IQOL includes the so-called quick current
assets, and it is a measure for liquidity. The denominators of all three ratios in EQUOL, LIQOL
and EXPOA count for the size of the companies. In the ratios of EQUOL and LIQOL we divide
by liabilities and not by assets because the numerators are included in the assets and not in
the liabilities. The constants added to the ratios make the logarithmic quantities positive.

We fitted a dynamic panel data model with random effects under the RLS method described
in Section 3, under the methods transformed MLE (TMLE) and GMM (Arellano-Bond), and
under the combined methods RLS-TMLE and RLS-GMM and the results are shown in Table 3.
The models were fitted on the first nine years 1995-2003 and the last year 2004 was used for
out-of-sample predictions. The RMSE’s for the out-of-sample predictions are presented in the
last column of Table 3. We remind that the combined methods RLS-TMLE and RLS-GMM first
apply the TMLE and the GMM methods to differences and then apply the restricted regression
of Equation (20) to levels to estimate the dynamic coefficient.

The methods RLS-TMLE, RLS, and RLS-GMM provide smaller RMSE’s than the GMM and TMLE
methods and this is a numerical indication that they provide better estimates for this
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particular application. By comparing the estimated coefficients of the regressors EQUOL and
LIQOL under the methods RLS, GMM and TMLE we note that the estimates of RLS are close to
the middle between the GMM and the TMLE estimates. For instance, the estimates for the
coefficient of the variable EQUOL under the methods GMM and TMLE are 0.0017 and 0.0021
and the estimate under RLS is 0.0019, right in the middle. Similarly, the estimates for the
coefficient of the variable L/IQOL under the methods GMM and TMLE are 0.0055 and 0.0043
and the estimate under RLS is 0.0049, again right in the middle. The estimates of the dynamic
coefficient for the methods RLS-TMLE, RLS, RLS-GMM, GMM and TMLE are 0.3849, 0.3819,
0.3781, 0.2223, and 0.3734. The coefficients of the dynamic coefficient for RLS-TMLE, RLS, and
RLS-GMM are very close to each other and closer to the corresponding TMLE estimate than to
the GMM estimate.

The results of the application indicate that the RLS method itself or combined with TMLE or
GMM provide more accurate out-of-sample predictions and therefore better coefficient
estimates than the GMM and the TMLE methods in the considered application. In this
application if we would like to fit the model to the 30 largest companies that would be
feasible by RLS and not by GMM and TMLE, due to small N relative to T, as we explained
earlier.

Table 3. Estimates for the years 1995-2003 and Root Mean Square Errors of predicted values
for the out of sample year of 2004.

Method Estimates RMSE

EXPOA,, =038- EXPOA,, , +0.0021- EQUOL,, +0.0043- LIQOL,, + | 0.0083

SLSTMLE +0.44+0.058- EXPOA4,

0.0084

RLS | EXPOA,, =0.38- EXPOA,, , +0.0019- EQUOL, , +0.0049- LIQOL,, +
+0.44+0.058- EXPOA,, ,

EXPO4,, =0.38- EXPO4,, , +0.0017- EQUOL,, +0.0055- LIQOL,,+ | 0.0086

LGN +0.44+0.057- EXPOA,,

0.0088

GMM | AEXPO4,, =0.22- AEXPOA,, , +0.0017- AEQUOL, , +0.0055- ALIQOI

0.0096

TMLE | AEXPOA,, =0.37- AEXPO4,, , +0.0021- AEQUOL, , +0.0043- ALIQOI!
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Abstract: In the present the entrance probabilities and the probability distribution of the
number of transitions to a state are studied to provide some answers to questions related to
state occupancies for the semi Markov model. Biological sequences and Web navigation are
two cases that initially seem to be different but to a certain extend they do have similarities.
Two main aspects of word occurrences in biological sequences are: (a) where do they occur
and (b) how many times do they occur. In Web navigation the similar questions are (a) when
a node is visited and (b) how many times a node is visited. So, the theoretical results of this
study are applied to model these two cases and derive distributions of word location or node
occurrence and frequency of occurrences. Rewards/costs are included in the Web navigation
model and analytic forms for the means, variances and moments of total interval
rewards/costs are provided.

Keywords: Semi Markov chains, Entrance probabilities, State occupancies, Biological
sequences, Words, Web navigation, Rewards/Costs

1 Introduction

In semi Markov processes we are sometimes concerned with the entrance of the
process into a state rather than with the presence of the process in that state. Also
because the semi Markov model allows a distinction between the number of time
units that have passed and the number of transitions that have occurred we have the
opportunity of asking the probability distribution of the number of transitions to a
state that occurred through a time interval (Howard (1971)). An overview of
probabilistic and statistical properties of words, as occurrences in biological
sequences is provided in Reinert et al (2000). Studies of biological sequences using
semi Markov models can be found in Chryssaphinou et al (2008), Barbu &
Limnios (2008). Some cases of Markov and semi Markov reward models are
examined in McClean (2004,2008), Papadopoulou (2001,2004). In this paper new
sequences of matrices referring to probabilities of the semi Markov model are
studied and an extension of the sequences given in Papadopoulou (1998, 2007) is
given for two reasons: First, to provide some answers to questions referring to state
occupancies i.e. when and how many times does a state appear and second to apply
these results in order to answer the equivalent questions concerning biological
sequences and web navigation. In Section 2, the entrance probabilities concerned
with the number of transitions are defined and a closed analytic form in relation
with the basic parameters is provided. Some asymptotic results are derived. Then,
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the probability distribution of the number of transitions to a specific state through a
time interval is defined and a study of the basic recursive equation applying
geometric transforms is provided. In Sections 3 and 4 definitions and results of
Section 2 are applied in biological sequences and web navigation. Finally, in
Section 4 rewards/costs are included in the model and analytic forms for the
means, variances and moments of the total interval rewards/costs produced by
navigation, through a time interval, are provided.

2 The Semi Markov Model

In semi Markov processes we are sometimes concerned with the entrance of the
process into a state rather than with the presence of the process in that state. Also
because the semi Markov model allows a distinction between the number of time
units that have passed and the number of transitions that have occurred we have the
opportunity of asking the probability distribution of the number of transitions that
occurred in a specific time interval. So, let us now consider a semi Markov chain
with finite state space S={1,2,...,N}, P(S):{pij (S)}i jes the transition probability

matrix of the imbedded Markov chain and H(m):{hij (m)}i jes the holding time

mass function matrix for the semi Markov chain. Let also
E(k/ n,s) =18j (k/n,s), jes be the matrix where g (k/n,s) is the probability that

the process which entered state i at time S will enter state j at time s+n on its k-th
transition concerning the interval (s,5+n]. Using probabilistic argument we can
derive the following equation

n
E(k/n,s)= s(k)S(n)I + ZC(s,m)E(k —-1/n—m,s+m) (1)
m=1
where C(s,m) =P(s)OH(m) is the Hadamard product of the matrices P(s), H(m)
and o(n)=1 if n=0 or else o(n)=0. If we follow a similar methodology with that

of Papadopoulou (1998) we can provide a closed analytic form, in relation with the
basic parameters, for the matrix E(k /n, S) given below

n
E0/n,s)=0o(nI, E(1/n,s) =C(s,n), E(2/n,s) = ZC(S, m)C(s+m,n—m),
m=I

n

E(k/n,s) = Zsj(k—z,s,mk_z)C(s+j—1,n—j+1) =Spa(k=1,5,mg_1),
j=2

for every k>3 2)

- j—k+1 j-1

k-1
jlk,s,my )= Z Z Z H C(s+myg_p —L,M_r_g —My_r)»

mg =2 mg_1=l+mg  mp=l+mp r=-1
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for j>k+2, while for j<k+2, sj(k,s,mk):o.

