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Abstract. Block-to-block and block-to-point kriging predictions based on block
data are proposed. Blocks may be regular (mesh data) or of more general shapes.
Under the assumptions of second-order stationarity and isotropicity, we show how
to lessen the number of calculations of relevant block-to-block covariances. As illus-
trations, a mesh data of population and a simulated block data on convex polygons
are analyzed.
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1 Introduction

Geostatistics has the origin in the pioneering work of South African mining
engineer D. G. Krige in 1950’s who introduced a statistical methodology to
evaluate gold ore grade based on boring core samples. In 1970’s, French
mathematician G. Matheron formulated a regression based spatial predic-
tion method for which he coined the term ”kriging”. Although it has been
developed mainly in application fields and outside of the usual statistical
community, now kriging method has become an indispensable statistical tool
in variety of fields such as epidemiology, environment science, ecology, agri-
culture, geology, civil engineering, social sciences, geography, fishery science,
oceanography and so on where available data are only small portions of a
large spatial structure and one want to know the global spatial distribution
of a feature.

The probabilistic basis of geostatistics is a random field Z(x), x ∈ Rd,
d being typically two or three. Available data is a set of observations Z(x)
at specified locations x = x1, x2, . . . ,xn and one wants to predict the value
Z(x0) for arbitrary locations x0. Hence it can be thought as a spatial inter-
polation and/or extrapolation of data. By the way, the term “estimation”
instead of “prediction” has been frequently used in geostatistics literature
from a historical reason.

As well as predicting a point value Z(x0) (point kriging), it is sometimes
required to predict a block value Z(B) = |B|−1

∫
B

Z(x)dx (block kriging)
which is the mean of Z(x) over a block B. As to these kriging problems,
there are well-established results, see, e.g. Chiles and Delfiner[2], Cressie[3]
and Wackernagel[5]. In this paper, we will discuss the converse problem, that
is, kriging predictions of point or block values based on block data. The use of
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data of type Z(B) rather than original Z(x) is sometimes called “the change
of support problem” in the literature and known to cause various problems,
see Cressie[4] and Chiles and Delfiner[2].

2 Second-order stationary random fields

In the following, random fields Z(x) are assumed to be second-order station-
ary, that is, the mean E{Z(x)} is a constant µ irrespective of x and the
covariance Cov{Z(x), Z(y)} is a function C(x − y) of the difference x − y
only. C is called the covariance function of Z. It is even and is characterized
by the positive-definiteness

n∑
i=1

n∑
j=1

cicjC(xi − xj) ≥ 0

for any {xi} and constants {ci}, where the equality holds only for c1 = c2 =
. . . = cn = 0. A second-order stationary random field is said to be isotropic
if its covariance function is the function of the norm |x− y| of the difference
x − y.

The followings are three typical isotropic covariance functions. They have
two positive parameters a, b. The exponential covariance family is Cexp(h) =
b exp(−|h|/a).

Csph(h) =
{

b(1 − 3|h|/(2a) + |h|3/(2a3)), |h| ≤ a,
0, |h| > a.

And the Gaussian covariance family is Cgau(h) = b exp(−|h|2/a).
In geostatistics, the concept of intrinsic stationarity has been preferred to

second-order stationarity. A random field is intrinsic stationary if

E{Z(x) − Z(y)} = 0, E{|Z(x) − Z(y)|2} = 2γ(x − y)

for all x, y. The even function γ which depends only on the difference
x − y is called the (semi)variogram which may be unbounded contrary to
covariance functions. The use of variograms is intended to cancel a possible
linear trend which seems frequent in mining data. The concept of intrinsic
stationarity is more general than second-order stationarity in principle since
it does not assume the existence of the mean and variance of Z(x). If Z
is second-order stationary, it is intrinsic stationary and the relation γ(h) =
C(0)−C(h) holds. In variogram based kriging, it is usual to estimate model
parameters by fitting theoretical variograms to binned sample variograms
using the method of least squares. In order to apply this method, it is
essential to know distances between locations of each pair of data. But it is
impossible or ambiguous to define distances between two blocks. This is the
main reason why we use the second-order stationarity assumption and the
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maximum likelihood approach to estimate model parameters assuming the
normality of random fields in this paper. This has further advantages that
we need not classify data and can reduce three parameters models to one
parameter models, see Prop. 3.

3 Ordinary kriging for block data

Let Z = Z(x) be a second-order stationary random field with a covariance
function C(h) and a mean µ. Let B be a block (i.e., a bounded region with
positive volume). The block data of Z for the block B is defined as follows

Z(B) =
1
|B|

∫
B

Z(x)dx,

where |B| is the volume of B. The mean of Z(B) is µ. Let B1, B2, . . . , Bn

be a set of blocks. They are not necessary disjoint. The covariance between
two block data Z(Bα) and Z(Bβ) is given by

CBα,Bβ
=

1
|Bα||Bβ |

∫∫
Bα×Bβ

Cov{Z(x), Z(y)}dxdy

=
1

|Bα||Bβ |

∫∫
Bα×Bβ

C(x − y)dxdy.

Let B0 be a new block and we want to predict Z(B0) by a linear combination
of block data ZB = (Z(B1), Z(B2), . . . , Z(Bn))T :

Ẑ(B0) =
n∑

α=1

wαZ(Bα).

This block-to-block kriging prediction can be constructed according to the
standard procedure of the ordinary kriging based on point data as explained
in Cressie[3], Wackernagel[5], or Chiles and Delfiner [2]. In order to guarantee
the unbiasedness, we put the constraint

∑
i wi = 1 on weights w1, w2, . . . , wn

(ordinary kriging). Hence

E
{

Ẑ(B0)
}

=
n∑

α=1

wαE {Z(Bα)} = µ
n∑

α=1

wα = µ.

Its mean squared prediction error σ2
E = E

{
(Ẑ(B0) − Z(B0))2

}
is

n∑
α=1

n∑
β=1

wαwβCBα,Bβ
+ CB0,B0 − 2

n∑
α=1

wαCBα,B0 .
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Since we have to minimize σ2
E under the constraint

∑
α wα = 1, consider the

objective function with the Lagrange multiplier λ:

φ({wα}, λ) = σ2
E − 2λ

( n∑
α=1

wα − 1
)

.

Proposition 1. Weights {wα} of the ordinary block-to-block kriging predic-
tor Ẑ(B0) are the solution of the following equation:

CB1,B1 . . . CB1,Bn 1
...

. . .
...

...
CBn,B1 . . . CBn,Bn 1

1 . . . 1 0




w1

...
wn

−λ

 =


CB1,B0

...
CBn,B0

1


where λ is the Lagrange multiplier. This system is authentic, i.e., Ẑ(Bi) =
Z(Bi) for i = 1, 2, . . . , n. The corresponding mean squared prediction error
is σ2

E = λ + CB0,B0 −
∑n

α=1 wαCBα,B0 .

In a similar way, we can consider the block-to-point ordinary kriging. The
covariance between block and point data Z(B) and Z(y) is given by

CB,y =
1
|B|

∫
B

Cov{Z(x), Z(y)}dx =
1
|B|

∫
B

C(x − y)dx.

The block-to-point ordinary kriging predictor of Z(x0) takes the form Ẑ(x0) =∑n
α=1 wαZ(Bα) with constraint

∑
i wi = 1.

Proposition 2. Weights {wα} of the ordinary block-to-point kriging predic-
tor Ẑ(x0) are the solution of the following equation:

CB1,B1 . . . CB1,Bn 1
...

. . .
...

...
CBn,B1 . . . CBn,Bn 1

1 . . . 1 0




w1

...
wn

−λ

 =


CB1,x0

...
CBn,x0

1


where λ is the Lagrange multiplier. The corresponding mean squared predic-
tion error is σ2

E = λ + C(0) −
∑n

α=1 wαCBα,x0 .

4 Estimation of model parameters

As to kriging model parameter estimations, there are two main methods.
One is the traditional least square fitting of theoretical variograms to sample
variograms and the other is the maximum likelihood estimation assuming the
normality of data. In order to use least square fittings, one needs to define
distances between blocks, but this is impossible or ambiguous for blocks.
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So we employ the maximum likelihood estimation assuming Z is a Gaussian
random field. A merit of this approach is one can use original data themselves
directly. On the other hand, variogram based fittings have to change data
into suitable class means.

Proposition 3. Let Z be a stationary Gaussian random field with mean µ
and covariance function bC(a−1x), a, b > 0. Let ZB = (Z(B1), Z(B2), . . . , Z(Bn))
be a block data vector. Then the maximum likelihood estimators â, b̂ and µ̂
satisfy the relations

µ =
eT Σ−1

B (a, 1)ZB

eT Σ−1
B (a, 1)e

, (1)

b =
1
n

(ZB − µe)T Σ−1
B (a, 1)(ZB − µe), (2)

0 = {Σ−1
B (a, 1)(ZB − µe)}T dΣB(a, 1)

da
{Σ−1

B (a, 1)(ZB − µe)}

− b tr
(

Σ−1
B (a, 1)

dΣB(a, 1)
da

)
(3)

where e = (1, 1, . . . , 1)T and ΣB(a, b) is the covariance matrix of ZB. In
particular, (3), after µ and b being eliminated using (1) and (2), is an equation
of variable a only and we have â by solving this equation. Then µ̂ and b̂ can
be calculated immediately from relations (1) and (2).

5 Mesh data case

In order to apply block data kriging and model parameter estimations, it is
essential to compute block covariance matrix efficiently. In general, this is
difficult and time-consuming if not impossible. If there is n blocks, we need
to calculate n(n + 1)/2 covariances numerically in principle.

Many spatial data are given as aggregates of original data per mesh.
Typical examples are demographic data. For mesh-type blocks, we can reduce
the number of necessary computations using stationarity and isotropy.

Proposition 4. If B1 and B2 are disjoint, CA,B1∪B2 = CA,B1 + CA,B2 . Let
Z be a stationary random fields. Then CA,B = CA+h,B+h. If, moreover, Z
is isotropic and T is a congruent transformation, CA,B = CT (A),T (B).

If B1, B2, . . . , Bn, n = n1 × n2, are rectangles which consists of n1 by
n2 congruent division of a rectangle, we need to compute only n1 + n2 −
1 + 2(n1 − 1)(n2 − 1) covariances CBi,Bj instead of n(n + 1)/2 ones if Z is
second-order stationary. If, moreover, Z is isotropic, we need to compute only
n1 + n2 − 1 + (n1 − 1)(n2 − 1) covariances. For example, if n1 = n2 = 10, we
need to compute only 100 and 181 covariances respectively instead of 5,500
ones.
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Proposition 5. If Z is a two-dimensional second-order stationary random
field and A is a rectangle with width s and height t,

CA,A+h = |A|−2

∫ s

−s

∫ t

−t

(s − |x|)(t − |y|)C((x, y)T − h)dxdy.

As an application, we apply the block-to-point kriging to a 10 by 10
mesh data, which are populations (1,000/km2) of Tokyo metropolitan area
(Japanese Statistics Bureau (2000)). Strictly speaking, this is not a block
data but count data per mesh. We assume a hypothetical field of popula-
tion density and pretend this is a resulting block data. We fitted spherical,
exponential and Gaussian models. Fig. 1 shows resulting contour images of
block-to-point kriging predictions. Three results show fairly similar features.

6 General regions case

Computation of block-to-block or block-to-point covariance matrices is quite
difficult if block shapes are arbitrary. In this section, we propose an algorithm
of computing these covariances approximately. We assume that Z is second-
order stationary and isotropic.

Proposition 6. Assume Z is a two-dimensional stationary and isotropic
random field. Then the block-to-block covariance CA,B is

CA,B =
∫ r1

r0

GA,B(r)C(r)rdr,

where

GA,B(r) =
1

|A||B|

∫ 2π

0

|(A − reiθ) ∩ B|dθ. (4)

r0 ≥ 0 (resp. r1) is the minimum (resp. maximum) of the set {r ≥ 0 :
(A − reiθ) ∩ B 6= ∅ ∃θ}. r1 is always finite.

Also the block-to-point covariance CA,y is CA,y =
∫ r1

r0
GA,y(r)C(r)rdr

where GA,y(r) = 1
|A|

∫ 2π

0
1A(y+reiθ)dθ and r0 ≥ 0 (resp. r1) is the minimum

(resp. maximum) of the set {r ≥ 0 : y + reiθ) ∈ A ∃θ}. r1 is again finite.

As an application, we show a simulation result for block data kriging for
convex regions. The basic region D is the square [0, 10] × [0, 10] and we
generated Voronoi cells Bi with centers generated using a simple sequential
inhibition point process. Actually those 83 Voronoi cells completely included
in D were used, see Fig. 2. Gaussian random fields were generated on D with
the exponential model with parameters b = 10, a = 1, 2, 3 and the spherical
model with parameters b = 10, a = 4, 5 and block data approximated by
discrete sums were generated.
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Both GA,B(r) and GA,y(r) have no simple closed expressions in general.
A practical procedure is to compute their values at sufficiently many r’s and
interpolate them. Since these functions depend only on A,B (resp. A,y) and
does not depend on covariance functions C(r), we need compute them only
once. Also the area |(A−reiθ)∩B| in (4) needs two-dimensional integrations
over irregular sets which can be efficiently evaluated by a quasi-Monte Carlo
integration using low-discrepancy sequences.

Fig. 2 shows used Voronoi cells (top left), the original random field image
(top right), the corresponding block image (bottom left), and the block-to-
point kriging prediction result (bottom right).

7 Conclusion

Block data kriging, in particular, block-to-point kriging seems useful since
many data such as in demography and epidemiology are often publicized
as aggregates per municipalities or as mesh data from the first. Such data
may be also analyzed using so-called hierarchical Bayes models with Markov
Chain Monte Carlos as explained in detail in [1]. Applicability of this method
may be more general than the present one since it does not necessary assume
a stationary random field framework. On the other hand, it requires a data
specific hierarchical Bayes model.

It should be borne in mind that block data are smoothed from the first
and, therefore, one cannot expect to recover finer details of the original data.
Also blocks with too irregular shapes may lessen the discriminative power of
covariance matrices apart from numerical inefficiency.