Asymptotically and if we consider that the imbedded Markov chain converges as
s—w, i.e. limg_y,, P(S)=P and take geometric transforms over k and n in equation

(1) we finally get that E 99 (y/z)= (1- yC9(2))". 3)
Another interesting question is the one that refers to the number of transitions to a
state during a time interval. Thus, if we define the matrix
VS (X/ n, S) ={vsj(X/N,9)}; jes » Where vsjj(x/n,s) is the probability that the number

of transitions during the interval (S,5+n] to state j equals X given that the process
entered state i at time S, then we can derive the following results
Case 1 In that case when i=j we shall not count the initial occupancy at time s in
computing the number of visits to state j. If we define as ~W(n,s) ={>Wi (n,9)}ies
o N
and ~w;(n,s)= Z Zpi j (S)h; j(M) we can derive equation (4) below
m=n+1 j=I

n
VS(x/n,s)=5(x)" W (n,s)U+ ZC(S, m) [VS (x=1/n—m,s+m)0I]
m=0

n
+ D C(s,m) [VS (x/n—m,5+m) o(U-D)] 4)
m=0
where U is the matrix with all elements equal to 1. Asymptotically and if we
consider that the imbedded Markov chain converges as s >, i.e. limg_,,, P(S)=P

and take geometric transforms over x and n in equation (4) we have

VS¥(y/z) =WIz)U+(y-1DCY(z) [VS¥(y/z) 011+ CY(z) VS ¥(y/z). (5)
Equation (5) is of the form A=C;+C,[A0I]. We can use the property
[CIAOT][OI=[COT[AOI] (Howard 1971) to replace the term [VS 99 (y/z)01] and

then solve to find VS99 (y/ Z). If we apply some more properties of the core
matrix (Howard 1971) we can get the solution of equation (5) as follows
vs®(y/2) - v 1Y p-es ! 9o e a-pin-cs @ ton|
-z -z
(6)
Case 2. In that case when i=j we shall count the initial occupancy at time s in
computing the number of visits to state j. Then we have

1

n
VS(x/n,s)=[U-DIO[ ()" W (n,s)U + ZC(s,m) [VS(x=1/n—m,s+m) oI+
m=0
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n
+ ZC(S, m) [VS (x/n—m,s+m)0(U-D]+ s(x-1sn)” W (n,s)+
m=0

n

+I0[ ZC(s,m) [VS (x—l/n—m,s+m)<>(U—I)]]. @)
m=0

Asymptotically and if we consider that the imbedded Markov chain converges as

s >0, (limg_,, P(S)=P) and take geometric transforms over X and n in (7) we get

Vs 9(y/z)=1-CO@1" WU -1]+y] +(y-) 1-CO @)
[1C%(z) VS B (y/2)01 ] +(y 1) [I-Co(2)] " [CY(2)0(U - 1) [VS 9 (y/z)o1]
(®)
Equation (8) is of the form A=C;+C,[[C;A]CI]+C4[ACI]. We can use again the
property [C[ACI]]OI=[COI][AQI] in order to replace at first the term [[C3A]CI] by
[1-[C5C, 0L ' [[C3C1 10T HI-[C3C2 101 ' [[C3Ca]OI][AOT] and result to the equation
A=C+C;,[[I-[C3C 101 [[C3C]OI+[I-[C3C 101 [[C3C4]OT] [AOI] [ +C4[AOL]. We
can apply once more the same technique, to replace the remaining term [ACQI].
Finally, and if we use again properties of the core matrix and equation

“wo (z)=11- 2! [10[C9(z)U]] we can provide the solution of (8) below
A=C+Cy[I-[C3C,]01] " [[C3C[OT[H[C[I-[C3Co]OT]  [[C3C4l OT]+C] [1-[[C0T]
[1-[C3Co 0T [[C3C A OTH[CoOT] ] [[COT+HCLOT [I-[CCo 0T [[CSChloT,  (9)
where  C=[1-2]"[U-[T-C% ()" (o[ (z)u1y] + yf1-c9)17",
C(y-DI-C¥@)1 !, =¥, Cm(y-1) I-C¥ ()] ! [CO(zo[u-1]].
Remark In the above we had to deal with two equations of the following form
A=C+ G,|A0I], A=C+C,[[C;A]0I]+ C4[AQI]. So, it is interesting to provide the

general type for equations of this form and the basic steps of the applied technique
in order to find the solution. The form is as follows

n k-1
A=Cyt D i [HBiA]M . ByL (10)
k=1 i=0
n-1
Step 1: We construct the term HBiA OI |using equation (10) and the property
i=0

[CIACI]]OI=[COI][AQ]I] and then find it in relation with the rest of the terms i.e.

k—1
[HBiA}OI ,k=1,2,....n-1. We replace the result in equation (10) and reduce it
i=0
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n-1 k-1

toA:C})JrZC}( [1Bia 1|, Be=1 (11)
k=1 i=0
n-1 na
where C;=Cq+Cp|1-| [ |BiCq [01] ||]]BiCo o1},
i=0 i=0
n-1 na
Cy=C +Cq|1-| [ IBicn x| || []BiCk 01].
i=0 i=0
n—
Step X (x=2,...,n-1) We construct the term B;A [01| following similar
i=0
procedure as in Step 1 and result to the equation
n—x k-1
A=Cy+ Y Cx|| T [ Bia o1 |, Be= (12)
k=1 i=0

Step n The result from Step n-1 is the equation A= CB_I +C?_1 [A0I]. If we follow

once more similar procedure as in Step 1 we will result to the solution A= CS .

3 Modeling a biological Sequence

In what follows, the above definitions and results will be applied in biological
sequences. In the present, a biological sequence is either a DNA or a protein
sequence i.e. a sequence of letters either in the 4-letter DNA alphabet {A, C, G, T}
or the 20-letter amino acid alphabet. To model such a sequence we will consider
the semi Markov chain with discrete finite state space S={wy,Wy,...,wWy} where w;,
i=1,2,...,N is a specific word i.e. a combination of letters taken from the alphabet
with known length (l;). Through out the present we will consider only finite words
and non—overlapping occurrences of them. Two main aspects of word occurrences
in biological sequences are: (a) where do they occur and (b) how many times do
they occur. To provide some answers, we will use the previously defined semi
Markov model to derive distributions of word location and frequency of
occurrences. Let us define as P(S) the transition probability matrix with elements
equal to the probabilities of transition between the words i.e. pjj(S)=P[next
occurrence is of word W; given that the previous occurrence was of the word w; at
position S]. Let us now assume that the letters that appear between successive
words correspond to the holding times of the semi Markov chain. Thus, if the
previous word occurred is W; at position S, the next one is W; and the number of
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letters in between is m then the holding time in state w; is m while the position of w;
is at s+m+Il; where [; is the length of w;. Then, if we define as 8j (k/n,s,l;)=P[the

word w; will occur at s+n+l; position and k word occurrences will happen during
the interval (s,5+n+I;] given that the word w; occurred at position ], we can derive
the following recursive equation
N n
g (k/n,5,1) =i +NSK)+ D> pik g (e (k =1/n—m—l,s+m+1j, ) (13)
k=1m=0

with initial conditions g 0/-lj,s,1) = dij» eij(k/l—li,8,|i) =0, §j (k/2-1;,s,lj)=0,

s 8j (k/-1s,1;)=0, &j (k/0,s,1;)=0, where h;;(-) is the conditional probability

function of the number of letters that appear after the occurrence of w; given that
the next occurrence is that of the word w;. If we take geometric transforms over k
in relation (13) and replace the transform variable with 1 we obtain interesting
results concerning the probabilities of the word occurrence at specific position, i.e.
probabilities concerned only with position and not with both position and number
of word occurrences. Similarly, we can get recursive equations for related
probabilities such as probabilities of the first occurrence of a word concerned with
position or number of word occurrences or both. Finally, if we define vs;j(x/n,s,l;)
to be the probability that the number of occurrences of w; during (s,s+n+l;] equals
X given that the word w; occurred at position S, and |; is the length of w; , we have

n
VSjj (x/n,8,1i) = 5(X)" Wi (n,s) + ZCU- (s, mvsj; (x—l/n—m—lj,s+m+li,lj)+
m=0
n
+ ZZCik(s,m)vskj(x/n—m—lk,5+m+li,Ik). (14)

k#jm=0

4 Modeling Web navigation

As in section 3 if we apply definitions and results of section 2 we can model Web
navigation as a semi Markov chain. The state space S={1,2,...,N} of the chain
represents the nodes that a web user possibly visits at some time. The matrix P(S)

defines transition probabilities between the nodes and the matrix H(m) defines the
probabilities of the holding times to the nodes. Two main aspects referring to nodes
in Web navigation are (a) when a node is visited and (b) how many times a node is
visited. Let E(k/n,s)={gjj(k/n,s)}j jes be the matrix where gjj(k/n,s) is the
probability that the user which entered node i at time s will enter node j at time s+n
on its k-th transition concerning the interval (5,5+n]. Also let
A (X/ n,s) =1{vsij(X/N,9)}j jes be the matrix where vsjj(x/n,s) is the probability
that the number of visits to node j, during the interval (s,5+n], equals X given that
the user entered node i at time S. Equations (2), (3) and (4), (6), (7), (9) provide
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some answers for the distribution of node occurrences and frequency of visits to a
node at any time and for the steady state. Another interesting issue arises if we
include rewards/costs of making a transition from one node to another or holding
to the same node for some time. So, let us define as kjj the reward/cost for making

a transition from node i to j and ¢j the reward/cost for occupying node i during a
time interval of length 1. In what follows, we provide analytic forms for the means
variances and moments of the total interval cost. If we define the vector v(t,n) of
the expected costs produced by a users navigation through the interval (t,n] as
follows v(t,n) = {vi (t,n)}i , Vj(t,n)=[the expected cost produced until time n,
given that navigation started from node i at time t], it can be proved that

v(t,n) =(G(n—-t)1")0c;(n—t)+by(n—t)+

n-t
+ Z[POH(j -D+E(j-DI(G(n—-t—j+D1")0cj(n—t—j+D+by(n—t—j+1)]
j=2
(15)
where

N 0 N 0
G(n) =diag Zpli Zhij(m),...,z Pkj thj(m) ,ep(n)=[ncy,....,ncy T,

j=1 m=n+1 j=1 m=n+1

n N n
by(n) = Y [POHMOCK (MU' =1 pyj > hy(m)me; +k;;1y  and
m=1 j=1  m=l ics
E(n) = {gjj(N)}j jes, is the matrix of the entrance probabilities (Papadopoulou
(2007)). Similarly, if we define as CKy(m) the matrix CK,(m)=

:{(mci+kij)x}i,jess for x=1,2,... and CKg(m)=U, c¢x(n) the vector

¢, (N) ={c'n*Yics, for x=1,2,..., v¥(t,n) the vector v*(t,n)={V(t,N)}is >
vi(t,n) is equal to the x-th moment of cost produced until time n, given that
navigation started from node i at time t, for x=2,3,..., v,(t,n) the vector
vy (t,n) = {[vj (t,n)] }ics , for x=2.3,..., while for x=0,1 vy(t,n) is defined to be
vo(t,n) =1 and vy(t,n)=v(t,n), by(n) the vector

n N n
by (M) = Y [POHMCK (' =1 pij > by (m)me; +k;;
m=1 j=1 m=1 ieS
for x=1,2,... , it can be proved that the vector of the r-th moments of the cost
through the interval (t,n] is equal to

vi(t,n) = (G(N—D)1')0¢, (N—1) +
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r n-t

+ Z[:Jz [POH(M)IO[CK , (M)]] [v(t +m, N)0..0v(t +m, )] (16)
x=0 m=1 r—xterms

Finally, if we define the vector of the variances of the cost as follows

var(t,n) = {VarI (t,n)}i, vatj (t,n):[the variance of the cost for (t,n] given that

navigation started from node i at time t] applying the previous results we can get
n-t
Var(t,n) = (G(n—t)1)0cy(N—t)+by(n—t) + 22 [POH(M)]OCK ()]
m=1
[(G(n—t+m)1)0¢,(Nn—t+m)+by(n—t+m)
n—-t+m
+ Z[POH(j -D+E(j-DI(G(n—t+m—j+D1")0c;(n—t+m—j+1)+
=2
n-t
+bi(n—t+m—j+1)]]+ Z[POH(m)][v(t +m,n)ov(t+m,n)]-[v(t,n)Ov(t,n)]
m=1
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Abstract. We address the recursive computation of the a posteriori filtering pdf
Pn|n in a Hidden Markov Chain (HMC). Classically p,,,, is computed via the recur-
Sion Pr,—1jn—1 — Pnln—1 — Pn|n- In this paper we explore direct, prediction-based
(P-based) and smoothing-based (S-based) alternative loops for propagating pi,,.
We next address sequential Monte Carlo (SMC) implementations of these filtering
paths, and compare our algorithms via simulations.

Keywords: Sequential Monte Carlo, Particle filtering, Sampling Importance Re-
sampling.

1 Introduction

Let (x,y) be an HMC : p(Xo:n, yo:n) = p(x0) [112y p(xilxi—1) [Ti—o P(yilxi)-
Let py|m be a shorthand notation for p(x,|yo.m). Bayesian filtering consists
in computing py,,, or at least some approximation of the measure p(dx,|yo:n)
with pdf p(X,|yo:n). Pnjn can be computed from p,_1j,,—1 by using the path
Prn—1jn—1 Lt Pnjn—1 LA Pn|n, in which we first predict state x,, based on the
same measurements (whence superscript P), and then update the measure-
ments set {yk}z;é with the new data y,, (whence superscript U). This path
is described by the well known equation (here A stands for numerator) :

P(Xnlyon—1)

p(yn|xn)/p(Xn|X’ﬂ*1)p(xn71|y0:n71)dxn71
p(Yn|y0:n71) = deXn

(1)

p(Xnlyon) =

However, computing (1) is often impossible in practice, so many approximate
techniques have been developed. Among them, particle filters (PF) [5] [1] are
SMC methods which propagate a discrete approximation of p(dx,|yo.n)-

In this paper we do not try to further improve the PF algorithms based
on (1); we rather focus on (1) itself, or indeed explore alternate paths for
computing p,|, recursively, even if p,, is obtained as a byproduct.

Let us consider only those paths in which one time index is incremented
at a time. The first alternative is p,_1jn—1 — Pn—1|n — Pn|n- Both paths
compute py, recursively and differ only by the intermediate step which is
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@— n— Pn n—\ Pn n—
Direct i
| e (P,U)
(U, P) l Ql . P)
Putn | on) EZ=m
(P,U) P-based
(U, P) sy filtering
5-based Prn—1jn+1 | Print1 | density

Fig.1. The direct, P-based and S-based filtering paths.

either the one step predictive pdf py,—1, or the one step smoothing pdf
Pn—1jn- Now, in turn p,|,—; and p,,_;},, can be propagated via the two paths
obtained by moving one index and next the other. This observation yields six
paths for computing p,,, recursively; the two paths already mentioned are
"direct”, i.e. py, is computed as the output of a loop with input p,_1|,—1;
two other paths are P-based, i.e. py, is computed indirectly from py,_1,
but the recursion itself now acts on p,|,_1; and two paths are S-based, see
Fig. 1. Out of these 6 paths only 4 are distinct, because the two paths
at the boundary direct/P-based and direct/S-based coincide (for instance,
the direct path p,_1;,—1 — Pnjn—1 — Pn|n coincides, up to a shift in time,
with the P-based path p,j,—1 — Ppjn — Pnt1jn). The paper is organized
as follows. We recall the four direct and indirect filtering paths in §2 and
consider their SMC implementations in §3 (see [3] for details). §4 is devoted
to simulations.

2 Direct, P-based and S-based paths

e The direct path p,_1j,—1 = Pnjn—1 — Pn|n is described by (1). Since it
involves the one-step ahead prediction pdf p,|,_; we will call it 1-P;

e The alternate direct path p,_1jp,—1 — Pn—1jn — PnJn involves the one
step backward smoothing pdf p,,_;, and will thus be denoted as 1-S :

_ < |x P(Yn|Xn71)P(Xn71|YO:n71) - .
p(Xn|YO:n) _/p( n| n—l;}’n) [p(yn|y0:n71) :f/\/dxnfl]d n—1, (2)

P(Xn—1]yo:n)

e P-based paths compute p,|,, but via a recursive loop involving py|,—1-
Path pp|n—1 — Pnjn — Pn+ijn coincides with 1-P (up to a shift in time).
The other P-based path py,—1 — Pryijn—1 — Pn+1|n involves the two-
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step ahead prediction pdf p,,1j,—1 and will thus be denoted by 2-P :

P(Xn+1 |y0:n71)

p(Yn|Xn+1; yo:n—l) /p(xn-l—l |Xn)p(xn|y0:n—1)dxn

;(3)

P\ Xn+11Y0o:n) =

Brotafyom) Pmlyom 1) = [ Ndnss

e S-based paths compute p,|,, but via a recursive loop involving p,_1j,.
Path p,,_1jn — Pnjn — Pnjn+1 coincides with (2) (up to a shift in time).
The other S-based path p,_1), — Pp—1jn+1 — Pnjnt1 involves the two-
step backward smoothing pdf p,,_1,41 and will be denoted by 2-S :

P(Yn+1|Xn71,Yn)P(an1|}’0:n)
P(Xn|yo: 1=/]9X Xn—1,Yn, Yn+1)
( n| n-+ ) ( n| n nyYn+1) P(yn+1|}’0;n) :deanl

anfl.

P(Xn—1]y0:nt1)

(4)

3 SMC implementations

3.1 A practical toolbox

Each path (1) to (4) is made of the succession of a propagation step P (which

transforms some pdf p(x;) into p(x1) Rl p(x2) = [ p(xa|x1)p(x1)dx1), and

of a Bayesian or updating step U (which transforms some density p(x) into
U .

p(x) = p(x|y) x p(y|x)p(x)), or vice versa. Let us recall how we can propa-

gate a set of points sampled from p(x;) (resp. from p(x)) into a set of points

sampled (at least approximatively) from p(x2) (resp. from p(x|y)).