In order to apply block-to-block and block-to-point kriging, one has to
compute a lot of block covariances efficiently. In this paper, we showed that
this is feasible at least for the two-dimensional second-order isotropic and
isotropic case. For non-isotropic cases, parallel computations are probably
the last resort.
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Fig. 1. Mesh data of populations (1,000/km2) (top left). Block-to-point kriging
result using the spherical model (top right), the exponential model (bottom left),
and the Gaussian model (bottom right).

Fig. 2. Voronoi cells (top left), the original random field image (top right), the
block data (bottom left) and the block-to-point kriging result (bottom right). Note
that color levels for three images are slightly different.
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Abstract: Following the successful launch in Spring 2009 of the GOCE satellite (Gravity 
field and steady-state Ocean Circulation Explorer), a more ambitious mission consisting in a  
satellite formation of two satellite separated by (a minimum) 10 km distance, is under study 
at the European Space Agency, aiming at monitoring the Earth's gravity field fluctuations, 
during a (at least) 6-year mission. Since GOCE is the first flying drag-free satellite, the 
envisaged formation might be the first drag-free formation, posing a suite of challenging 
technology and control problems under study and solution. The paper concentrates on a triad 
of control problems to be solved and coordinated (formation, drag-free and attitude), all of 
them being constrained by a long-life low-Earth-orbit mission, imposing low propellant 
mass, scarce electric propulsion throttability and limited electric power. Driving 
requirements are presented and discussed,  showing how they can be met through Embedded 
Model Control design. Finally, realistic simulated results are included. 
Keywords: Satellite formation, control, drag-free, attitude, low-Earth-orbit, gravity 
monitoring,  
 

1  Introduction 
One of the possible future Earth gravity monitoring missions  after GOCE (Gravity 
field and steady-state Ocean Circulation Explorer), recently launched and 
successfully operating (Canuto, 2008, Canuto and Massotti, 2009, Canuto, 
Massotti and Molano, 2010), will be based on laser interferometry, in order to 
extend the gravity-gradient baseline to tens of km. A formation of at least two 
satellites is needed to implement long-baseline interferometry. In addition, a long 
mission is desirable to complement gravity spatial variations with time, and the 
orbit must be sufficiently low-altitude, to reveal high-order gravity harmonics. A 
mission of this kind is under study at the European Space Agency: in the last study 
(at the moment of this publication) a 10-km baseline and a mission length of 6 
years have been selected. To allow scientific advancements, each satellite shall be 
drag-free, implying the residual CoM (Centre-of-Mass) non gravitational 
acceleration to be lower than 0.01 μm/s2 in a frequency band from 1 to 10 mHz. 
Similarly,  proportionate requirements apply to angular accelerations, angular rates 
and attitude. Residuals are progressively relaxed below and above the mid-
frequency band. In addition, a 3D formation must be kept, with loose requirements 
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at first glance: variations of the relative formation position must stay in a box 

3500 50 50 m× × wide, the sequence of coordinates being along-track, cross-track 
and radial. Several technology problems have to be solved including propulsion, 
since the latter, even if essential for formation and drag-free, must be employed for 
attitude control too. Electric propulsion is mandatory in order to reduce propellant 
mass around 10% of the satellite mass (500 kg). Second, throttability (the  
max/min thrust ratio) must be sufficiently high to cope with a highly variable drag 
imposed by long-term and short-term solar activity. Already-flown, scalable 
though with insufficient throttability, micro-RIT (radio-frequency) thruster 
technology (Loeb, Schartner, Weiss, Feili and Meyer, 2004) is under study and test 
at Thales Alenia Space Italia premises. Since throttability looks one of the most 
critical technology constraints, control strategies must be designed so as to 
minimize thrust peak. Thruster layout, sketched in Fig. 1, must repeat the early 
GOCE design (Canuto and Massotti, 2009). 

 
Fig. 1. Satellite shape and thruster layout. 

A pair of larger thrusters (mini-thrusters, 0.4 mN to 18 mN range), in cold 
redundancy like on-board GOCE, will take care of along track drag-free and 
formation control (in i  direction, see Fig. 1), while eight smaller thrusters (micro-
thrusters, 0.05 mN to 2 mN range) will accomplish lateral formation and drag-free 
control ( j  and k directions in Fig. 1), as well as attitude control for a total of 5 
degrees-of-freedom (DoF).  
Four classes of sensors are available on-board. 
1. A pair of GPS receivers (1-Hz data rate) on each satellite will be employed for 

formation control and attitude reference generation. They should also be 
employed to calibrate accelerometer bias, as mentioned below. 

2. A pair of GOCE-type accelerometers (10-Hz data rate) will be the sensors of 
the CoM drag-free control, and the wide-band attitude sensors for the attitude 
control, on each satellite. Accelerometer bias and drift are the main sources of 
formation separation (about 500 m at day), to be counteracted by formation 
control. Since the bias corresponds to 0.06 6 mN÷  thrust range, the larger 
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value looks incompatible with micro-thruster range, thus asking either re-
design or on-board calibration. 

3. Two star trackers (2-Hz data rate) in cold redundancy for aligning attitude to 
the orbital reference frame. Since a single star tracker does not guarantee 3D 
uniform error, some problems can arise in attitude control. 

4. On-board optical metrology, equally replicated on each satellite. Optical 
metrology allows to accurately measure distance variations along the optical 
interferometer baseline, as well as the 2D tilt of the satellite along-track axis 
( i ) with respect to the optical baseline. Consequently, the lateral displacement 
may be real-time monitored with the help of the attitude obtained from star 
trackers, and the optical distance from the metrology itself. In this way, an 
alternative metrology with respect to the differential GPS will be capable of 
providing formation relative position. 

The paper is devoted to give an overview of the control strategies, namely 3D 
formation,  drag-free and attitude. First, reference frames and satellite sensor and 
actuator dynamics are briefly reported, paying attention to disturbance and 
measurement error classes. Then control requirements and design are outlined. The 
paper ends with the most significant simulated results. 
Control strategies are designed within the Embedded Model Control framework 
(Canuto, 2007), where control algorithms are built around a real-time Embedded 
Model, and split into reference generator, noise estimator and control law. Key to 
noise estimator is the definition of the noise channels (Canuto, Massotti and 
Molano, 2010). Noise estimator and Embedded Model may be interpreted as state 
observers. Embedded Model and control design are directly tackled in the discrete-
time domain. Here continuous time is adopted. 

2  Frames and dynamics 
Dynamics is provided in the simplified form suitable to Embedded Model. The 
mean Local Orbital Reference Frame (LORF) { }, , ,O O O OC= i j kR , centred in the 
formation CoM C , is defined by the instantaneous orbit orientation /v v , v  
being the CoM velocity, and by the orbital plane orthogonal to the normalized 
angular momentum = ×h r v , where ( )0 1 / 2= +r r r   is the formation CoM under 
equal satellite masses. Each satellite CoM position is denoted with kr , where 

0k =  refers to the leader and 1k =  to the follower.  
The LORF is the reference frame for science and attitude control: LORF axes are 
defined by 
 / , / ,O O O O O= = × × = ×i v v j r v r v k i j . (1) 
Axes from Oi  to Ok  are respectively referred as along-track, cross-track and 
radial. Dropping arrows when inertial coordinates are considered, the matrix 

[ ]O O O OR = i j k , directly obtained from GPS measurements, accomplishes the 
LORF-to-inertial coordinate transformation, and defines a common  reference 
attitude to be tracked by both spacecrafts ( 0,1k = ) during all over the mission. 
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Ok

Oj

/O =i v v

0r
1r

Δr

O tθ ω+
δ+r r

δrC
0C 1C

 
Fig. 2. Formation geometry and local orbital frame. 

LORF dynamics may be either described through CoM dynamics, or through 
LORF quaternion Oq , the latter directly obtained from OR . Treating orbit angular 
rate Oω  and acceleration O O=a ω  as state variables, the following LORF 
equations hold 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0

0

0

1 ,  0
2

,  0

,  0

O O O O O

O O O O O

O O O O

O O O

t t t

t t t

t t

t t t

= ⊗ =

= + =

= =

= ⊗

ω

ω a w ω ω

a s a a

q q q q

y q e

, (2) 

where ⊗  denotes quaternion product, Ow  is a wide-band noise (white noise in 
discrete-time domain), Os  is the angular jerk, and Oy  is the orbit quaternion 
measurement obtained through (1) from GPS range and range rate less the error 
quaternion Oe . Feedback of the error quaternion to Ow  and Os  allows to recover 
quaternion estimate together with orbit angular rate and acceleration, thus 
providing reference attitude trajectories. An equation similar to (2) applies to body 
quaternion ( )0,1  k k =q , retrieved from the inertial coordinates of the body axes 
collected in [ ]k k k kR = i j k  (see Fig. 1): 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0

1
0

0

1 ,  0
2

,  0

,  0

k k k k k

k k k k k qk qk qk k k

qk q qk qk

qk k s qk sk

t t t

t J t J t t t t

t t

t t tτ τ

−

= ⊗ =

= − × + + + =

= =

= − ⊗ −

ω

ω ω ω u a w ω ω

a s a a

q q q q

y q e

, (3) 

where ,  ,  k kq kqω a s  and qw  have the same meaning as in Eq. (2), with the 
exception that now kqa  accounts for un-modelled angular accelerations (Canuto, 
2008). Command torques provided by thrusters are into the command acceleration 
vector kqu . kJ  is the inertia matrix, close to be diagonal, but largely unbalanced 
because of a slender spacecraft as GOCE. Quaternion is retrieved from the star 
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tracker quaternion qky  less the error qke  and a delay skτ . The same equation applies 
to each satellite upon different notations. Attitude control is actuated ideally 
 k Oq = q = q , (4)  

less a tracking error  

 0* k
k k

k

e⎡ ⎤
⊗ ⎢ ⎥

⎣ ⎦e
e = q q = . (5) 

Spacecraft and formation CoM dynamics may be written using a manipulated 
version of Hill’s equation (Canuto, Massotti and Molano, 2010, Inalhan, Tillerson 
and How, 2002). With reference to Fig. 2, let us denote the Cartesian coordinates 
of the spacecraft k  in the LORF frame with kΔr  and the (local) rate with kΔv . 
Due to LORF rotation, the following relative dynamics applies 

 

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

0

0

0

,  0

2

             ,  0

,  0
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k k k k
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t

R

t t

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ Δ Δ

= =

= − × − × × +

−∇ + + + =

= =

r v r r

v ω r ω ω r v

g r r u d w v v

d s d d

e
, (6) 

where gravity acceleration is reduces to the tidal component ( ) kΔ∇g r r , and non 
gravitational accelerations have been split into command ku , disturbance kd  and 
noise kw  (Canuto, 2008). Transformation ( )k kR e  maps body coordinates into 
LORF. Now defining the LORF formation coordinate as  
 0 1Δ Δ Δ= −r r r , (7) 
and likely the differential rate Δv , non gravitational acceleration Δd , command 
Δu  and noise Δw , the formation equation may be written  

 

( ) ( ) ( )
( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )

0

0

0

,  0

2

,  0

,  0

O O O

t t

t

R

t t

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ Δ Δ Δ Δ Δ

Δ Δ Δ Δ

= =

= − × − × × +

−∇ + + + =

= =

r v r r

v ω r ω ω r v

g r r u d w v v

d s d d

e
. (8) 

Accelerometer dynamics is essentially due to anti-aliasing filter characterizing the 
2f  shape noise (Canuto and Massotti, 2009) and transmission delay. 

Accelerometer error ake  is the combination of bias akb , drift akd , white noise 
(including quantization) akw , and high-frequency 2f -proportional noise akh : 
 ( ) ( ) ( ) ( ) ( )ak ak ak ak akt t t t t= + + +e b d w h  (9) 
A simplified model just accounts for delay and neglect high-frequency noise, 
because of anti-aliasing filter  

 
( ) ( ) ( )
( ) ( ) ( ) ( )

ak k a ak a

k k k k

t t t

t t t t

τ τ= − + −

= + +

y a e

a u d w
, (10) 

where ka  is the total non gravitational acceleration in body coordinates. Relative 
position and rate may be obtained from GPS receivers and inter-satellite radio 
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transmission, and, in parallel, by the on-board optical metrology. Only the former 
is considered here. Let us denote GPS range and rate measurements as  

 
( ) ( ) ( )
( ) ( ) ( )

rk k rk

vk k vk

t t t

t t t

= +

= +

y r e

y v e
. (11) 

Formation measurements are obtained from (11) through LORF-to-inertial matrix 
( )OR q  and LORF rate Oω  

 
( ) ( )( )( )
( ) ( )( )( ) ( )( )

0 1

0 1 0 1

T
r O r r

T
v O v v O r r

t R t

t R t t

Δ

Δ

= −

= − − × −

y y y

y y y ω y y

q

q
. (12) 

Considering electrical propulsion for thrust range and lifetime issues, the thruster 
dynamics can be seen as a combination of flow dynamics (slow) and beam current 
dynamics (fast rise time < 0.1 s). The latter dominates close to drag-free and 
attitude bandwidth, below 1 Hz, and therefore thrust-to-force and torque relations 
may be accounted as static. Splitting the force/torque vector into three components, 
the static relations result in 

 ( ) ( ) ( )
0k xk xk xk

mk mk
k hk hk hk hk

tk tk
k qk k qk qk

m u F b
u d

m t t B t
J BΔ

⎡ ⎤ ⎡ ⎤≅⎡ ⎤
+⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

u F b
u d

u M b
, (13) 

where ku  in (6) has been split into along-track xku  and cross-track & radial hku , 
qkΔb  is due misalignment, and hkb  is due to mini-thruster nominal inclination (as 

in Fig. 1).  Note that  ,mk tku u  denote mini and micro commanded thrusts  affected 
by noise ,mk tkd d  respectively, the latter being components of kd  in Eq. (6) and of 

qka  in Eq. (3). 