1. Propagating. Starting from N i.i.d. samples {x}}Y, ~ p(x1), we get N
i.i.d. samples {x5} Y, ~ p(x2) by sampling, for each i, x} from p(xz|x?).
This is nothing but the Sampling step S of PF algorithms; ‘

2. Updating [8]. Starting from {x'} | ~ p(x), we get N points {x'}¥; (ap-
proximately) independently sampled from p(x|y) by associating to each
sample x’ a weight proportional to p(y|x’), and then sampling {X'}¥, ~
Zf;l %6{, (dx). We just described nothing but the Weighting

i=1 X"
step W, followed by the Resampling step R of PF algorithms.

3.2 SMC algorithms

We now routinely derive generic SMC implementations of (1) to (4).

1-P. (1) gives the Bootstrap [6] : Let p(dx,—1|yo:n—1) &~ Zfil L0

i
n—

l(anfl).
S. For 1 <i < N, sample X!, from p(x,|x}_;);
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W. For 1 <i < N, compute w), o p(yn|X5), >, w = 1;

R. For 1 <i < N, sample x!, from Zfil w0z (dxn).

(2) gives [2, Algorithm 8.1.1. p. 253], which is a reordering of the SIR
algorithm with optimal importance distribution p(x,|X,—1,¥») (and sys-
tematic resampling) (see [4], where the successive steps are S — W — R):
Let p(dxp—1|yon—1) = Zf\; %6x;_1(dxn—1)§

W. For 1 <i < N, compute w’, o< p(yn|x%,_1), Ei\;l wt = 1;

R. For 1 <i< N, sample X', ~ SN wid _@xp—1);

S. For 1 <i < N, sample x!, from p(x,|X,_1,¥n)-

Implementing (3) would require the knowledge of p(y,|Xn+1,Y0:n—1), but
this pdf is not directly available. We thus consider the alternative path
Pnln—1 =7 Pnnd+1in—1 = Pnn+iln — Pnti|n, given by

P(Xn,Xn+1|Y0in—1)

P(ynlxn) [P(Xnt1]%n)p(Xn[yo:n—1)] d

X . 5
p(yn|y0:n71) = deXnanJrl ( )

p(Xnt1lyom) = /

Let us implement (5). Let p(dxy|yomn—1) = 27]\;1 %5% (dxy).
S. For 1 <i < N, sample X}, | ~ p(Xn41]X]},);

W. For 1 <i < N, compute w!, o< p(yn|xi), Zf\; wt = 1;
R. For 1 <i < N, sample x/, ., from Efvzl wt Ogi +1(dxnﬂ).

Filtering. p(dx,|yom) ~ S, w! Oy (dX).

We now implement (4). Let p(dx,—1|yo:n) = Zivzl % 5x;,1(dxn*1)~

W. For 1 <i < N, compute w,, | o< p(¥n+1|X4_1,¥n), Zi\;l wi =1

R. For 1 < i < N, sample from Zfil wfm+15x;,1(dxn*1)' We get N
points X’,_, (approximately) distributed ~ p(dx,—1|yo0:n+1);

S. For1 <i < N,samplex!, ~ p(X,|X,,_1,Yn,Yns1); then p(dx,|yo.ns1)
~ Yl w0, (). | |

Filtering. For 1 < i < N, sample X, ,; ~ p(Xp41/X},,¥nt1); then

N
P(dXni1|yont1) = D iq %‘%g‘lﬂ(d?{nﬂ)

Simulations

4.1 Simulations, linear model

We first consider the state-space model : z,11 = 0.22,4+Up, Yn = 5Ty +vy, in
which u,, ~ N (0,Q) and v, ~ N (0, R) are i.i.d., mutually independent and
independent of g ~ N (0.5,0.5). Even though exact Kalman filtering (KF) is
available, we compare to that benchmark solution the four SMC algorithms
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2-P, 1-P, 1-5, 2-S, and the SIR algorithm with optimal importance function
p(Xn|Xn—1,yn) (simply denoted SIR). Let J = 5 Zi,oﬂ(ﬁlo 230:01@1471 -
27)2)2 (200 is the number of realizations). Let N = 50 and R = 2. As we
see from Table 1 S-based algorithms outperform P-based ones, and for a class
of algorithms (P- or S-based) better results occur when updating precedes
propagation. For @Q = 0.1 all algorithms are similar, but the P-based ones
degrade as @ increases, for strong variations of x,, are better tracked when
yn (for SIR or 1-S) or y, and yp4+1 (for 2-S) are taken into account. Next
in Fig. 2 @ = 0.1 and J evolves with N. The ordering of the algorithms is
maintained, but when N increases SIR, 1-S, 2-S and KF become very close.

2P | 1P | SIR | 18 2S | KF
Q = 0.1]0.221996933]0.217401933[0.215515333] 0.2136542]0.213415733]0.2116127
Q=110.4304519 | 0.2955335 | 0.2745811 [0.2724687| 0.2723657 [0.2696133
Q=3 0.8114436 | 0.3258072 | 0.2827361 [0.2801141] 0.2773301 [0.2766857
Q=5
Q

1.0114103 | 0.3932067 | 0.2856878 |0.2840456| 0.2834111 (0.2810438
= 10| 1.5200521 | 0.4607805 | 0.2870748 |0.2853349| 0.2848457 |0.2822257

Table 1. Empirical standard deviation J, linear model.
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Fig.2. Empirical standard deviation J, linear model.

4.2 Simulations, Kitagawa model

Let us now consider the model

Yn —xi/20+vn ’
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6 Petetin Y. et al.

with fn(25,) = 0.52,+ 257725 +8cos(1.2(n+1)), and u, ~ N(0, Q) and v, ~

N(0, R) are i.i.d., mutually independent and independent of zo ~ N(0.5,0.5).
In (6) p(xn|Tn—1,Yn) and p(yn|z,—1) cannot be computed exactly. So we use
some approximation (linearization [4], [7], EMM [7] or UPF [9]).

2P | 1-P__[SIR(EMM)[SIR(UPF)[1-S(EMM)[1-S(UPF)
R = 0.5/5.0124197|3.7637961] 3.4181757 | 3.5046666 | 2.7191797 | 2.734824
R =1 | 4.422289 [3.6087193| 3.447493 |3.6076351 | 2.8830467 |2.9981435
R =5 |4.1079475]3.6386135| 3.705746 |3.6928957 | 3.3874559 |3.3369996
R = 10 |4.4682053]4.0435623| 4.020258 |4.0743315 | 3.7412504 |3.8619037
R = 205.0894144]5.0229244] 4.8433825 | 4.8105053 | 4.7580243 |4.8140369

Table 2. Empirical standard deviation J, Kitagawa model.

2-P | 1-P [SIR(EMM)[SIR(UPF)[1-S(EMM)[1-S(UPF)
N =50 |7.1328]5.5397] 52445 | 51169 | 4.7151 | 4.8542
N = 100[5.9246{4.9741| 4.8057 | 4.9631 | 4.6840 | 4.8111
N = 150(5.4544[4.7726] 4.8290 | 4.7241 | 4.5828 | 4.5029
N = 200[5.1171|4.6771] 4.5407 | 4.7033 | 4.6551 | 4.5327
N = 300[4.9550[4.5545] 4.4494 | 4.4312 | 4.4449 | 4.4393

Table 3. Empirical standard deviation 7, Kitagawa model.

Let @ =1, N = 50, and in UPF o« = 1 and g = 0. Table 2 displays
J for different values of R. The ordering of the algorithms is maintained;
the difference between SIR and 1-S becomes significant; and for 1-S and
SIR EMM provides better results than UPF. Note that in (6) f,, has strong
variations, so the influence of the new data vy, is essential. This explains the
difference between P-based algorithms and the SIR and 1-S ones, at least
when R is small. On the other hand if the observations become very noisy
(R = 10) the performance of 2-P is unaltered, while SIR, and 1-S degrade.

Next in Table 3 we set () = 10 and R = 1 and we see how J evolves with
N. Let now o = 0.94 and 8 = 0. As above, 1-S outperforms the P-based
and the SIR algorithms, and we observe e.g. that 1-S(EMM) with N = 50
particles gives about the same result as 1-P with N = 200 particles.

4.3 Simulations, semi-linear models

In §4.2 we compared the P-based, SIR and 1-S algorithms, but not the 2-S
one, because in (6) p(zn|Tn-1,Yn, Yn+1) and p(Ynt1|Tn—1,yn) are difficult to
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implement. Yet 2-S can be used in some situations. Let us first consider the
non linear model with linear measurements equation

Tn+1 = fn(xn) + up

in which u, ~ N(0,Q) and v, ~ N(0, R) are i.i.d., mutually independent
and independent of xy ~ A(0,1) (the first equation of (6) and (7) coincide).

In (7) p(zp|Tn—1,yn) and p(yn|zn—1) can be computed easily. p(zy|zp_1,
Yn, Yn+1) cannot, but the problem of computing p(xy,|Tn—1, Yn, Ynt1) from
(p(xn|Tn—1,Yn); P(Yn+1|Tn)) is the same as that of computing p(zy |Tn—1,yn)
from (p(xn|Tn-1), p(yn|zs)) and so the approximation techniques recalled in
§4.2 can be adapted to (7) (a difference however is that the exact moments
of p(xn|Tn—1,Yn, Yn+1) cannot be computed in (7)).

Let R = 2 and N = 50. For 2-S we use either a second-order Taylor
series expansion, or UPF with o = 0.73 and 3 = a? — 1. Table 4 displays
J as a function of Q. As we can see, the ordering 2-P < 1-P < SIR < 1-S
is maintained. 2-S outperforms 1-S if @ is small, but 1-S performs better if
@ increases. The reason why is that in (7) p(zp|Tn—1,¥n) (used in 1-S) can
be computed exactly but p(z,|Tn—1, Yn, Yn+1) (used in 2-S) cannot. Since all
techniques indeed approximate f,, (up to the first orders), the results strongly
depend on this function. In (6) f, has strong variations; all orders matter, so
all approximations of f,, at some point becomes very poor outside of a small
neighbourghood of that point, and such situations do happen if @) gets large.

2P 1-P SIR 1-S  [2-S(Taylor)[2-S(UPF)
Q = 0.1] 1.649036 |1.5608385|1.5513972] 1.1820396] 1.1017785 |1.0886346
Q = 1 |2.1070664] 1.8257239]1.6739058|1.5607033| 2.4151141 |1.6287723
Q = 10]2.8134363|2.4198548|2.3303342|2.2850875| 2.8866604 |2.4475675
Q = 503.8612771|2.9077013|2.7306043] 2.70971 | 2.7548658 |2.7188303

Table 4. Empirical standard deviation J, semi-linear model.

Finally let us consider the semi-linear model (7), but in which the evolu-
tion equation is replaced by x,,+1 = arctanz, +u,. Let a = 0.88, 3 = a®—1,
N =50 and R = 2. Table 6 displays J in terms of Q). By contrast with (7),
function f,, = arctan is now very smooth. As a result all algorithms give sat-
isfactory results, especially if @ is low. Also observe that the ordering of the
algorithms is maintained, and in particular that 2-S outperforms 1-S, even
when @ is large. The reason why is that for the arctan function limited order
approximations are valid in a large domain, so the necessity of approximating
P(Zn|Tn-1,Yn, Yn+1) is no longer a handicap of 2-S w.r.t. 1-S.
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2P 1P SIR 1-S [2-S(UPF)
Q = 1 [1.1240331|1.1202899|1.1118075|1.1041993|1.1033117
Q =5 | 1.861067 |1.8353582|1.8334354[1.8134666] 1.8107098
Q = 20| 2.611825 |2.4849116] 2.439016 |2.4268744|2.4144096
Q = 50[3.1980866] 2.761685 |2.6592343|2.6345335|2.6329076

Table 5. Empirical standard deviation J, alternate semi-linear model.

5 Conclusion

We explored direct and indirect paths (and their generic SMC implementa-
tions) for computing p,,, recursively. These algorithms remain PF, in the
sense that their aim is to compute p,,,, but possibly via a predictive or
smoothing distribution. Our algorithms were validated by simulations. S-
based algorithms outperform P-based ones, and in each class of algorithms
better results are obtained (under fair conditions, i.e. when the necessary
approximations are valid) when updating precedes propagation.
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Abstract: This paper addresses the problem of parameter estimation in the case of hidden
data. The aim is to discuss two general iterative parameter estimation methods “Expectation-
Maximization” (EM) and “Iterative Conditional Estimation” (ICE) in the context of the
classical Hidden Markov Models (HMMs) and in the context of the recent Triplet Markov
Models (TMMs). A very general method of TMMs identification based on ICE and copulas
is also specified.

Keywords: Hidden data, parameter estimation, Expectation-Maximization, Iterative
Conditional Estimation, hidden Markov models, triplet Markov models, copulas.

1 Introduction
Let Y =(Y,,...,Y,) be observed data and X =(X,,...,X,) hidden ones. In the

whole paper, each Y, takes its values from the set of real numbers R , and each X,
takes its values from a finite set of classes Q = {a)l,...,a),(}. Let p,(x,y) be the
probability distribution depending on a parameter @€ R"™, and let
l,(x,y)=log[p,(x,y)] be the log-likelihood. Besides, let é(X,Y) be an
estimator of @€ R" defined from complete data (X,Y). Both “Expectation-
Maximization” (EM) and “Iterative Conditional Estimation” (ICE) define a sequence of
parameters from the observation y . After having chosen an initial value 6°, the
EM sequence is defined by

0" (y) = argmax E[L,(X. Y)Y = .01, (1.1)
4

while the ICE sequence is defined by
0" () = ELOCX, VY = 3,01, (1.2)

The EM method (McLachlan and Krishnan (1997)) is well known and widely used,
while ICE is less popular. However, ICE has been successfully used in different
problems of unsupervised image processing; let us mention (Cao et al. (2005),
Carincotte et al. (2006), Derrode and Pieczynski (2004), Destrempes and Mignotte
(2004), Provost et al. (2004), and Salzenstein et al. (2007)), among recent
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references. Concerning general considerations to compare EM and ICE, let us
underline the following points:

(1) ICE is more general than EM because the estimator é(X ,Y) can be of any

form; in particular, it can be the “maximum likelihood” (ML) estimator or not. It is
also often easier to perform because the maximization step does not exist in ICE ;
(i1) as stated in Delmas (1997), in the case of an exponential family of distributions
EM and ICE can produce the same sequence (67) ;

(iil)) many comparisons between EM and ICE have been performed in classical
contexts with Gaussian noise, like adaptive estimations (Peng and Pieczynski
(1995)), hidden Markov chains (Benmiloud and Pieczynski (1995)), or hidden
Markov trees (Monfrini (2002)). In all these situations the EM formulae are
computable and it turns out that both EM and ICE methods are of quite a
comparable efficiency ;

(iv) the use of EM is justified by the theoretical results concerning the optimal
asymptotic behavior of the ML estimator, and by the fact that EM produces a

sequence (67) such that the sequence p(y|0”), being increasing, often converges

to a local maximum. We have to notice that this does not imply the convergence of
(8%) to the real parameter & ; however, if the initial value @° is close enough to
the real value @, the convergence can be shown under some mild hypotheses. The

idea behind ICE is different and is based on the following. Assuming that é(X ,Y)

has interesting quadratic error - or is even optimal, being, for example, an ML
estimator in an exponential model - one wishes to approximate it by a function of
the only observed variables y . The “best” - with regard to the same “quadratic

error” criterion - approximation is the conditional expectation. As this expectation
depends on the parameter, we arrive at (1.2). Concerning the convergence of ICE,
let us mention a recent theoretical result obtained in the case of independent data
(Pieczynski (2008)). As in the case of EM, convergence can be obtained under
some reasonable hypotheses if the initial value 8° is close enough to the real value
0

(v) EM encounters more difficulties in hidden Markov field models, where the
maximization step cannot be calculated and one is obliged to simplify the model,
for example by introducing the “mean field” as indicated in (Celeux et al. (2006)).
ICE can be used without model modification, even in more complex situations, as
in the context of recent triplet Markov fields (Benboudjema and Pieczynski
(2007)).