3  Requirements and control design 
Control requirements split into  
1. drag-free requirement from (10) and (6) 
 ( ) 0,  0,1k t k= =a , (14) 
2. attitude requirement from (3) and (4) 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

qk O

qk O

k O

t t t

t t t

t t t

= =

= =

a a a

ω ω ω

q = q = q

, (15) 

3. formation requirement  
 ( ) [ ]0 0 Tt dΔ Δ= =r r . (16) 
Actual requirements admit residuals, which are expressed through spectral density 
bounds in case of attitude and drag-free variables, the latter being applicable to non 
gravitational CoM and angular accelerations. Formation residuals must be bounded 
by a box defined as   
 ( ) ,max ,  , ,j j jr t r r j x y zΔ Δ δ− = = . (17) 
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Requirements must be completed with thrust bounds imposed by technology, as 
previously addressed in the introduction. Specifically  

 
( )

( )
min max

,min ,max

0

0 max
m

t t t t

u u t u

u t u
∞

< ≤ ≤

< ≤ ≤u
. (18) 

Any overshot of the computed command is managed by control strategy, in order 
to not destroy the drag-free flight conditions, thus jeopardizing science. Propellant 
optimization may be added as a further objective (see Canuto, 2008).  
Drag-free control may be designed as a pure disturbance rejection, with the 
constraints that accelerometer drift and bias are automatically rejected. The 
formation command fku  can be seen as follows 
 ( ) ( ) ( ) ( ) ( )k k ak ak fkt t t t t= − − − +u d b d u , (19) 
and the corresponding acceleration residuals hold (from (6) and (10)) 
 ( ) ( ) ( ) ( ) ( ) ( )k k ak ak ak akt t t t t t= − − − −a w b d w h . (20) 
Equations (19) and (20) clearly impose formation command and accelerometer 
noise to stay below drag-free bound. Drift in (20) is no detrimental as in a single 
spacecraft like GOCE, since the corresponding acceleration is bounded (drift is due 
basically to thermal fluctuations of the electronics) and largely lower than gravity, 
but it may destroy the formation in less than one day if not  counteracted. 
A detail design of formation control is presented in Canuto, Molano and Jimenez 
(2010). A generic formulation combines, in a multivariate law, drift cancellation 
and formation tracking so as to respect (17)  
 ( )f a a r vK KΔ Δ Δ Δ Δ Δ= + − − −u b d r r v , (21) 
where 0 1f f fΔ = −u u u . A pair of challenging problems arise in implementing and 
tuning (21), as mentioned  in Canuto, Molano and Jimenez (2010): 
1. differential accelerometer drift and bias a aΔ Δ+b d  are not the only disturbance 

components in (8), since the main contribution  comes from J2 (Earth flattening) 
- the static component contributes to Hill dynamics together with 

( )2O O k kΔ Δ× × +ω ω r v -, and from the orbit eccentricity, entering O Δ− ×ω r . 
Such components must be fully excluded from (21) for both drag-free and 
thruster bounding reasons, which leads to a form of differential drag-free control. 

2. thrust is minimized by an ad-hoc multivariate design of the feedback gains 
,  r vK K , which exploits  the cross-coupling properties of Hill’s equation in a 

novel way (see Canuto, Molano and Jimenez, 2010). 
Attitude control exploits both electric propulsion (micro-thrusters) and magnetic 
torquers. The resulting commanded acceleration has a similar form to (21) and 
holds, from (3) and (5), 
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( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )
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1
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−
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, (22) 
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where feedback gains ,  qk kK Kω  allow LORF tracking and stability, whereas mP  is 
the projection of the rejected disturbance vector (Silani and Lovera, 2005), 
including gyro torque, on the subspace orthogonal to the instantaneous Earth 
magnetic field Eb . The projected torque is contrasted by magnetic-torquer 
commanded acceleration mku . All state variables entering the control laws (19), 
(21) and (22) are obtained from appropriate noise estimators in discrete time  
domain, which constitute the Embedded Model  with the subset (2), (3), (6), (8), 
(10) and (13). All previous control law have been proved such to guarantee 
performance and stability. Space constraints prevent formal demonstration in the 
present paper. 

4  Simulated results 
All simulate results were obtained under the worst expected environment 
conditions, dictated by the highest solar activity, likely to be met during a 6-year 
mission. Spectral densities of drag-free residuals and target bound are shown in 
Fig. 3:  at a first glance, drag-free bound is not respected at lower frequencies due 
to resonance peaks at orbit frequency, 0.2 mHz, and 2nd harmonics (J2). Actually 
spectral bound does not apply to periodic components, which must be bounded in 
terms of RMS. Thus,  except for the orbit harmonics, bound is largely respected. 
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Fig. 3. Spectral density of drag-free residuals (single spacecraft). 

3D formation tracking errors are shown in Fig. 4, which enlightens the long-term 
natural formation beat motion due to Earth flattening and eccentricity. It cannot be 
destroyed less a large increase in thrust peak. The beat motion carrier is the orbit 
period of about 5500 s. Note the peak of the radial motion being close to box limit 
in (17): 30 m versus 50 bound, entailing formation requirements were not loose. 
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Fig. 4. Two-months formation relative position. 

Table 1 reports thruster performance and target under the expected worst-case 
conditions. Note propellant mass and peak power are outside target, which 
underlines mission requirements being at a technology border. 
 

Table 1.  Thruster performance 
No. Type Unit Value Target 
0 Propellant mass kg 70 50 
1 Average power W 460 500 
2 Peak power W 1250 1000 

 

5 Conclusions and acknowledgments 
An overview of the control challenges in view of a long-distance, drag-free, low-
Earth-orbit spacecraft formation, together with an outline of their solution have 
been presented, supported by simulation results. Part of the work has been done 
under a grant of the European Space Agency to Politecnico di Torino in 
collaboration with Thales Alenia Space Italia, Turin, Italy. 
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Abstract. The Flexible Dirichlet distribution (Ongaro et al., 2008, [5]) has been
recently introduced to model compositional data. It is a generalization of the
Dirichlet which preserves some of its good mathematical properties and, at the
same time, exhibits a richer dependence structure which allows various forms of
dependence relevant for compositional data, independence cases being identified by
suitable parameter configurations.

Here we investigate the nature of the dependence introduced by the new dis-
tribution. Furthermore we develop suitable likelihood-based testing procedures to
assess the presence of dependence relations of particular impact in applications.
Their performances will be evaluated by means of Monte Carlo experiments.
Keywords: Generalizations of Dirichlet distribution, Finite mixture, Composi-
tional data, Neutrality, Likelihood.

1 Introduction

In many problems data consist of vectors of proportions, such as chemical
constituents of a substance, and are, therefore, subject to a unit sum con-
straint. This type of data, called compositional, arise naturally in a great
variety of disciplines such as archeology, biology, economics, environmetrics,
psephology, medicine, psychology, etc..

The most well known distribution for compositional data is the Dirichlet
which possesses several good statistical and mathematical properties, such
as closure under amalgamation and subcomposition, as well as easiness of
parameter interpretation. However it is only suitable for modeling data ex-
hibiting the maximum degree of independence compatible with compositions.

The Flexible Dirichlet (FD) distribution (Ongaro et al., 2008, [5]) allows
to overcome such serious drawback by accounting for various types of depen-
dence.

After reviewing some properties of such distribution (Sections 2 and 3)
we focus on its (in)dependence structure. On the one hand we study the type
of non neutrality provided for by the model by analyzing the influence of a
given subset of variables on the subcomposition formed by the other ones
(Section 4). On the other we develop suitable testing procedures to assess
the presence of independence relations of particular impact in applications
(Section 5).
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2 The Flexible Dirichlet distribution

The Dirichlet distribution X ∼ DD(α), with α = (α1, . . . , αD) ∈ RD+ , takes

values on the unitary simplex SD =
{
x : xi ≥ 0 , i = 1, ..., D and

∑D
i=1 xi =

= 1}.
Such distribution can be obtained by normalizing a vector (basis) of in-

dependent, equally scaled Gamma random variables (r.v.s) and it is closed
under operations of marginalization, conditioning, amalgamation and sub-
composition, the consequent distributions being simply related to the full
one.

The FD distribution is achieved by normalizing a basis of dependent r.v.s
which contains equally scaled Gamma independent variates as a particular
case. Let Wi ∼ Ga(αi) (αi > 0) denote such Gamma r.v.s (i = 1, . . . , D) and
let U ∼ Ga(τ) (τ > 0) denote a further independent Gamma r.v. which is
allocated to the ith component of the basis with probability pi (0 < pi < 1

and
∑D
i=1 pi = 1). Then, the new basis Y = (Y1, . . . , YD) is defined as

Yi = Wi+ZiU , i = 1, . . . , D, where Z = (Z1, . . . , ZD) is a multinomial vector
independent from U and from the Wi’s which is equal to ei with probability
pi where ei is a vector of zeros except for the ith element which is one.

The normalized vector X =
(
Y1

Y + , . . . ,
YD

Y +

)
, (where Y + =

∑D
i=1 Yi), has a

FD distribution denoted by FDD(α, p, τ) and it is a finite mixture of Dirichlet
distributions:

FDD(α, p, τ) =

D∑
i=1

piDD(α+ τei). (1)

Therefore, its density function can be expressed as

fFD(x;α, p, τ) =
Γ (α+ + τ)∏D
r=1 Γ (αr)

(
D∏
r=1

xαr−1
r

)
D∑
i=1

pi
Γ (αi)

Γ (αi + τ)
xτi (2)

where x belongs to the unitary simplex and α+ =
∑D
i=1 αi.

Here we have adopted a slightly smaller parameter space (the interior
of the original one) than in Ongaro et al. 2008 [5] which is more tractable
from a mathematical point of view without loosing in generality in terms of
independence relations.

For completeness we now report some useful properties of the FD suitably
adjusted to the new parameter space.

The FD includes the Dirichlet as an inner point: FDD(α, p, τ) ≡ DD(α)
if and only if τ = 1 and pi = αi/α

+, ∀i = 1, . . . , D.
The first two moments can be expressed as:

E(Xi) =
αi + piτ

α+ + τ

V ar(Xi) =
E(Xi)(1− E(Xi))

(α+ + τ + 1)
+

τ2pi(1− pi)
(α+ + τ)(α+ + τ + 1)
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Cov(Xi, Xr) = −E(Xi)E(Xr)

(α+ + τ + 1)
− τ2pipr

(α+ + τ)(α+ + τ + 1)
.

Thus, unlike the Dirichlet, the FD distribution accounts for components with
the same mean but different variances or for covariances which do not show
proportionality with respect to the product of means.

In order to characterize marginal and conditional distributions, it is use-
ful to adopt the following notation. Given a partition (of order 1) X =
(X1, . . . , Xk|Xk+1, . . . , XD) = (X1, X2) we shall denote the corresponding

totals by X+
1 =

∑k
i=1Xi and X+

2 =
∑D
i=k+1Xi and, in an analogous way,

we shall define the quantities α1, α2, α+
1 , α+

2 , p
1
, p

2
, p+1 and p+2 . More-

over we shall indicate the two subcompositions by S1 = (X1,...,Xk)

X+
1

and

S2 = (Xk+1,...,XD)

X+
2

and the amalgamation (vector of totals) by T = (X+
1 , X

+
2 ).

First of all, the FD distribution is closed under marginalization, i.e.:

(X1, 1−X+
1 ) ∼ FDk+1(α1, α

+ − α+
1 , p1, 1− p

+
1 , τ). (3)

Furthermore, its (normalized) conditional distributions are mixtures of a
FD and of a Dirichlet. More precisely:

X1

1− x+2
| X2 = x2 ∼ S1 | X2 = x2

has distribution:

p(x2)FDk

(
α1,

p
1

p+1
, τ

)
+ (1− p(x2))Dk(α1) (4)

where

p(x2) =
p+1

p+1 + q(x2)
(5)

and

q(x2) =
Γ (α+

1 + τ)

Γ (α+
1 )(1− x+2 )τ

D∑
i=k+1

pi
Γ (αi)

Γ (αi + τ)
xτi . (6)

The FD is also closed under permutation (the parameters of the per-
muted random vector being simply the permutation of the original parame-
ters) and under amalgamation (where the parameters of the amalgamation
can be easily obtained by summing up the αi’s and pi’s within each group of
the partition).

Finally, the distribution of subcompositions from a FD can be easily de-

rived. For example: S1 ∼ p+1 FDk
(
α1,

p
1

p+1
, τ
)

+ (1− p+1 )Dk(α1).

Notice also that properties concerning amalgamation and subcomposi-
tions do hold for partitions of any order (i.e. into an arbitrary number of
subsets).
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3 Independence relationships

Clearly the components of a random vector defined on the simplex cannot be
independent because of the unit-sum constraint. That is why a large variety
of ad hoc forms of independence has been developed in the literature (see for
example Aitchison, 1980, [1], and 2003, [2]), most of which can be expressed in
terms of subcompositions and amalgamation. Focusing on partitions of order
1 for the sake of simplicity, we shall mainly consider partition independence
( S1 ⊥ S2 ⊥ T , where ⊥ stands for independence), neutrality on the right
(S2 ⊥ (S1, T )) and neutrality on the left (S1 ⊥ (S2, T )).

The Dirichlet distribution can be shown to possess all the above indepen-
dence properties and it can be properly considered as the model of maximum
independence compatible with unit-sum constrained r.v.s.

Vice versa the FD exhibits a rich dependence structure, various forms
of independence corresponding to suitable parameter configurations. Let us
focus on the following ones which will prove to be the most interesting:

1. τ = 1 and pi = αi/α
+, (i = 1, . . . , D), i.e. X ∼ DD(α);

2. τ = 1 and pi
p+1

= αi

α+
1

, (i = 1, . . . , k);

3. τ = 1 and pi
p+2

= αi

α+
2

, (i = k + 1, . . . , D).

It can be proved that the FDD(α, p, τ) is neutral on the left, i.e. S1⊥(S2, T ),
if and only if either condition 1. or condition 2. is satisfied. Analogously,
conditions for right neutrality can be obtained: we have S2⊥(S1, T ) if and
only if either condition 1. or condition 3. is satisfied. Furthermore, the
FDD(α, p, τ) shows partition independence, i.e. S1⊥S2⊥T , if and only if
either condition 1. or both condition 2. and 3. are satisfied.