The aim of the paper is to discuss and compare the difficulties when applying these
two methods in the context of the classical Hidden Markov Models (HMMs
(Cappe et al. (2005), Ephraim (2002), (Koski (2001)) and the recent Triplet
Markov Models (TMMs (Pieczynski and Desbouvries (2005), (Pieczynski (2007),
Pieczynski (2010)). A very general method of TMM identification based on ICE
and copulas is also briefly described.
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2 Pairwise and Hidden Markov Models

Let us consider the couple of stochastic sequences (X,Y) =(X,,Y,,...,X,,Y,) and
let us set Z=(X,Y)=(Z,,...Z,), with Z =(XY), ..., Z, =(X,.Y,). The
couple Z =(X.,Y) is a “Pairwise Markov Model” (PMM) if its distribution is
given by

p(2) = p(z)p(z,|2)..p(z,|z,) . @.1)

We will say that a PMM Z = (X.,Y) is “stationary” if the distributions p(z,,z,,,)
do not depend on i=1, ..., n—1. Thus the distribution of a stationary PMM
(SPMM) is given by p(z,,z,), which can be written:

p(z,,2,) = p(x,,x)p(y,.y,]x,.x,) . (22)

There are then two kinds of SPMM Z = (X,Y). Either X is a Markov chain or it
is not. If it is, the SPMM Z = (X,Y) will be called a “stationary hidden Markov

model” (SHMM), which is consistent with the fact that the hidden model is a
Markov one. One can then show that a “reversible” (which means that

p(z,.2.,) = p(z,,,z)) SPMM is an SHMM if, and only if, p(y,,y,|x,.x,) in
(2.2) verifies

PO x.x)=p(yfx) . (2.3)

In fact, a reversible SPMM Z =(X,Y) is an SHMM if, and only if, the two
equivalent conditions: (i) for each 2<i<n, p(y, |xl.,x,.71) = p( yl.|x,); (i1) for each
1<i<n, p(y|x)=p(y,|x,) . are verified (Pieczynski (2007)).

Let us remark that the very classical SHMM, whose distribution is defined by

x,), (24

p(x.y) = p(x)p(x,|x) .. p(x, [x, ) p(3 [x) - p(p,

is obtained when p(y, ,y2|x1 ,X,) in (2.2) verifies

Py x)= p|x) p(r]x) . (25)

which is stronger than (2.3).
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In a similar way to the classical HMMs, the transitions p(x,,|x;,») and the
marginal distributions p(x,| y) can be computed in the following way. Let us
consider the following "forward" a(x,)= p(»,,....»,,,z,) and "backward"
Bx)=pViysees y"|z,,) probabilities, which again give the classical probabilities

when the PMM considered is an HMM. Then we have

a,(x)=p(z),and o, (x,,) = Za, (x)p(z,.,

X, €Q

z,) for 2<i<n; (2.6)

z,) for1<i<n-1; (2.7)

B,(x,)=1,and B,(x)= D B (x.)p(z,

X4 €Q

pEL LG
p(xi+l ‘xi7y) - ﬂi (Xi) > (28)
a,(x,)p,(x)
1y)= =202 - (2.9
px[y) S e OA ) 29
PG, x, 0 = px [»)px,|x, ). (2.10)

The formulae (2.6)-(2.10) are extensions of the well known HMM formulae, which
are obtained by taking p(z,) = p(x,)p(»|x,) and p(z,,|z,) = p(x,.[x)p(¥,.[x..) -

Let us underline the fact that considering SPMMs which are not SHMM s (in which
(2.3) does not hold) can be of real interest in the unsupervised segmentation of real

or simulated data: see different results presented in (Derrode and Pieczynski
(2004)).

3. EM and ICE in SPMM

Let us consider an SPMM whose distribution given by (2.2) is such that
p(y,, y2|xl,x2) are Gaussian. The parameters to be estimated are

P, =px =0,,x, =0,) and the mean vectors M, and variance-covariance

matrices I, of the Gaussian distributions p(y,,y,|x, =®,,x, =®,) . In both EM

and ICE methods (p, ) are re-estimated by

-1
e 1 n

P :n_zpq(xi =0;,X, :a)k|y)’ (31)
— 1%
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where p’(x, =0,,x,, =0, | y) are computed with (2.6)-(2.10).

i+l

The parameters M , and I', are re-estimated in EM by

n—l

ZLT :|pq(xi S0,X, = wk|y)
i= i+l
n—1

My = L (G2)
p'(x, = Wy Xy = a)k|y)
i=1
! yi + yi +
_ (L }Mﬁl)({ }‘Mﬁ‘)rl’q(% = 0,5, =0y
r;i:l _ i=l i+l _ i+l , (33)
D rix =o,.x, =0,y
i=1
while in ICE they are re-estimated by
n—1
{y[ }1{ o
. P yH xl=w;,x{, =0, )
My == ;0 (34
;1[’(7 :”/*Xyﬂz‘Uk]
n-1
R VA (N VL R
+1 =t | Vi Via B
re' = — , (3.9

|
= L =0, x!, =0

where x? =(x/,...,x!) is sampled according to p(x| y) using the current values of

the parameters.

Dealing with the Gaussian case under consideration here with either EM or ICE
would probably provide similar results, as they do in the classical HMMs.
However, when one leaves the Gaussian case and deals with the “generalized”
mixture estimation, ICE is much easier to apply. In the SHMM context one is faced
with the “generalized” mixture estimation problem when the forms of the noise

distributions p(y1|x1 =wo,) are not known and can vary with the class o, .
However, for each @, one knows that p(yl|xl =w,) belongs to a given set of
forms. For example, one knows that p(y, |xl =m,) is either Gaussian or gamma,

p(y, |xl =m,) can be Gaussian, exponential, or Rayleigh, ... and so on. Such

situations are of interest and they can occur, in particular, in radar images models
(Delignon and Pieczynski (2002), Nadarajah and Kotz (2008)). Estimating such a
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mixture therefore contains two problems: (i) finding the right form for each class;
and (ii) estimating the related parameters. ICE has been extended to a
“generalized” ICE (GICE) to deal with such problems in SHMM s in (Giordana and
Pieczynski (1997)) and different experiments have shown its efficiency.
Afterwards, the extension of ICE to “generalized” reversible SPMMs has been
suggested in (Pieczynski (2010)). Let us briefly recall its principle.

For K classes there are (K —1)K/2 distributions p(y,, y2|x1,x2) on R*.

Besides, let H(y,,y,) be a cumulative distribution function (cdf) over R’, and
H (y,), H,(y,) the related marginal cdfs. Then, according to the Sklar theorem

(Brunel and Pieczynski (2005), Nelsen (1998)), there is a unique cdf C on [0,1]
with uniform marginal distributions (called a “copula”) such that

H(y,y,)=C(H,(»),H,(y,) (3.6

Thus each of the (K —1)K /2 distributions p’(y,,y,) = p(yl,y2|x1 =0,x,=0),)
on R? is defined by (K —1)K /2 marginal distributions p’(y,) and (K —1)K /2
copulas C”. Assuming that for each (i, j) the form of the marginal distribution
p’(»,) belongs to a given set ®’ = {E”,...,E‘g,,,_”} of admissible forms and the

} of admissible

forms, one is faced with the following problem : for each (i, ) select from @’

form of the copula C” belongs to a given set X’ = {C{/,...,C‘fnw)

and X" the correct forms and estimate the related parameters. At each iteration of
ICE these two problems are then dealt with using x’ =(x/,...,x’) sampled

y,0").

according to p(x

4. Generalized ICE in Stationary Triplet Markov Models

Let us consider the couple (X,Y) as above. Let U =(U,,...,U,,) be a third
random chain, each U, taking its values from A= {ﬂ.l,...,lM } The triplet
T=(X,U,Y) is called a “Triplet Markov Model” (TMM) if its distribution is a
Markovian one. Setting V' = (X,U) one sees that a TMM can also be seen as a
PMM (V,Y); in fact, V =(V,,...,V,) with each V, taking its values from a finite

set Qx A . Thus both X and U can be estimated by some Bayesian method, and
the parameters can be estimated with EM or ICE as discussed above.

The choice of the interpretation of the third chain U and the choice of the
Markovian distribution for 7 =(X,U,Y) lead to a very rich family of possible

no

distributions for (X,Y). One possible choice is a Markov distribution for
V =(X,U) such that X is a semi-Markov chain (Pieczynski and Desbouvries
(2005)); T =(X,U,Y) is then a classical hidden semi-Markov chain. Other
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choices lead to a non-stationary distribution for (X,Y), where the switches among

the different stationarities are modeled by U (Lanchantin and Pieczynski (2004)).
Let us also mention the use of TMM to perform the Dempster-Shafer fusion in a
Markovian context (Pieczynski (2007)). It is also possible to consider multivariate
U, to model different properties simultaneously. For example, one can take

U =(U"'U?), where U' models the semi-Markovianity of X and U’ models its

non-stationarity (Lapuyade-Lahorgue and Pieczynski (2006)). In each of these
situations, one can then apply the “generalized” ICE described above to the related
PMM T=(X,U,Y)=(V,Y).
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Abstract. The timetable problem, searching the timetable for the class assignment in the
schools, belongs to the group of NP hard and NP complete problems. In Lithuanian high
schools every pupil can choose a lot of subjects by his wish. The problem is more
complicated when the every pupil has possibilities to choose not only subjects, but hour per
week of this subject too. However, as the number of teachers, number of pupils, number of
different subjects, number of different subject hours, time slots, and the constraints
increases, the required time to find at least one feasible solution grows exponentially. Global
optimization algorithms are a quite common approach to solve this problem. In this paper,
we describe the advantages of distributed school schedule optimization a software system
was developed using Java technology and grid computing techniques. Optimization
algorithms used in the software include the Monte-Carlo local optimization algorithm, the
Simulated Annealing and Bayes global optimization algorithms.

Key words: Global optimization, school schedule creation, distributed schedule
optimization, Monte-Carlo, Simulated Annealing, Bayes.

1 Introduction

A timetable specifies which people meet at which location and at what time. The
timing of events must be such that nobody has more than one event at the same
time. School timetabling as a term refers to the construction of weekly timetables
for schools of secondary education [14]. Specific feature of school timetabling
field is a great number of research papers and widely used commercial software.
Therefore a discussion of new results will be.

The events are lessons in a subject, taught by a teacher to a group of pupils in a
single room. The timetable assigns a teacher, a pupils group, a room, and a time
slot to each lesson. The pupil groups are specific to the subject, we call them
subject-groups. A high school is referred here as the last grades of a high school or
gymnasium where the pupils can mostly choose their preferred learning profile
subjects. Therefore, this task is more complex in comparison with a secondary
school scheduling without high school classes.

Some combinations of assignments lead to acceptable timetables, constraints
follow from conditions imposed by rooms, pupils or teachers. We distinguish two
types of constraints: conditions that must be met (“hard” constraints) and desires
that should be fulfilled as well as possible (“soft” constraints). An important set of
soft constraints is defined by didactic reasons. For example, by placing “hard”
subjects, such as mathematics or physics, into morning hours. The maximal
number of daily hours T, is obviously a hard constraint. Timetabling can be
generally defined as the activity of assigning, subject to constraints, a number of
events to a limited number of time periods and locations such, that desirable
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objectives are satisfied as nearly as possible [26]. Educational timetabling can be
divided into three main classes: school timetabling, course timetabling and exam
timetabling [15]. The goal is to find a timetable that satisfies all the hard
constraints and minimizes the violation of soft constraints.

2 Overview of publications

A survey on educational timetabling problems [23] gives an overview of the
literature. Overviews on examination timetabling and university course timetabling
are in [4, 12, 13]. A comprehensive overview of formulations and of state-of-the-
art approaches is in the surveys [4, 7, 8, 13, 15], in the proceedings of the PATAT
conferences [5 — 7, 9, 10] and in the Lecture Notes in Computer Science series [9 —
11]. The European working group on automated timetabling (EURO-WATT)
maintains a website with information on timetabling problems [25].

3 New Elements

The first new element of this work is the application and systematic investigation
of the Bayesian Heuristic Approach [20] for optimization of heuristic parameters.
These include the initial temperature and the cooling rate of Simulating Annealing
(SA) algorithm and the randomization parameter of the local search algorithm. The
formulation of the objective function in terms of Pareto optimality seems to be new
in the field of school scheduling. The paper describes apparently the first web-
based platform-independent implementation of the software. Java servlet provides
conditions for application at any school with internet connection. Any web browser
works, no additional software is needed. Note that efficiency of recent versions of
Java is close to that of the most efficient programming languages [9].

4 Defining Optimization Problem

Ministry of Education of the Republic of Lithuania has confirmed basic rules for

high school schedule forming. They can be complementary of each school's rules

and restrictions. However, the main purpose of these limitations is to develop a

schedule, which would evaluate of the Ministry of Education requirements. In

addition, this schedule must be acceptable to both: pupils and teachers.

Required schedule restrictions (formed by the Ministry of Education):

* Working days d per week must be d < 5.

* The teacher simultaneously cannot work in several different places.

* The teacher cannot have more than 36 hours per week.

* The pupil simultaneously cannot learn few different subjects.

* A pupil i may have 28 <i <32 lessons per week.

* It cannot be more then p<7 lessons p per day.

* Number of pupils i in one subject-group can be /5 <i < 30.

* In each classroom simultaneously cannot be several different types of subjects
(for example, mathematics and physics).
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* Subjects, requiring special measures or facilities, shall be taught in the special
classrooms (for example, IT, chemistry etc.).
Technically any required restriction violations cannot be broken. There can be only
some minor offenses necessary restrictions, if it significantly improves the quality
of the schedule. To define with timetable is good or bad we use penalty points. The
penalty point’s c¢,, which assessing these restrictions, should be imposed very
strictly.
The main required penalty point’s restrictions function is as follows:
F,=%c.N,
here ¢, — penalty for required restriction r; N, — number of required restriction. In
thiscaser =1, .., 9.
Some of required restrictions ¢, can be evaluated by the individual rules of each
school. Such requirements are called needful, or “soft” constrains. They are valued
differently in each school.
The main needful restrictions of the schedule include:
* Elimination of “windows” in teacher’s schedule.
* Elimination of “windows” in pupil’s schedule.
* Unacceptable working hours.
* Unacceptable workdays.
* Unacceptable order of subjects.
* Changing of pupils in the formed subject-group.
Usually penalty points for these restrictions are as follows:
¢, — penalty for the “window” on teacher’s m schedule.
¢, — penalty for the “window” on pupils s schedule.
Cmy — penalty for “bad” hour v of teacher m.
Cma — penalty for “bad” day d of teacher m.
¢y — penalty for “bad” hour v of pupil s.
cpq — penalty for violation of pedagogical didactic pd.
cmg — penalty of the list change of subject-group g taught by teacher m.
“Bad” hour/day is the hour/day, when teacher/pupil already has a work hour.
Pedagogical didactic evaluates the difficulty of subjects. Most difficult subjects
must be in the 1-4 lessons during the day. Less important subjects — in the end of
the day. The importance of every subject is written in initial data file.
The sum function of the needed restrictions penalty points is as follows:
FVl = zcmLm +ZC\LS +ZZCWIVL‘;VI +

m v

d
+chmdLm +ZZCSVL§ +Zcdepd +Zcmgl‘n’
m d s v pd n

L . L
here ~m— number of “windows” on teachers m schedule; ~s— number of
. . L
“windows” on pupils s schedule; ~”— number of “bad” hours v on the teachers m

d v
schedule; Lo number of “bad” days d on the teachers m schedule; Li_ number

633




of “bad” hours v on the pupils s schedule; L,; — number of pedagogical didactic pd

violations; L,_ number n of changing formed subject-group.
All physical restrictions and inconveniences are showed in Figure 1.

Schedule
Required restrictions Needful restrictions
»Oneteacher m one place +Stability othe group
«Onie pupil i one lesson *Leszon iu the special pace
TNumber of the leszons per day *Free days for the tencher
«Number of the classrocnms «Gap for the pupil
= Crap Fon1hie tencher

Figure 1. Restrictions for a creation of high school schedule

A compromise solution is reached by defining penalties for violation of constraints
and disregarding inconveniences. Therefore, penalty points are calculated:
F=F,+F,

where, F;— is a sum of the penalties for the required restrictions; F, — is a sum of
the penalties for the needful restrictions (disregarding inconveniences). Optimal
schedule will be schedule, which has as less as possible penalty points. To find
such schedule, objective function F should be optimized. To not analyze the
schedules with same number of penalty points, Pareto optimality was formulated.
So we will get less variants to analyze and will save the users time. The
optimization problem is

min F(7)

€A

where, F(z) is the total penalty of some schedule 7; A is the set of schedules
satisfying the physical constraints. The penalties F(zr) depend on expert
evaluations, therefore we regard them as heuristics.

5. Optimization Methods
5.1 Defining Neighborhood

Many different definitions can be used defining neighbourhood in a set 4 of
feasible timetables d. The definition is important because local search is performed
in the neighbourhood of the given point. We search for better timetables by
subsequent closing of gaps for pupils and teachers. In this case the neighbours of a
timetable d’ are all timetables ¢ that can be reached from d’ by a sequence of
closing gap operations. This way we obtain locally optimal d*(d’) that depends on
the initial point d".