Finally, it is noticeable that conditions for independence relations to hold
can be generalized to higher order partitions. For example, a partition of
order 2 shows partition independence if and only if either condition 1. is sat-
isfied or τ = 1 and in at least two of the three subsets the αi’s are proportional
to the pi’s.

4 Dependence pattern

Whenever in a given model a type of independence is absent, it is of statistical
interest to analyze the form of the consequent dependence. This gives rise to
a number of relationships of potential importance. Here we shall focus on the
independence concept of neutrality whose relevance and generality, both from
a theoretical and an applicative perspective, clearly emerges from the litera-
ture. Such concept, first introduced by Connor and Mosimann, 1969 [3], has
to do with the consequences of eliminating a certain number of components
on the relative proportions of the remaining ones (i.e. the corresponding
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subcomposition). To illustrate the concept, suppose that the researcher’s in-
terest is on (X1, . . . , XD−1); then XD is said neutral, and it can therefore be
neglected, only if it has no influence on (X1/(1−XD), . . . , XD−1/(1−XD)).
For example, consider a household budget analysis where the total expendi-
tures are classified into a number of commodity categories. Then it may be of
interest to understand whether, for instance, the amount spent on foodstuffs
affects the expenditure pattern (subcomposition) of the other categories.

More generally, using our notation, a vector X2 is neutral if it is indepen-
dent of S1. It is important to observe that such notion coincides with the
above introduced neutrality on the left due to the one-to-one correspondence
between X2 and (S2, T ).

If X2 is not neutral, then it is of obvious interest to analyze how it does
affect the composition of the remaining variables. Such issue can be explored
within the FD model by considering the conditional mean effect.

Proposition 1
Let S1 = (S11, . . . , S1k), then for i = 1, . . . , k

E (S1i|X2 = x2) = (1− p(x2)w)
αi

α+
1

+ p(x2)w
pi

p+1
(7)

where p(x2) is given by (5) and w = τ/(τ + α+
1 ).

Proof
The result follows, after some algebraic work, from (4) and knowledge of

the first moment of the FD. �

The conditional mean is easily seen monotone in p(x2) and therefore in
each xj , (j = k+1, . . . , D), being p(x2) decreasing in each xj . More precisely,
it varies from (1 − w) αi

α+
1

+ w pi
p+1

when x+2 = 0 to αi

α+
1

when x+2 → 1. In

particular, it is increasing (decreasing) when pi
p+1

< αi

α+
1

(
pi
p+1

> αi

α+
1

)
and it

is constant when pi
p+1

= αi

α+
1

, thus making simple to model both positive and

negative dependences.
The parameter τ determines the range of variation of the conditional

mean, the bigger τ the larger such range. Particularly simple expressions are
obtained when τ = 1; if moreover pi is proportional to αi for i = k+1, . . . , D,
then the conditional mean depends on x2 only through the sum x+2 .

5 Testing independence

A convenient strategy to analyze the various forms of independence is to
order them from the strongest to the weakest and then to test them in such
order, proceeding to the next level only in case of rejection of the preceding
one.

527



6 Migliorati et al.

In general the first hypothesis to be tested is the Dirichlet model one
as it implies any other independence. Then, given a partition of order 1 of
interest, one can test partition independence first and finally, at the same
level, neutrality on the left and/or on the right. Notice that the last two
properties are equivalent to partition independence.

Any of the above hypotheses can be tested through a suitable likelihood
ratio test with asymptotic chi-square distribution.

Obviously there is no guarantee of a complete coherence among decisions
taken at the various steps: for example rejection of partition independence
may occur without rejecting neither neutrality on the left nor neutrality on
the right. If such coherence is thought essential then one might look for
alternative strategies such as intersection-union tests: reject partition inde-
pendence iff at least one of the two neutrality likelihood ratio tests rejects.
In this case, to obtain a level α test for partition independence a level α/2
can be adopted for the other two tests. Anyway, notice that such solution
leads to a conservative test.

Clearly, if the researcher is interested in just one particular type of inde-
pendence, i.e. neutrality, she/he does not need to follow the above scheme.

The construction of the above mentioned likelihood ratio tests requires
the unconstrained maximization of the likelihood as well as the constrained
maximization under the various hypotheses, which are critical issues given
the mixture structure of the model. The former problem has been tackled
in Migliorati et al. 2008 [4] where an E-M- algorithm has been adopted
with initial values obtained by combining the k-mean clustering algorithm
for estimating the pi’s and a two step method of moments for τ and α.

Let us now focus on the issues arising from constrained maximization.
First let us consider the null hypothesis relative to condition 1., i.e. H0 :
X ∼ DD(α). The maximization of the likelihood under H0 has been per-
formed by applying the Newton-Raphson algorithm (Ronning,1989 [6]) using
the method of moments to obtain the starting values. The test statistic dis-
tribution has been approximated by a chi-square with D degrees of freedom
according to Wilks’ theorem.

The other hypotheses require a more complex procedure. Maximization
of the likelihood under such null hypotheses is best achieved by constructing
suitable profile likelihoods which exploit specific factorization properties of
the FD model. In particular, under the null hypothesis of partition indepen-
dence

H0 : τ = 1;
pi

p+1
=

αi

α+
1

, (i = 1, . . . k);
pi

p+2
=

αi

α+
2

, (i = k + 1, . . . D)

the distribution of X can be conveniently represented through the distri-
bution of S1, S2 and T , which are independent with S1 ∼ Dk(α1), S2 ∼
DD−k(α2) and T ∼ FD2(α+

1 , α
+
2 , p

+
1 , p

+
2 , τ = 1) (for a proof see Section 5 of

Ongaro et al. 2008 [5]). Such formulation has the advantage of automati-
cally incorporating the null hypothesis constraints. Furthermore it suggests
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to consider the profile likelihood for α+
1 and α+

2 as only such parameters ap-
pear in more than one of the above distributions. The profile can be easily
constructed by separate maximization of the likelihood relative to the three
distributions. The test statistic distribution has been approximated by a
chi-square with D − 1 degrees of freedom.

The null hypothesis of left neutrality:

H0 : τ = 1;
pi

p+1
=

αi

α+
1

, (i = 1, . . . k)

can be dealt with a similar method: X is best represented through the
distribution of S1 and X2 which are independent with S1 ∼ Dk(α1) and
X2 ∼ FDD−k(αk+1, . . . , αD, α

+
1 , pk+1, . . . , pD, p

+
1 , τ = 1). This leads to con-

sider the profile for α+
1 which is the only parameter shared by the two distri-

butions. The test statistic distribution has been approximated by a chi-square
with k degrees of freedom. Clearly the hypothesis of right neutrality can be
tested in an analogous way.

A simulation study of the performances of the above tests has been carried
out with 10, 000 replications for different values of n and of the parameter
vector. The following tables report the simulated (real) significance levels
against a 5% nominal one and some values of the simulated power.

Table 1 refers to H0 : X ∼ DD(α) and takes into consideration the
following parameter configurations where the null hypothesis is true only in
cases (a), (b) and (c):

(a) X ∼ D3(α = (1, 1, 1))
(b) X ∼ D4(α = (0.5, 0.3, 0.7, 0.6))
(c) X ∼ D5(α = (6, 4, 3, 1, 8))
(d) X ∼ FD3(α = (1, 1, 1), p = (0.45, 0.25, 0.3), τ = 2)

(e) X ∼ FD4(α = (0.6, 0.3, 0.5, 0.2), p = (0.15, 0.35, 0.3, 0.2), τ = 4)

(f) X ∼ FD5(α = (8, 3, 4, 2, 10), p = (0.15, .35, 0.15, 0.2, 0.15), τ = 6)

Table 1. Proportion of rejections at 5% level.

case n = 50 n = 100 n = 300

(a) 0.058 0.061 0.052

(b) 0.047 0.05 0.048

(c) 0.054 0.046 0.047

(d) 0.217 0.336 0.757

(e) 0.996 0.998 1

(f) 0.991 1 1

The first three rows highlight a good performance of the simulated signifi-
cance level for all models considered and all sample sizes. It is also noticeable
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that the power quickly converges to 1 for increasing sample sizes except for
the case (d) whose parameter configuration is however quite close to the null.

For lack of space we report simulations only for the neutrality case as
it is computationally more demanding than the partition independence one.
Table 2 reports the simulation results referred to the left neutrality hypothesis
where the original composition has been partitioned as (X1, X2, X3|X4, X5).
We considered the following parameter configurations:

(a) X ∼ FD5(α = (6, 5, 13, 10, 6), p = (0.4 · (6, 5, 13)/24, 0.3, 0.3) , τ = 1)
(b) X ∼ FD5(α = (5, 10, 20, 6, 9), p = (0.5 · (5, 10, 20)/35, 0.4, 0.1) , τ = 1)
(c) X ∼ FD5(α = (0.5, 2, 5, 0.6, 1), p = (0.25, 0.3, 0.2, 0.1, 0.15), τ = 2)
(d) X ∼ FD5(α = (5, 10, 20, 6, 9), p = (0.3, 0.2, 0.1, 0.1, 0.3), τ = 3)

where the null hypothesis is true only in cases (a) and (b).

Table 2. Proportion of rejections at 5% level.

case n = 300 n = 500 n = 1000

(a) 0.101 0.075 0.064

(b) 0.109 0.069 0.062

(c) 0.468 0.695 0.966

(d) 0.198 0.215 0.366

The performance of the simulated significance level appears to be satis-
factory even though the convergence is slower than in the case of Table 1.
Concerning the power of the test, some convergence difficulties emerge in
case (d) which deserves further investigation.
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Abstract. In this note the counting process in the insurance risk model is a com-
pound Binomial process. The particular case of geometric compounding distribu-
tion is analyzed. The counting process is called Inflated-parameter binomial process
(I - Binomial process). Some basic properties are given. The corresponding risk
model is called I - Binomial risk model. The joint probability distribution of the
time to ruin and the deficit after ruin occurs is studied. The case of exponentially
distributed claims is given.
Keywords: Discrete distributions,, inflated - parameter distributions,, compound
distribution.

1 Introduction

Consider the standard risk model {X(t), t ≥ 0}, defined on the complete
probability space (Ω,F , P ) and given by

X(t) = ct−
N(t)∑
k=1

Zk,

(
0∑
1

= 0

)
. (1)

Here c is a positive real constant representing the risk premium rate. The se-
quence {Zk}∞k=1 of non-negative mutually independent identically distributed
random variables is independent of the counting process N(t), t ≥ 0. The
claim sizes {Zk}∞k=1 are distributed as the random variable Z with distribu-
tion function F, F (0) = 0 and mean value µ = EZ <∞.

In this paper we suppose that the counting process N(t) has a com-
pound binomial distribution, see [1]. Suppose that N(t) =

∑N1(t)
i=1 Yi, where

Y1, Y2, . . . are independent identically distributed random variables, indepen-
dent of N1(t) and for α > 0 and n ≥ 1, N1(t) ∼ Bi(n, tα ). Let Y denote the
compounding random variable. Here we suppose that for ρ ∈ [0, 1), Y ∼
Ge1(1− ρ) with probability mass function

P (Y = m) = (1− ρ)ρm−1, m = 1, 2, . . . .

The compound binomial process N(t) has Inflated - parameter binomial dis-
tribution ([3] and [5]) and is called I-Binomial process.
? This paper is partially supported by Sofia University grant 028/2009
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2 L. D. Minkova

In this paper the counting process N(t) is defined as a birth process. Some
properties are given and the application in insurance risk model is analyzed.
We consider the particular case of exponentially distributed claims.

2 I-Binomial process

The I-Binomial process as a generalized birth process is defined in [4]. The
transition probabilities are given by the following postulates:

P (N(t+ h) = n | N(t) = m) =
1− (1− ρ)

nα

(α− t)2
∞∑
k=1

[
1− (1− ρ)

α

α− t

]k−1

h+ o(h), n = m,

(1− ρ)
nα

(α− t)2

[
1− (1− ρ)

α

α− t

]k−1

h+ o(h), n = m+ k, k = 1, 2, . . . ,

for every m = 0, 1, . . ., where o(h)→ 0 as h→ 0.
If Pm(t) = P (N(t) = m), m = 0, 1, 2, . . ., the above postulates yield the

following Kolmogorov forward equations:

P ′0(t) = − n

α− t
P0(t),

P ′m(t) = − n

α− t
Pm(t) + (1− ρ)

α

n

(
α

α− t

)2 m∑
k=1

[
1− (1− ρ)

α

α− t

]k−1

Pm−k(t),

(2)
for m = 1, 2, . . . . The solution of (2) with conditions

P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . .

is given by

P (Nt = m) =


(

1− t

α

)n
, m = 0

m∧n∑
i=1

(
n

i

)(
m− 1
i− 1

)[
(1− ρ)

t

α

]i(
1− t

α

)n−i
ρm−i, m = 1, 2, . . . .

(3)
This is just the Inflated - parameter binomial distribution with parameters

t
α , ρ and n, say IBi( tα , ρ, n) (see [3] and [5]). In the case of ρ = 0 (3) coincides
with the usual binomial distribution.

This leads to the following definition

Definition 1 The counting process {N(t), t ≥ 0} is said to be I - Binomial
process, if it starts at zero, N(0) = 0 and for each t > 0, the distribution of
N(t) is given by (3).
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2.1 Properties of the I-Binomial process

Denote Sm = T1 + T2 + . . . + Tm, m = 1, 2, . . . , the waiting time until the
mth event. One of the basic properties of the I-Binomial process is given in
the next theorem.

Theorem 1 Let N(t) has the IBi( tα , ρ, n)distribution (3). Then the waiting
time until the mth event has the following probability density function (p.d.f.)

fSm(t) =
n

α

(m−1)∧(n−1)∑
i=0

(
n− 1
i

)(
m− 1
i

)[
(1− ρ)

t

α

]i(
1− t

α

)n−i−1

ρm−i−1.

(4)

2.2 Moments

The mean value and the variance of I - Binomial process are given by

EN(t) =
nt

(1− ρ)α

and

V ar(N(t)) =
n

(1− ρ)2

[
1− t

α
+ ρ

]
t

α
= EN(t)

[
1 + ρ

1− ρ
− t

(1− ρ)α

]

3 Application to Risk Theory

We consider the risk model (1), where N(t) is I - Binomial process and will
call this process I - Binomial risk model.

The relative safety loading θ is defined by

θ =
cα(1− ρ)

nµ
− 1,

and in the case of positive safety loading θ > 0, c > nµ
α(1−ρ) .

We are interested in the probability that ruin occurs and the deficit at
the time of ruin does not exeedes a given amount y > 0.

Let τ = inf{t : X(t) < −u} with the convention of inf ∅ =∞ be the time
to ruin of an insurance company having initial capital u ≥ 0. We denote by
Ψ(u) = P (τ < ∞) the ruin probability and Φ(u) = 1 − Ψ(u) the nonruin
probability.

In the following we use the notation of [2]. Let G(u, y) be the joint
probability distribution of the time to ruin τ and the deficit in prior to ruin
D = |U(τ)| i.e.

G(u, y) = P (τ < t,D ≤ y). (5)
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and
lim

y−→∞
G(u, y) = Ψ(u).

Using the postulates we have

G(u, y) =

=
(

1− n
α−th

)
G(u+ ch, y) + (1− ρ)nα

(
α
α−t

)2

h
∑∞
k=1

[
1− (1− ρ) α

α−t

]k−1

×

[∫ u+ch

0

G(u+ ch− x, y)dF ∗k(x) +
(
F ∗k(u+ ch+ y)− F ∗k(u+ ch)

)]
+ o(h),

where F ∗k(x), k = 1, 2, . . . is the distribution function of Z1 + Z2 + . . . Zk.
Rearanging the terms leads to

G(u+ ch, y)−G(u, y)
ch

=

=
n

(α− t)c
G(u+ ch, y)− (1− ρ)

n

αc

(
α

α− t

)2 ∞∑
k=1

[
1− (1− ρ)

α

α− t

]k−1

×

[∫ u+ch

0

G(u+ ch− x, y)dF ∗k(x) +
(
F ∗k(u+ ch+ y)− F ∗k(u+ ch)

)]
+
o(h)
h

.

Let

H(x) = (1− ρ)
α

α− t

∞∑
k=1

(
1− (1− ρ)

α

α− t

)k−1

F ∗k(x) (6)

be the non defective probability distribution function of the claims with

H(0) = 0, H(∞) = 1.

By letting h→ 0 we obtain the following differential equation

∂G(u, y)
∂u

=
n

c(α− t)

[
G(u, y)−

∫ u

0

G(u− x, y)dH(x)− [H(u+ y)−H(u)]
]
.

(7)

Theorem 2 The function G(0, y) is given by

G(0, y) =
n

c(α− t)

∫ y

0

[1−H(u)]du. (8)
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Proof. Integrating (7) from 0 to ∞ with G(∞, y) = 0 leads to

−G(0, y) =

=
n

c(α− t)

[∫ ∞
0

G(u, y)du−
∫ ∞

0

∫ u

0

G(u− x, y)dH(x)du−
∫ ∞

0

(H(u+ y)−H(u))du
]

The change of variables in the double integral and simple calculations yield

G(0, y) =
n

c(α− t)

∫ ∞
0

[H(u+ y)−H(u)]du

and (8).
4

Theorem 3 The ruin probability with u = 0 is given by

Ψ(0) =
nµ

(1− ρ)αc
. (9)

Proof. According (8)

Ψ(0) = lim
y→∞

G(0, y) =
n

c(α− t)

∫ ∞
0

[1−H(x)]dx.

Let X be a random variable with distribution function H(x). By the
definition of H(x) and EZ = µ we obtain

EX =
µ(α− t)
(1− ρ)α

.

Using the fact that EX =
∫∞
0

[1−H(x)]dx we obtain (9).
4

3.1 Exponentially distributed claims

Let us consider the case of exponentially distributed claim sizes, i.e. F (u) =
1− e−

u
µ , u ≥ 0, µ > 0. In this case,

h(x) = (1− ρ)
α

µ(α− t)
e−(1−ρ) αx

µ(α−t)

and

H(x) = 1− e−(1−ρ) αx
µ(α−t) , x ≥ 0.
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The first order differential equation (7) is given by

∂G(u, y)
∂u

− n

c(α− t)
G(u, y) =

− n(1− ρ)α
cµ(α− t)2

e−(1−ρ) α
α−t

u
µ

∫ u

0

G(v, y)e(1−ρ)
α
α−t

v
µ dv−

− n

c(α− t)
e−(1−ρ) α

α−t
u
µ

[
1− e−(1−ρ) α

α−t
y
µ

]
Differentiating by u leads to the second order differential equation

∂2G(u, y)
∂u2

− n

c(α− t)

(
1− (1− ρ)αc

nµ

)
∂G(u, y)
∂u

= 0. (10)

The initial condition (8) in the case of exponential distribution is

G(0, y) =
n

c(1− ρ)α

(
1− e−(1−ρ) α

α−t
y
µ

)
. (11)

The equation (7) gives the second condition

∂G(0, y)
∂u

=
nµ

c(α− t)

(
nµ

c(1− ρ)α
− 1
)(

1− e−(1−ρ) α
α−t

y
µ

)
. (12)

The solution of (10) with the initial conditions (11) and (12) is

G(u, y) =
nµ

c(1− ρ)α

(
1− e−(1−ρ) α

α−t
y
µ

)
e−

n
c(α−t) ( c(1−ρ)αnµ −1)u.

The ruin probability in the exponential case is given by

Ψ(u) =
nµ

c(1− ρ)α
e−

n
c(α−t) ( c(1−ρ)αnµ −1)u.
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Abstract. This paper proposed a new general family of continuous of distributions
motivated by the distributions of record statistics. Its distributional properties
including the distribution function, moments, symmetry and modality are studied.
One special case, when F is the exponential distribution is considered and at the
end two real data sets are used for fitting the suitability of our proposed model in
the special case.
Keywords: Order statistics, Record statistics, Gamma distribution.

1 Introduction

Let {Xi, i ≥ 1} be a sequence of continuous random variables from the
cumulative distribution function (cdf) F (x) and probability density function
(pdf) f(x). Then the pdf of n-th upper record values, Un, and n-th lower
record values, Ln, are given by

fUn(x) =
1

Γ (n)
[− log F̄ (x)]n−1f(x) −∞ < x < ∞ (1)

and
fLn(x) =

1
Γ (n)

[− log F (x)]n−1f(x) −∞ < x < ∞ (2)

respectively, where Γ (·) is the complete gamma function. See Arnold et al.
(1998) for more details about the theory and applications of record values.
Several authors have considered the problems of generalized continuous prob-
ability distributions. The generalized gamma distribution, Pareto distribu-
tion and beta distribution have been studied by Amoroso (1925), Ljubo
(1965) and McDonald (1984), respectively. Since then other authors have
developed the previous results. Recently, Eugene et al. (2002) introduced
a new family of distributions generated from the logit of the beta random
variable:

gF (t;α, β) =
Γ (α + β)
Γ (α)Γ (β)

[F (t)]α−1[1− F (t)]β−1f(t). (3)

? This paper is supported in part by the Iranian National Foundation of Elites.
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They studied a special case of (3) when F (x) is the cdf of the normal dis-
tribution. Jones (2004) proposed (3) as a family of distributions motivated
by order statistics. He studied its distributional properties as well as po-
tential for exciting statistical applications. Previous researches, (1) and (2)
caused us to try to introduce a new family of distributions which arises from
the distributions of record statistics. We propose the new general family of
continuous distributions that generated by F as follows:

hF (t; α, β) =
1

γ(α, β)
[− log F̄ (t)]α−1[− log F (t)]β−1f(t), (4)

where α and β are positive real constants and γ(α, β) is

γ(α, β) =
∫ ∞

0

yα−1[− log(1− e−y)]β−1e−ydy, (5)

we call it extended gamma function. It is clear that γ(α, 1) = Γ (α) and
γ(1, β) = Γ (β). From (1), (2) and (4) it is obvious that if β = 1 and α ∈ N ,
as a natural number, then the probability distribution in (4) takes the same
form as the α-th upper record values. Also for α = 1 and β ∈ N the pdf in
(4) is the pdf of lower record values coming from cdf F and pdf f . Thus in
the case of α = 1, one example of family (4) is the gamma distribution itself
which arises immediately if F is taken to be the exponential distribution.
Also, hF (x; 1, 1) = f(x). The main reason for extending a distribution as
in (4) is that the form in (4) provides more flexibility in modelling observed
data.

We study some distributional properties of the introduced family in Sec-
tion 2. These properties include the distribution function, moments, symme-
try, modality and estimation of α and β. One special case, when F is the
exponential distribution is considered in Section 3. At the end two real data
sets are used for fitting the suitability of our proposed model in the special
case.

2 Distribution Properties

In this section we intend to study the general properties of members of family
(4). First of all we present some properties of γ(α, β).

2.1 Some properties of γ(α, β)

Lemma 1. For any positive real values of α and β we have:
• [γ(α, β)]2≤Γ (2α− 1)Γ (2β − 1) and the equality holds iff α = β = 1.
• γ(α, β) = γ(β, α).

The proof of the above lemma is simple and therefore is omitted. From (5)
it is obvious that γ(α, 1) = Γ (α) and in the following lemma, we obtain the
exact expression for γ(α, 2) which will be used in this paper.
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Lemma 2. For β = 2 and α > 0, we have

γ(α, 2) = Γ (α)
∞∑

j=1

1
j(j + 1)α

.

Proof. The result immediately follows by notifying that

log(1− e−y) = −
∞∑

i=1

e−iy

i
.

2.2 Distribution Function

From (4) and putting y = − log F̄ (x) we have

HF (x;α, β) =
γ(α, β,− log F̄ (x))

γ(α, β)
,

where γ(α, β, t) is the incomplete extended gamma function, i.e.,

γ(α, β, t) =
∫ t

0

yα−1[− log(1− e−y)]β−1e−ydy.

Now, we calculate HF (x, α, β) for some special cases.

• Suppose β − 1 is a natural number (β − 1 ∈ N), then

HF (x; α, β) =
γ(α, β,− log F̄ (x))

γ(α, β)

= γ−1(α, β)
∫ − log F̄ (x)

0

yα−1[− log(1− e−y)]β−1e−y dy

= γ−1(α, β)
∫ − log F̄ (x)

0

yα−1

( ∞∑

i=1

e−iy

i

)β−1

e−y dy

= γ−1(α, β)
∫ − log F̄ (x)

0

yα−1
∞∑

j=1

Cj(β − 1)e−(j+1)y dy

= γ−1(α, β)
∞∑

j=1

Cj(β − 1)Γ (α, j + 1,− log F̄ (x)), (6)

where Cj(n) in (6) is the coefficient of wj in the expansion of
(∑∞

i=1
wi

i

)n

and Γ (α, β, t) is the incomplete gamma function. Notice that the coefficients
Cj(n) can be generated in a recursive manner as follows: Cj(1) = 1/j for
j = 1, 2, · · · and

Cj(n) =
j−1∑

k=n−1

Ck(n− 1)/(j − k),
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see Arnold et al. (1998), pp. 70–71.

• Suppose that α is a natural number in (6), by using the following identity
∫ t

0

λn

Γ (n)
xn−1e−λxdx =

∞∑

k=n

(λt)k

k!
e−λt.

We can rewrite (6) as follows

HF (x;α, β) = γ−1(α, β)Γ (α)
∞∑

j=1

∞∑

i=α

Cj(β − 1)
i!jα−i

[F̄ (x)]j [− log F̄ (x)]i.

For β = 2 and α ∈ N , HF (x, α, 2) simplifies as:

HF (x;α, 2) =

( ∞∑

k=1

1
k(k + 1)α

)−1 ∞∑

j=1

∞∑

i=α

[F̄ (x)]j+1[− log F̄ (x)]i

j(j + 1)α−ii!
.

2.3 Moments

A sufficient condition for existence of the moments of the family in (4) is
provided by the following lemma. We say that the kth moment of X exists
if E(|X|k) < ∞.

Lemma 3. Let U have a distribution with pdf (4) and X have a distribution
with cdf F(x). If E(|X|k+δ) < ∞, k is any non-negative integer and δ > 0,
then E(|U |k) < ∞, for all α > 0, β > 0.

Proof. Suppose that p > 1 and 1
p + 1

q = 1, then from (4) and taking y =
− log F̄ (u) we have

E(|U |k) = γ−1(α, β)
∫ ∞

−∞
|u|k[− log F̄ (u)]α−1[− log F (u)]β−1f(u)du

= γ−1(α, β)
∫ ∞

0

|F−1(1− e−y)|k[− log(1− e−y)]β−1e−yyα−1dy

≤ γ−1(α, β)
{∫ ∞

0

{yα−1[− log(1− e−y)]β−1}qe−ydy

} 1
q

×
{∫ ∞

0

|F−1(1− e−y)|kpe−ydy

} 1
p

(7)

=
[γ(αq − q + 1, βq − q + 1)]

1
q

γ(α, β)

{∫ ∞

−∞
|x|k+δf(x)dx

} 1
p

, where k + δ = kp

=
[γ(αq − q + 1, βq − q + 1)]

1
q

γ(α, β)
[E(|X|k+δ)]1/p,

The inequality in (7) Holder’s inequality.

So by Lemma 3 the existence of the moments of F will guarantee existence
of the moments of lower order of the corresponding generated family in (4).
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2.4 Symmetry and Modality

In this section we seek to provide a sufficient condition for preserving sym-
metry and unimodality properties by hF .

Lemma 4. Let F be symmetric about zero, then hF remains symmetric
whenever α = β.

The proof of the above lemma is simple and therefore is omitted. It is not
difficult to show that γ(α, α) in (5) is a increasing function with respect to
α. So whenever α = β, hF remains symmetric but with tails getting lighter
as α increases and heavier as α decreases. If α 6= β, skewness is introduced,
the amount of skewness depends on the difference between α and β, and its
sign on the sign of β − α.

Lemma 5. Let F be symmetric and unimodal, then hF is also unimodal, if
α = β.