Local search can be randomized by selecting current candidate (a pupil or a
teacher) for gap closing with some probability x,. Closing gaps for randomly
selected pupils and teachers, we modify the search sequences. However, this not
helps to reach the global optimum since the neighbourhood remains the same.
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5.2 Escaping Neighborhood

Simplest algorithm to search for global optimum is just random search with
uniform distribution of observations (observation is calculation of the objective
function at some fixed point). The advantages are simplicity and convergence to a
global minimum of continuous functions. A well-known way to escape the local
minimum is Simulated Annealing [1, 2, 14, 19, 21, 22]. Denote

5}1 — F(dn+1)_F(dn)

Here d" is a current timetable, @'’ is a new timetable generated by closing gap
operation. Define the probability
-5

/1 1" .
Py =™ n( +x2n), lf 5n >O’
pl’l :1’ lf 5”! <O’

where parameter x; is the “initial temperature”, parameter x, defines the “cooling
rate”. SA algorithm means:
go to new timetable d" with probability p,

To apply the SA to a specific problem, one must specify the parameters x; and
x,.The choice can have a significant impact on the method's effectiveness.
Unfortunately, there are no choices of these parameters that will be good for all
problems. Analyzing Figure 2, we see different results using different initial
parameters. Here difference of penalty points (between initial and optimal
schedules) is calculated. Every column is received after 100 experiments with fixed
initial parameters (Iterations, x; and x;,). In the left side of Figure 2 the results are
grouped by x, when x; was between /00 and /000. In the right side, the results are
grouped by x; when x, was between / and /0. There are showed only best results.

X1 = 104-1 000

f \

1 14l

200 &00 1000 1400 1800 2200
Betterment (differents between penalty points)
B 1000 Iterations, B100Iterations, D10 Iterabions,
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300
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0 300 1000 1500 2000 2500
Betterment (differences between penalty pointsy

B 1000 iterations; B100 iterations, O 10 iterations,

Figure 2. The best results of SA using different parameters

We cannot see optimal parameters x;, x, of SA. Optimal results depend on the
initial soft constrains and number of iteration. A way to adapt these parameters to a
given problem is automatic optimization. This is not an easy problem since we
need optimize multi-modal function with considerable noise. Here the Bayesian
Heuristic Approach (BHA) [20] is useful. Figures 3 and 4 illustrate efficiency of
automatic adaptation of SA parameters using BHA. In these figures, the difference
between initial and optimal timetable is showed. There we see 100 experiments
with every different SA iteration. SA parameters were set automatically. Figure 3
shows, that method is more efficient as more SA iteration are used. Figure 4
illustrates the best results what was shown during 100 experiments with every
different SA iteration. There we can see, that the best results we will get when it
will be many SA and BHA iterations.

5.3 Bayesian Heuristic Approach

The Bayesian Heuristic Approach was designed for automatic optimization of
heuristic parameters by filtering the noise during optimization of multi-modal
functions [20]. We need to optimize three heuristic parameters x = (xy, x; X5).
Optimal parameters are obtained using the data of some specific school.
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Method of Bayesian .\pproach (BA)
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Figure 3. Average of 100 experiments results using BHA

Method of Bayesian Approach (BA)
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00 iterations of BA,
B 50 iterations of B, ||

O5 iterations of B,

Iterations of the Simulated Annealing method

o 5000 12000 13000 22000 25000

Betterment (differents between penalty points)

Figure 4. The best results of BHA after 100 experiments with each different
SA iteration

However, the results can be used in similar schools as an approximation.

6 “School schedule optimization” program working steps

“School schedule optimization” program designed to high school scheduling.

DM|S.
; g |
Forming ofa s —]
pupil group of \ o —
subject Dy for HHT Y—
teacher My S22
i i

Figure 5. Forming subject-groups to teachers
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Figure 6. Time table for teachers creation

Figure 5 illustrates how subject-groups are assigned to teachers. Here pupils s;;
from groups G; are grouped to the groups with identical subject D,. Identical
subject has same name and same hours per week. These groups are called subject-
groups (with x pupils in the group) and assigned to the teacher M,. Figure 6 shows
how teacher’s timetables are created. The subject-groups DM,/ /, with teacher M),
subject D, and pupils of this subject-group S,, are putted to the free class-room and
to school timetable. When process is finalized, the optimization process is ready to
start.

After optimizing, we can see such results of this program:

* school schedule;

* individual pupils schedules;

* individual teachers schedules;

* individual room schedules;

* subject-group schedules;

All results user can see in the program (on working time), or download them as
archive personal computer. The program does not require much effort to the user,
the payment to work with a computer, or a lot of time to understand how system
works.

7 Comparison of results

Here are compared such results: real schedule created in a Lithuanian high school
and, from pupils and teachers wishes, created and optimized schedule. Schedule
was automatically optimized with Bayes method The results we can see in Figure
7. Both, schedule and data are from the same school and same classes. Evaluating
both types of schedules, penalty points were calculating for:

* pupil window — 5;

* teacher window — 300;

* teachers wished free time — 10;

* exceeding maximum hour limit — 2000;

* pedagogical didactic — 5.

Sum of seted penalty points for the real schedule was 380 020. It is always same,
because after finishing the creation process it can’t be changed. Sum of penalty
points after optimization process (was seted same penalty points) are showed in the
Figure 7. There are few results after optimization with different initial parameters
of optimisation method Bayes. The results are different while every time schedule
is created from the new point.
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Number of experiments

Figure 7. Penalty points after creating and optimizing schedule from initial data file

As we can see, the optimization results are much better as real schedule result. It is
so, while optimization program creates and optimizes schedule only for high
school classes. However, teacher can work in basic school to. However, in
Lithuanian schools schedule creating starts from high school classes schedule.
“School schedule optimization” program is working same way.

8 Optimization in Commercial Software

We discuss optimization possibilities of the following three commercial
timetabling systems currently used in Lithuanian high schools: “Mimosa 20097,
“aSc TimeTables 20097, and “Rector 2009”. “Mimosa 2009 [18] is the product of
the Finnish company “Mimosa Software Ltd”. “Mimosa” provides convenient GUI
for manual timetabling and reports constraints violations. Figure 8 shows a
fragment of the output. In the upper-left side we can see pupils schedule, under it —
pupils of the subject-group and in the right side — individual schedules of every
pupil in the subject-group. The form is acceptable for Lithuanian schools. For
example, “Ch3BK” means a chemistry lessons, pupils from 3-rd level, will learn as
basic course.
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Figure 8. A fragment of “Mimosa 2009” output
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Optimization is limited to closing some gaps in teacher’s schedules. The software
is popular in basic schools. Application in upper classes of high schools is possible
within some strict limitations by setting individual pupil schedules. Long and hard
manual work is needed if the school is large. Any penalty points are calculated in
this program.

“Rector 2009” [24] is the product of the Russian company “P. Yu. Smykalov”.
Figure 9 shows a fragment of output in the format similar to MS “Excel” forms
used in local schools. In the upper side the subject for the group 12a are showed.
Under it — all groups, lessons per week, subjects and teachers are showed. Green
colour means, that no one works at the same time in two places. Reports, if one is
trying to insert data to wrong place, are showed in red colour. Convenient for basic
school scheduling. No automatic optimization.
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“aSc TimeTables 2009 [3] is the product of the Slovak company “Applied
Software Consultants s.r.o”. A fragment of resulting timetable for Monday and
Tuesday in a compact form for eight pupil subject-groups is in Figure 10. The
results of experimental calculations are in Table 1. They show that the software
works well in basic schools and is not practical in large high schools. Any penalty
points are calculated.

Table 1. Testing ,,aSc TimeTables 2009
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A timetable that satisfies all necessary conditions is regarded as feasible. A feasible
timetable is optimal if it minimizes all undesirable factors. To compare the quality
of different feasible timetables we must evaluate at least the most important
undesirable factors. The difficulty is that desirability is subjective by definition and
depends on the local conditions. This prevents comparison of results obtained by
automatic optimization with decisions made by human operator.

To compare results of different automatic optimization methods we need
procedures for evaluation of undesirable factors in some fixed scales. In this paper,
it is done in the framework of Pareto optimality [16]. The commercial software
does not support this, since no direct comparison of decisions quality cannot be
made.
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9 Concluding Remarks

* The new element of this work is application and systematic investigation of the
Bayesian Heuristic Approach (BHA) [20] to optimization of heuristic parameters
(with penalty points). These include the initial temperature and the cooling rate of
SA algorithm and the randomization parameter of the local search algorithm.

* BHA is intended for global optimization of functions with noise what is typical
in optimization of heuristic parameters.

* The formulation of the objective function in terms of Pareto optimality seems to
be new in the field of school scheduling.

* Application in some large schools shows some advantages comparing with
commercial software. The web-site: http://soften.ktu.lt/~mockus and
accompanying web-sites include corresponding.
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