Proof. Let M be the mode of F , then by assumptions F (M) = 1
2 . From (4)

for α = β,

hF (x; α, α) = γ−1(α, α) [log F̄ (x) log F (x)]α−1 f(x). (8)

So, it is enough to show that the expression in the bracket on the right
hand side of (8) gets its only maximum at x = M . To this end, let g(x) =
log F̄ (x) log F (x), then

g′(x) =
f(x)

F (x)F̄ (x)
[F̄ (x) log F̄ (x)− F (x) log F (x)],

and
g′′(x) = −S(x){f(x)[2 + log(F (x)F̄ (x))]}+ R(x)S′(x),

where S(x) = f(x)
F (x)F̄ (x)

and R(x) = F̄ (x) log F̄ (x)− F (x) log F (x). We have

lim
|x|→∞

g′(x) = lim
|x|→∞

R(x) = 0, (9)

and as S(x) > 0, g′(x) = 0 whenever R(x) = 0. Clearly R(M) = 0, and
g′′(M) < 0, so by (9) it is enough to show that R′(x) has only two finite
roots. We have

R′(x) = −f(x)[2 + log(F (x)F̄ (x))]. (10)

The right hand side of (10) equals to zero whenever x = x1 = F−1
(

2e−1√
e2−4+e

)

or x = x2 = F−1
(

2e−1√
e2−4−e

)
. It is clear that M ∈ (x1, x2) and the proof is

complete.

In Lemma 4 and 5, we show that the properties of symmetry and unimodality
preserve by hF when α = β. The parameters α and β are shape parameters,
which determines the skewness of the distribution. When F is unimodal, hF

is skewed to the right when β > α, the degree of right skewness increases
as β increases. Also hF is skewed to the left when β < α, the degree of left
skewness increases as β decreases.

541



6 S. M. T. K. Mirmostafaee and Jafar Ahmadi

2.5 Estimation of α and β

Let F be free of parameters and suppose X1, X2, ..., Xn constitute a random
sample of size n from (4), then the likelihood function is given by:

L(α, β) = [γ(α, β)]−n
n∏

i=1

f(xi) exp{(α−1) log(− log F̄ (xi))+(β−1) log(− log F (xi))}.

Then, clearly W1(X) =
∑n

i=1 log(− log F̄ (Xi)) and W2(X) =
∑n

i=1 log(− log F (Xi))
are complete sufficient statistics for α and β, respectively. The maximum like-
lihood estimator (MLE) of α and β can be obtained by solving the following
two equations:

W1(x)− n
∂γ(α, β)

∂α
/γ(α, β) = 0, and W2(x)− n

∂γ(α, β)
∂β

/γ(α, β) = 0.

The Fisher Information matrix for (α, β) is given by

I(α, β) =

[
∂2γ(α,β)

∂α2
∂2γ(α,β)

∂α∂β
∂2γ(α,β)

∂α∂β
∂2γ(α,β)

∂β2

]
.

If one of the parameters is known, say β, then it is obvious that IX(α) =
∂2γ(α,β)

∂α2 and by MLE properties

√
n(α̂− α) −→ N(0, I−1

X (α)).

3 Special Case (Extended gamma distribution)

As pointed in section 1, recently several new distributions were introduced
in the literature. Here, we consider a special case of (4), β = 2 and suppose
X has exponential distribution, i.e. F̄ (x) = exp(−λx) λ > 0, in our model.
Then from (4) we find

hF (x; α, 2) =
λα

η(α)
xα−1e−λx[− log(1− e−λx)], x > 0, (11)

where from Lemma 2, η(α) = γ(α, 2) = Γ (α)
∑∞

j=1
1

j(j+1)α . Here α is the
shape parameter and λ is the scale parameter. When α = 1, the model
(11) follows the distribution of the second lower record values from the expo-
nential distribution. We say that random variable X has extended gamma
distribution (EG) and denote X ∼ EG(α, λ), if its pdf is as in (11). Then
we have

E(Xk) =
η(α + k)
η(α)λk

, k ≥ 0.

542



Families of Distributions Arising from Record Statistics 7

So the moment estimators of λ and α can be obtained as λ̂ = η(α̂+1)

η(α̂)X
, where

α̂ satisfies the following identity

η(α̂ + 2)η(α̂)
[η(α̂ + 1)]2

= X2 X
2
.

Let X1, X2, ..., Xn be a random sample of size n from EG, then the log like-
lihood function can be written as:

L(α, λ) = −n log η(α) + (α− 1)
n∑

i=1

log xi + n α log λ

+
n∑

i=1

log
(− log(1− e−λxi)

)− λ

n∑

i=1

xi.

On taking partial derivatives of the log likelihood with respect to α and λ
respectively and equating the derivatives to zero we get

∂L

∂α
= −n

∂η(α)
∂α

+
n∑

i=1

log xi + n log λ = 0,

∂L

∂λ
=

n α

λ
+

n∑

i=1

xie
−λxi

(1− e−λxi) log(1− e−λxi)
−

n∑

i=1

xi = 0.

Therefore, we can obtain the MLE’s of α and λ by solving the above non-
linear normal equations. From the second equation α̂ can be obtained as a
function of λ as follows:

α̂(λ) =
λ

n

(
n∑

i=1

xi −
n∑

i=1

xie
−λxi

(1− e−λxi) log(1− e−λxi)

)
. (12)

Let ϕ(α) = ∂
∂αη(α). So if both of the parameters are unknown, first the MLE

λ, say λ̂, can be obtained by maximizing directly

g(λ) = L(α̂(λ), λ) = −n ϕ

(
λ

n

(
n∑

i=1

xi −
n∑

i=1

xie
−λxi

(1− e−λxi) log(1− e−λxi)

))

+
n∑

i=1

log xi + n log λ.

with respect to λ. Once λ̂ is obtained, α̂ can be obtained from (12).

3.1 Data Analysis

In order to fit EG to data, we used two real data sets represent the failure
times of the air conditioning systems of two different air planes (see Bain
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8 S. M. T. K. Mirmostafaee and Jafar Ahmadi

and Engelhart, 1991). Gupta and Kundu (2003) fitted both the gamma
distribution and exponentiated exponential (EE) distribution to these data.
Data 1: Plane 7912: 1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23,
42, 47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246, 261.
Data 2: Plane 7911: 33, 47, 55, 56, 104, 176, 182, 220, 239, 246, 320.
We fit gamma, EE and EG distribution functions to these data. We also
estimate the unknown parameters in all these cases by maximum likelihood
method. Moreover we present the χ2 statistics for these three cases. The
results are summarized in Table 1. From Table 1 it is observed that, by

Data set Distribution λ̂ α̂ χ2

Gamma 0.0136 0.8134 3.302
1 EE 0.0145 0.8130 3.383

EG 0.0066 1.0766 3.181

Gamma 0.014 2.1457 0.9929
2 EE 0.104 2.2427 1.0917

EG 0.007 2.5136 0.9928

Table 1. The goodness of fit of gamma, EE and EG distributions to data sets 1
and 2.

empirical evidence, in both cases the EG distribution is fitted better than that
gamma and EE distributions. It may be noted that in the second data set the
χ2 statistic for EG distribution is very close to that for gamma distribution.
Notice that the results of this section not guarantee that the EG will always
better than EE or gamma distributions, but at least it can be said that in
some cases, it is better. One or two examples do not tell us much more.
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Abstract. This paper deals with stochastic modeling through branching models.
It is our purpose to model the probabilistic evolution of populations where females
and males coexist and form couples. In particular, the class of two-sex branching
models with offspring and mating depending on the number of couples in the pop-
ulation is considered. This class has practical implications, especially in population
dynamics. For such a class of models, by considering different approaches, we pro-
vide some necessary and sufficient conditions for the almost sure extinction of the
process.
Keywords: Branching models, Two-sex models, Extinction probability.

1 Introduction

With the purpose to model the probabilistic evolution of populations where
females and males coexist and form couples (female-male) several classes of
discrete time branching models have been investigated, including the bisex-
ual Galton-Watson model (see Alsmeyer and Rösler (1996) [1], (2002) [2],
Bruss (1984) [3], Daley (1968) [4], Daley et al. (1986) [5]), two-sex mod-
els with immigration (see González et al. (2000) [6], (2001) [7], Ma and
Xing (2006) [10]), in varying environments (see Molina et al. (2003) [13]), in
random environments (see Ma (2006) [8], Ma and Molina (2009) [9]), with
population-size depending mating (see Molina et al. (2002) [12], (2004) [14],
(2006) [15], Xing (2005) [18]), or with a control function (see Molina et al.
[16]). Recently, it has been introduced, see Molina et al. (2008) [11], the
class of two-sex branching models with offspring and mating depending on
the number of couples in the population. Several relationships among the
probability generating functions involved in the stochastic model have been
determined and some limiting results derived. The aim of this paper is to
continue the research about such a class of two-sex models, investigating
necessary and sufficient conditions for its almost sure extinction.
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2 M. Molina et al.

The paper is organized as follow. In Section 2, the two-sex process is
described formally and interpreted intuitively. Section 3 is devoted to de-
termining some results concerning the extinction probability of the model.
Finally, the proofs are included in Section 4.

2 The two-sex model

Let us consider the two-sex branching model {(Fn,Mn)}n≥1 defined in the
form:

(Fn,Mn) =

Zn−1∑

i=1

(fn,i(Zn−1),mn,i(Zn−1)), Zn = LZn−1
(Fn,Mn), n = 1, 2, . . .

(1)
where the empty sum is considered to be (0, 0). The random vector (Fn,Mn)
represents the number of females and males in the nth generation. These
females and males form Zn couples. A couple consists of a female and a male
from the same generation who came with the purpose of generating offspring.
It is assumed that initially there are N0 ≥ 1 couples in the population, i.e.,
Z0 = N0. Let us denote by Z+ and R+, respectively, the non-negative integer
and real numbers. Given that, in the (n−1)th generation there areN couples,
namely Zn−1 = N , then:

(a) LN is the function which governs the mating between females and males.
It is a non-negative real function, defined on R+ × R+, assumed to be
non-decreasing in each argument, integer-valued on the integers, and such
that, for x, y ∈ R+, LN (x, 0) = LN (0, y) = 0.

(b) {(fn,i(N),mn,i(N)), i = 1, . . . , N} are independent and identically dis-
tributed non-negative, integer-valued random vectors. Intuitively, the
random vector (fn,i(N),mn,i(N)) represents the number of females and
males descending from the ith couple of the (n − 1)th generation. Its
probability law will be referred as the offspring probability distribu-
tion when there are N progenitor couples in the population. Clearly,
P (f1,1(0) = 0,m1,1(0) = 0) = 1.

Note that {(Fn,Mn)}n≥1 may be interpreted as a stochastic model devel-
oping in an environment which changes in time according to the number of
couples in the population. In each generation, both the offspring probability
distribution and the mating function are affected by the number of couples
in the previous generation. In addition to its theoretical interest, this class
of two-sex models also has practical implications, especially in population
dynamics. In facts, by environmental, social, or other factors, the offspring
and the mating between females and males may be affected by the number
of couples in the population. Indeed, the motivation behind this class of pro-
cesses has been the interest in developing models to describe such behaviors.
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Extinction Probability for Two-Sex Branching Models 3

The class of models given in (1) includes, as particular cases, the two-sex
models introduced in Daley (1968) [5], Molina et al. (2002) [12], and Xing
and Wang (2005) [18].

In order to establish some results about its extinction probability, we
shall consider the following requirements about the mating functions and the
offspring probability distributions:

(a1): {LN}N≥0 is such that LN is a superadditive function, namely,

LN (x1 + x2, y1 + y2) ≥ LN (x1, y1) + LN (x2, y2), xi, yi ∈ R+, i = 1, 2.

(a2) {LN (x, y)}N≥0, where x, y ∈ R+ are fixed, is a non-decreasing sequence.

(a3) f1,1(N) ¹ 1f1,1(N + 1); m1,1(N) ¹ m1,1(N + 1), N ∈ Z+.

Remark 1. Assumption (a1) expresses the intuitive notion that x1 + x2 fe-
males and y1 + y2 males coexisting together will form a number of couples
that is at least as great as the total number of couples formed by x1 fe-
males and y1 males, and x2 females and y2 males, living separately. Most
of mating functions considered in two-sex branching model theory are super-
additive. Assumption (a2) represents the usual behavior in many biological
populations in which the mating is promoted as the number of couples grows.
According to (a3), the variables f1,1(N) and m1,1(N) take large values with
a lower probability than f1,1(N + 1) and m1,1(N + 1) do, respectively. This
expresses the intuitive fact that when the number of couples in the popula-
tion grows then the corresponding numbers of originated females and males
take large values with higher probabilities.

Throughout this work, we will assume the classical duality extinction-
explosion in branching model theory, namely, for N ≥ 1,

P ( lim
n↗∞

Zn = 0 | Z0 = N) + P ( lim
n↗∞

Zn = ∞ | Z0 = N) = 1. (2)

Under this framework, some sufficient conditions for the non-extinction of
{(Fn,Mn)}n≥1 have been determined in [11] where some general settings
which guarantee (2) holds have been established. Also, it has been proved
that R := limN→∞ RN exists where

RN = N−1E[Zn | Zn−1 = N ], N = 1, 2, . . .

Next, we continue the research about the extinction probability concern-
ing such a class of two-sex branching models.

1 Given the random variables X and Y , we say that X is stochastically smaller
than Y , written X ¹ Y , if P (X > t) ≤ P (Y > t), t ∈ R.
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3 Extinction probability

In this section we shall derive some necessary and sufficient conditions con-
cerning the extinction probability of the class of models presented in (1). To
this end, we shall use two different approaches. First, by considering the
asymptotic growth rate R (Proposition 1) and then, by using the comparison
with a simpler two-sex model (Proposition 2).

Remark 2. If for some n ≥ 1, Zn = 0 then, from (1), one deduces that
Zn+m = 0 and (Fn+m,Mn+m) = (0, 0), m ≥ 1. Hence the two-sex model
does not survive.

Definition 1. For every N ≥ 1, let

QN = P ( lim
n↗∞

Zn = 0 | Z0 = N)

be the extinction probability when initially there are N couples in the pop-
ulation.

Proposition 1. Assume (a1), (a2) and (a3).

(i) If R ≤ 1 then QN = 1 for N ≥ 1.

(ii) If R > 1 then there exists K0 ≥ 1 such that QN < 1 for N ≥ K0.

Remark 3. In the following result, by using a methodology based in the
stochastic comparison with a two-sex model with only mating depending on
the number of couples in the population, necessary and sufficient condition
for the almost sure extinction are also determined. First, we shall introduce
the following modification in requirement (a3):

(a4): For N ∈ Z+, f1,1(N) ¹ f1,1(N + 1), m1,1(N) ¹ m1,1(N + 1) and there
exist random variables f1,1 and m1,1 such that limN↗∞ f1,1(N) = f1,1
and limN↗∞ m1,1(N) = m1,1 almost surely.

Taking into account (a4), one deduces,

f1,1(N) ¹ f1,1, m1,1(N) ¹ m1,1, N ∈ Z+

Let (µf (N), µm(N)) and (µf , µm) be the mean vectors of (f1,1(N),m1,1(N))
and (f1,1,m1,1), respectively, both assumed to be finite. Again, by (a4), one
derives that {µf (N)}N≥0 and {µm(N)}N≥0 are non-decreasing sequences.
Hence, by the monotone convergence theorem,

lim
N↗∞

µf (N) = µf , lim
N↗∞

µm(N) = µm

Let {(F ∗
n ,M

∗
n)}n≥1 be the two-sex model initiated with Z∗

0 = N0:
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(F ∗
n ,M

∗
n) =

Z∗
n−1∑

i=1

(fn,i,mn,i), Z∗
n = LZ∗

n−1
(F ∗

n ,M
∗
n), n = 1, 2, . . . (3)

where {(fn,i,mn,i)}n,i≥1 is a sequence of independent and identically dis-
tributed random vectors with the same probability law of (f1,1,m1,1). Model
(3) was introduced in Molina et al. (2002) [12] where it was established that
R∗ := limk↗∞ R∗

k = supk>0 R
∗
k exists, R∗

k = k−1E[Z∗
n | Z∗

n−1 = k], k ≥ 1
and, moreover, R∗ ≤ 1 if and only if

Q∗
N := P ( lim

n↗∞
Z∗
n = 0 | Z∗

0 = N) = 1, N ≥ 1

Proposition 2. Assume (a1), (a2) and (a4).

(i) If R∗ ≤ 1 then QN = 1 for N ≥ 1.

(ii) If R∗ > 1 then there exists K0 ≥ 1 such that QN < 1 for N ≥ K0.

4 Proofs

4.1 Proof of Proposition 1

By using (a1), (a2), and (a3), it is deduced, see Molina et al.(2008)[11], that
R = supN>0 RN .

(i) If R ≤ 1 then {E[Zn]}n≥0 is a non-increasing sequence. In fact,

E[Zn+1] = E [E[Zn+1 | Zn] ] = E [ZnRZn ] ≤ E [ZnR] ≤ E[Zn], n ∈ Z+.

Hence,
P ( lim

n↗∞
Zn = ∞ | Z0 = N) = 0, N ≥ 1

and, by (2), one has that qN = 1, N ≥ 1.

(ii) Assume R > 1. Since R = limN↗∞ RN , there exists K > 0 such that
for N ≥ K, RN > 1. Let us consider the auxiliar process: {(F ′

n,M
′
n)}n≥1,

(F ′
n,M

′
n) = (Fn,Mn)I{Z′

n−1≤ K} +
Z′

n−1∑

i=1

(fn,i(K),mn,i(K))I{Z′
n−1> K},

Z ′
n = ZnI{Z′

n−1≤ K} + LK(F ′
n,M

′
n)I{Z′

n−1> K}, n = 1, 2, . . .

where Z ′
0 = N0 and IA denotes the indicator function of the set A. It is

verified that Z ′
n ¹ Zn, n ∈ Z+. Hence, taking into account Müller and

Stoyan (2002), p. 3 [17], it is derived that, for N ≥ 1,
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P ( lim
n↗∞

Zn = ∞ | Z0 = N) ≥ P ( lim
n↗∞

Z ′
n = ∞ | Z ′

0 = N). (4)

Let {(F (K)
n ,M

(K)
n )}n≥1 be the bisexual Galton-Watson process initiated

with Z
(K)
0 = N0 couples and defined, for n=1,2,. . . , in the form:

(
F (K)
n ,M (K)

n

)
=

Z
(K)
n−1∑

i=1

(fn,i(K),mn,i(K)) , Z(K)
n = LK

(
F (K)
n ,M (K)

n

)

By Daley et al. (1986) [5], one deduces that

R(K) := lim
N↗∞

R
(K)
N = sup

N>0
R

(K)
N .

Clearly R(K) ≥ R
(K)
K . Now,

R
(K)
K = K−1E

[
Z(K)
n | Z(K)

n−1 = K
]
= K−1E [Zn | Zn−1 = K] = RK > 1.

Thus, by bisexual Galton-Watson process theory, one deduces the exis-
tence of K∗ ∈ Z+ such that, for N ≥ K∗

P

(
lim

n↗∞
Z(K)
n = ∞ | Z(K)

0 = N

)
> 0.

Let K0 := max{K, K∗}. Then,

P

(
lim
n↗∞

Z(K)
n = ∞ | Z(K)

0 = K0

)
> 0

and using the fact that {Z(K)
n }n≥0 is a homogeneous Markov chain,

P

(
lim

n↗∞
Z(K)
n = ∞, Z(K)

n ≥ K, n > 0 | Z(k)
0 = K0

)
> 0. (5)

Hence, by comparing {Z ′
n}n≥0 and {Z(K)

n }n≥0 and by (5),

P ( lim
n↗∞

Z ′
n = ∞ | Z ′

0 = K0) > 0. (6)

Finally, from (4) and (6),

P ( lim
n↗∞

Zn = ∞ | Z0 = N) > 0, N ≥ K0.

By (2), one obtains that qN < 1 for N ≥ K0.
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4.2 Proof of Proposition 2

From Proposition 1, it is sufficient to prove that R∗ = R. By (a1), (a2) and
(a4), the existence of R is assumed.

For each N ∈ Z+, let {(F (N)
n ,M

(N)
n )}n≥1 be the process, initiated with

Z
(N)
0 = N0, and defined, for n ≥ 1:

(F (N)
n ,M (N)

n ) =

Z
(N)
n−1∑

i=1

(fn,i(N),mn,i(N)), Z(N)
n = L

Z
(N)
n−1

(F (N)
n ,M (N)

n ) (7)

Process (7) is again a two-sex model with only mating depending on the
number of couples, being the offspring distribution the probability law of

(f1,1(N),m1,1(N)). Hence, for N ∈ Z+, there exists R(N) := limk↗∞ R
(N)
k

and

R(N) = sup
k>0

R
(N)
k , R

(N)
k = k−1E[Z(N)

n | Z(N)
n−1 = k], k = 1, 2, . . .

Now, from (a4), taking into account stochastic order properties,

N∑

i=1

fn,i(N) ¹
N∑

i=1

fn,i,

N∑

i=1

mn,i(N) ¹
N∑

i=1

mn,i

and

E

[
LN

(
N∑

i=1

fn,i(N),

N∑

i=1

mn,i(N)

)]
≤ E

[
LN

(
N∑

i=1

fn,i,

N∑

i=1

mn,i

)]

Therefore
R = lim sup

N↗∞
RN ≤ lim sup

N↗∞
R∗

N = R∗.

On the other hand, given j ≥ 1 fixed, one derives for N ≥ j,

E

[
LN

(
N∑

i=1

fn,i(N),

N∑

i=1

mn,i(N)

)]
≥ E

[
LN

(
N∑

i=1

fn,i(j),

N∑

i=1

mn,i(j)

)]
.

Thus

R = lim inf
N↗∞

RN ≥ lim inf
N↗∞

R
(j)
N = R(j)

Taking limit as j ↗ ∞, one derives that R ≥ limj↗∞ R(j). Finally, it is
matter of straightforward calculation to deduce that limj↗∞ R(j) = R∗, and
consequently the proof is completed.
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Abstract. The class of two-sex branching models with random control on the
number of progenitor couples is considered. For such a class, by considering that
no assumptions are made about the functional form of the underlying offspring
probability distribution, we obtain Bayes estimators for the offspring probability
law and for its main moments. Also, we determine the corresponding 95% highest
posterior density credibility sets. By way of illustration, we present some simulated
examples where we check the accuracy of both the estimates and their correspond-
ing 95% highest posterior density credibility sets.
Keywords: Branching models, Two-sex models, Controlled models, Nonparamet-
ric inference, Bayesian inference.

1 Introduction

Inside the general context of stochastic modelling, the branching process
theory provides mathematical models to describe the probabilistic evolution
of systems whose components (cells, particles, individuals in general) after
certain life period reproduce and die. It is an active research area of both
theoretical interest and applicability to such fields as biology, demography,
ecology, epidemiology, genetics, medicine, population dynamics, and physics.
Some classical monographs about this theory are Asmussen and Hering[2],
Athreya and Ney[3], Guttorp[8] and Harris[10]. From an applied point of view
one may cite the books by Jagers[12], Kimmel and Axelrod[13], Pakes[21]
and Haccou et al.[9] which include practical applications to cell kinetics, cell
biology, chemotherapy, gene amplification, human evolution, and molecular
biology.

In particular, with the purpose to model the probabilistic evolution of
populations where females and males coexist and form couples (femalemale),
several classes of discrete time two-sex branching models have been studied.
They include the bisexual Galton-Watson model (see Alsmeyer and Rösler[1],
Bruss[4], Daley[5], Daley et al.[6]), models with immigration (see Gonzalez et
al.[7], Ma and Xing[15]), in varying or in random environments (see Molina
et al.[18], Ma and Molina[14]) and those models depending on the number
of couples in the population (see Molina et al.[17], Xing and Wang[22]). We
refer the reader to Hull[11] or Haccou et al.[9] for surveys of two-sex branching
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models. However, the range of processes studied is not large enough in order
to get an optimum modelling in many two-sex populations where a control
on the number of couples in the population is required. It can be stated
that significant efforts have been made regarding random control branching
models with asexual reproduction. Now similar efforts should be made to
develop models with a random control where reproduction is bisexual. We
consider a class of controlled two-sex models where, in each generation, a
random control on the number of couples that take part in the reproduction
(progenitor couples) introduced in Molina et al.[19].

The paper is organized as follows: In the Section 2, the controlled two-
sex model is described formally and interpreted intuitively. In Section 3,
considering that no assumptions are made about the functional form of the
underlying offspring distribution, we provide some results about the Bayesian
estimation concerning the offspring law and its main moments. We also
determine the corresponding 95% highest posterior density credibility sets.

2 The controlled two-sex model

The controlled two-sex branching process {(Fn,Mn)}n≥1 is defined in the
following form:

(Fn+1,Mn+1) =
φZn∑

i=1

(fn,i,mn,i), Zn+1 = LZn(Fn+1,Mn+1), n ∈ Z+ (1)

where the empty sum is considered to be (0, 0) and Z+ denotes the set of
nonnegative integers. The random vector (Fn+1, Mn+1) represents the num-
ber of females and males in the (n + 1)th generation. These females and
males form Zn+1 couples. Initially, we assume that there are a positive
number k0 of couples in the population, i.e. Z0 = k0. The random vec-
tors {(fn,i,mn,i)}n≥0;i≥1 are nonnegative, independent and identically dis-
tributed. Intuitively, (fn,i, mn,i) represents the number of females and males
descending from the ith couple of the nth generation. If, for some positive
integer n and k ∈ Z+, Zn = k, then:

(a) Lk is a mating function. It is defined on R+ × R+ and taking values in
R+, where R+ is the set of nonnegative real numbers, and it is assumed
to be nondecreasing in each argument, integer-valued on the integers, and
such that, for x, y ∈ R+, Lk(x, 0) = Lk(0, y) = 0.

(b) φk is a nonnegative integer-valued random control variable. The role
of φk is to control the number of couples which will take part in the
reproduction process. In fact, if φk > k then φk − k new couples are
introduced in the population; if φk < k then k − φk couples leave the
population and consequently, they do not participate in the reproduction
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process; and no control is made if φk = k. We will assume that P (φ0 =
0) = 1.

It then follows that in addition to its theoretical interest, this class of
two-sex models also has clear practical implications, especially in population
dynamics. For certain sexually reproducing animal population, it is reason-
able to assume that the number of progenitor couples could be affected, in
each generation, by random factors as weather conditions, food supply, fer-
tility parameters, and so on. For example, in making policy decisions as
to whether to introduce or re-introduce certain animal species into an envi-
ronment, this class of models may provide appropriate mathematical models
with which to describe the probabilistic behaviour of the population. Indeed,
the motivation behind the class of models presented in 1 is the interest in
developing two-sex models for such phenomena. As particular case, it in-
cludes the two-sex models introduced by Daley[5] and by Molina et al.[17],
and generalizes to random control setting the model considered by Molina et
al.[20].

3 Nonparametric estimation

We now consider a controlled two-sex branching process such that no as-
sumption is made about the functional form of the underlying offspring dis-
tribution, so we consider a nonparametric setting. By simplicity, such a
distribution will be denoted as p = (pk,l = P (f0,1 = k,m0,1 = l) : (k, l) ∈ S)
where the support S = {(k, l) ∈ Z+ × Z+ : pk,l > 0} is a finite set.

Let be (µ1, µ2) = E[(f0,1,m0,1)] and (σij)i,j=1,2 = Cov[(f0,1, m0,1)], the
offspring mean vector and covariance matrix, respectively. We assume that
σij < ∞, i, j = 1, 2.

We shall assume the observation of the entire family tree, up to the n− th
generation, namely {φZi , (fi,j ,mi,j); i = 0, . . . , n , j = 1, . . . , φZi}. Let us
denote by

Zi,(k,l) =
φZi∑

j=1

1{(fi,j ,mi,j)=(k,l)}, (k, l) ∈ S

the number of couples in the i-th generation giving rise to exactly k females
and l males. It is clear that

Zi =
∑

(k,l)∈S

Zi,(k,l) and (Fi+1,Mi+1) =
∑

(k,l)∈S

(k, l)Zi,(k,l).

It is easy to verify that the likelihood function satisfies

`(p) ∝
∏

(k,l)∈S

p
Yn,(k,l)

k,l (2)
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where Yn,(k,l) =
n∑

i=0

Zi,(k,l) represents the total number of couples in the first

n generations which have produced exactly k females and l males.
Considering (2), an appropriate conjugate class of prior distributions is

the Dirichlet family,
π(p) = Dτ

∏

(k,l)∈S

p
τk,l−1
k,l (3)

where τ = (τk,l : (k, l) ∈ S), τk,l > 0, Dτ =
∏

(k,l)∈S Γ (τk,l)−1Γ (τ∗) and
τ∗ =

∑
(k,l)∈S τk,l. We refer the reader to Mendoza and Gutierrez-Peña[16]

where some comments about the convenience of this class of distributions
are given and some methods for deriving noninformative priors, including
Jeffrey’s rule, reference analysis and vague priors, are discussed.

Denoting by F∗n = σ ((fi,j ,mi,j), i = 0, . . . , n; j = 1, . . . , φZi) and taking
into account (2) and (3), we deduce that the posterior distribution is the
Dirichlet law,

π(p|F∗n) = Dγ

∏

(k,l)∈S

p
γk,l−1
k,l

with vector of parameters γ = (γk,l : (k, l) ∈ S) where γk,l = τk,l+Yn,(k,l). In
particular, the marginal posterior distribution of pk,l is a Beta law with pa-

rameters γk,l and γ∗−γk,l, where γ∗ =
∑

(k,l)∈S γk,l = τ∗+
n∑

i=0

Zi. Assuming

squared error loss function, we obtain the Bayes estimator for pk,l,

p̃k,l = E[pk,l | F∗n] = γ∗−1γk,l =

(
n∑

i=0

Zi + τ∗

)−1 (
τk,l + Yn,(k,l)

)
. (4)

Next result provides the Bayes estimators of the offspring mean vector and
the offspring covariance matrix.

Proposition 1. Given a controlled two-sex branching model, the Bayes es-
timators of µi and σij, i, j = 1, 2, under squared error loss function and
assuming the class of conjugate prior distributions given in (3), are:

(i)
µ̃i = γ−1

∗
∑

(k1,k2)∈S

kiγk1,k2 , i = 1, 2.

(ii)

σ̃ij =
1

γ∗(1 + γ∗)


γ∗

∑

(k1,k2)∈S

kikjγk1,k2−
∑

(k1,k2),(l1,l2)∈S

kiljγk1,k2γl1,l2




i, j = 1, 2.
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Proof.

(i) Using (4), we have for i = 1, 2,

µ̃i = E


 ∑

(k1,k2)∈S

kipk1,k2 | F∗n


 =

∑

(k1,k2)∈S

kiE[pk1,k2 | F∗n]

= γ−1
∗

∑

(k1,k2)∈S

kiγk1,k2 .

(ii) For i, j = 1, 2,

σ̃ij = E


 ∑

(k1,k2)∈S

(ki − µi)(kj − µj)pk1,k2 | F∗n




=
∑

(k1,k2)∈S

kikjE[pk1,k2 | F∗n]−
∑

(k1,k2)∈S

kikjE[p2
k1,k2

| F∗n]

−
∑

(k1,k2) 6=(l1,l2)

kiljE[pk1,k2pl1,l2 | F∗n].

Using the fact that

E[p2
k1,k2

| F∗n] = (γ∗(γ∗ + 1))−1γk1,k2(γk1,k2 + 1)

and

E[pk1,k2pl1,l2 | F∗n] = (γ∗(γ∗ + 1))−1γk1,k2γl1,l2 , (k1, k2) 6= (l1, l2),

the proof is completed.

Using the posterior distribution π(θ1, θ2 | Fn) we can determine sets of
probable values of (θ1, θ2). The most common procedure is based on looking
at the points where the posterior density takes the highest values, namely
I(c) = {(θ1, θ2) : π(θ1, θ2 | Fn) ≥ c} where the constant c is chosen such
that, given a credibility coefficient 1− α,

∫

I(c)

π(θ1, θ2 | Fn)dθ1dθ2 = 1− α.

We say that I(c) is a high posterior density (HPD) credibility set.
In particular, from the posterior marginal densities of µi and σij , i, j = 1, 2

we could derive HPD credibility sets. However, it is not easy to compute
the posterior densities for such parameters. In these cases, Monte Carlo
approximations can be calculated, by simulating a sufficiently large number
of values for (θ1, θ2) according to the posterior density π(θ1, θ2 | Fn).
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7. González, M., Molina, M., and Mota, M., “Limit behaviour for a subcritical
bisexual Galton- Watson branching process with immigration”, Statistics and
Probability Letters 49, 19-24 (2000).

8. Guttorp, P., Statistical Inference for Branching Processes, Wiley (1991).

9. Haccou, P., Jagers, P., and Vatutin, V., Branching Processes: Variation,
Growth, and Extinction of Populations, Cambridge University Press (2005).

10. Harris, T., The Theory of Branching Processes, Springer-Verlag (1963).

11. Hull, D. M., “A survey of the literature associated with the bisexual Galton-
Watson branching process”, Extracta Mathematicae 18, 321-343 (2003).

12. Jagers, P., Branching Processes with Biological Applications, Wiley (1975).

13. Kimmel, M., and Axelrod, D. E., Branching Processes in Biology, Springer-
Verlag (2002).

14. Ma, S., and Molina, M., “Two-sex branching processes with offspring and
mating in a random environment”, Journal of Applied Probability 46, 993-1004
(2009).

15. Ma, S., and Xing, Y., “The asymptotic properties of supercritical bisexual
GaltonWatson branching processes with immigration of mating units”, Acta
Mathematicae Sciences 26, 603-609 (2006).

16. Mendoza, M., and Gutiérrez-Peña, E., “Bayesian conjugate analysis of the
Galton–Watson process”, . Test 9, 149–172 (2000).

17. Molina, M., Mota, M., and Ramos, A., “Bisexual GaltonWatson branching
process with populationsize dependent mating”, Journal of Applied Probability
39, 479-490 (2002).

18. Molina, M., Mota, M., and Ramos, A., “Bisexual GaltonWatson branching pro-
cess in varying environments”, Stochastic Analysis and Applications 21, 1353-
1367 (2003).

19. Molina, M., Mota, M., and Ramos, A., “Two-sex branching models with ran-
dom control on the number of progenitor couples”, To appear in Methodology
and Computing in Applied probability.

20. Molina, M., del Puerto, I., and Ramos, A., “A class of controlled bisexual
branching processes with mating depending on the number of progenitor cou-
ples”, Statistics and Probability Letters 77, 1737-1743 (2007).

21. Pakes, A., Biological Applications of Branching Processes, Handbook of Statis-
tics, v. 21, C.N. Shanbhag and C.R. Rao, Eds, Elsevier Sciences B.V. (2003).

558



Inference in controlled two-sex branching models 7

22. Xing, Y., and Wang, Y., “On the extinction of one class of population-size-
dependent bisexual branching processes”, Journal of Applied Probability 42,
175–184 (2005).

559



560



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010  

 

 

Factor Analysis (FA) as ranking and an Efficient Data Reducing 

approach for decision making units  
 

Reza Nadimi
*
, Hamed Shakouri G. 

*
, Reza Omidi

+
 

 
*
Department of Industrial Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran. 
+
Department of Social Policy, Faculty of Social Science, University of Tehran, Tehran, Iran. 

Corresponding author: h.shakouri@gmail.com 
 

Abstract- This article compares two techniques: Data 

Envelopment Analysis (DEA) and Factor Analysis (FA) 

to aggregate multiple inputs and outputs in the 

evaluation of decision making units (DMU). ِِData 

envelopment analysis (DEA), a popular linear 

programming technique, is useful to rate comparatively 

operational efficiency of DMUs based on their 

deterministic or stochastic input–output data. Factor 

analysis techniques, such as Principal Components 

Analysis, have been proposed as data reduction and 

classification technique, which can be applied to 

evaluate of decision making units (DMUs). FA, as a 

multivariate statistical method, combines new multiple 

measures defined by inputs/outputs. Nonparametric 

statistical tests are employed to validate the consistency 

between the ranking obtained from DEA and FA. Also, 

the results have been compared with PCA approach. 

Results of numerical reveal that new approach shows a 

consistency in ranking with DEA. 

  
Keywords: Decision Making; Data Envelopment Analysis; 

Factor Analysis, Principal Component Analysis. 

 

I- Introduction 

This article proposes a Factor Analysis (FA) approach to 

evaluate of decision making units (DMUs). In this method, 

FA is used as a new approach to ranking of decision making 

units and data reduction. Moreover, correlation between 

rankings obtained by FA and DEA techniques is much 

higher than what is gained from the PCA&DEA method, 

which is introduce by Zhu [2].  

The rest of this article is organized as follows. In Section 2, 

a brief description of the DEA models used for ranking of 

DMUs is presented. Section 3 gives the fundamental of FA 

technique. The FA approach is developed in Section 4. 

Numerical comparison of the proposed FA method versus 

DEA and PCA procedures is presented in Section 5, using 

several benchmark data to evaluate consistency of each 

method. Finally, Section 6 concludes this research. 

 

II- Data Envelopment Analysis 

Data envelopment analysis (DEA), is analytical tool which 

first introduced by Charnes et al.[1], in 1978. It is the 

performance measurement technique that applies to 

evaluation the relative efficiency of decision-making units 

(DMU's) in organization such as banks, dental services, 

police, motor registries, hospitals etc.  

Various models, used for ranking of DMUs, such as CCR 

[1], BCC [3] and ADD [4] are applied. The standard DEA 

method assigns an efficiency score less than one to 

inefficient DMUs, from which a ranking can be derived. 

However, efficient DMUs all have an efficiency of 1, so 

that for these units no ranking can be given. Andersen and 

Petersen (AP model) achieve a full ranking by undertaking 

a DEA without assessing the DMU itself[5]. In fact, they 

proposed the idea of modifying the envelopment LP 

formulation so that the corresponding column of the DMU 

being scored is removed from the coefficients matrix. Thus 

we use the AP-model as a basis to rank the relative 

efficiency of DMUs with unit efficiency, in order to 

compare validity of other assessment techniques in this 

paper. AP-model, (1), can be written as follows: 
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(1).  

The program depends on evaluating the k
th

 unit; where 

xk=[x1j,x2j,…,xmj],and  

yk=[y1j,y2j,…,ysj,], denote the nonnegative vector of input 

and output values for DMUk respectively. Hence, each
*

kJ  

lies between 0 and +∞. Also, In model (1), αj is the Factor 

weights. 

However, the super-efficient methodology can give 

“specialized” DMUs an excessively high ranking. 

561



 

 

Consequently, in this paper we apply the Factor Analysis 

(FA) to reduce data; indeed, we use this method to evaluate 

and rank DMUs while minimizing loss of the information.  

 

III- Factor Analysis (FA) 

Factor Analysis is a statistical method that is based on the 

correlation analysis of multi-variables. The main 

applications of factor analytic techniques are: (1) to reduce 

the number of variables and (2) to detect structure in the 

relationships between variables, in order to classify 

variables. Therefore, factor analysis is applied as a data 

reduction or structure detection method. 

It can be used as a method to data reduction. R. Nadimi, F. 

Jolai[12] applied combination of factor analysis and  data 

envelopment analysis to data reduction in decision making 

units. They used factor analysis as a method to lessen the 

number of data. In follow, data envelopment analysis was 

used with combination of factor analysis to data ranking. 

But in this paper factor analysis only is used as a new 

method in ranking of data.  

There are two major types of FA: exploratory and 

confirmatory. In exploratory FA, one seeks to describe and 

summarize data by grouping together variables that are 

correlated. The variables themselves may or may not have 

been chosen with potential underlying processes in mind. 

Exploratory FA is usually performed in the early stages of 

research, when it provides a tool for consolidating variables 

and for generating hypotheses about underlying processes. 

Confirmatory FA is a much more sophisticated technique 

used in the advanced stages of the research process to test a 

theory about latent processes. Variables are carefully and 

specifically chosen to reveal underlying processes [6]. 

To explain the method, a few terms are defined. The first 

terms involve correlation matrices. The correlation matrix 

produced by the observed variables is called the observed 

correlation matrix. The correlation matrix produced from 

factors is called the reproduced correlation matrix. The 

difference between observed and reproduced correlation 

matrices is called residual correlation matrix.  In a good 

FA, correlations in the residual matrix are small, indicating 

a close fit between the observed and reproduced matrices 

[6]. Then, factors are formed by grouping the variables that 

have higher correlation with each other.  

Let d(n×1) be a random vector with a mean of µ and a 

covariance matrix named Σ(p×p)., where di specifies 

efficiency or an overall performance index of the i
th

 DMU. 

Then a 

k-factor model holds for d, if it can be written in the 

following form: 

d = H f + u + µ (2), 

where H(n×k) is a matrix of constants and f(k×1) and u(n×1) are 

random vectors. The elements of f are called common 

factors and the elements of u are specific or unique factors. 

In this study we shall suppose that:  

E( f ) = 0, Cov( f ) = I 

E( u ) = 0, Cov(ui,uj) = 0; i≠j 

Cov( f , u ) = 0 

(3). 

Thus, if (2) holds, the covariance matrix of d can be split 

into two parts, as follows: 

Σ = H H 
T
 + Φ (4), 

where H H 
T
 is called the communality and represents the 

variance of qi which is shared with the other variables via 

the common factors and Φ=Cov(u) is called the specific or 

unique variance and is due to the unique factors u. This 

matrix explains the variability in each qi that is not shared 

with the other variables. The main goal of FA is to apply f 

instead of d for assessing DMUs. To do this, mainly there 

are three main stages in a typical FA technique [7]: 

 

1. Initial solution: Variables, as indexes of DMU 

performance measures, are selected and an inter-correlation 

matrix is generated. An inter-correlation matrix is a p×p 

array of the correlation coefficients of p variables with each 

other. Usually, each variable is standardized by a certain 

formula, e.g. to have a mean of 0.0 and a standard deviation 

of 1.0. When the degree of correlation between the variables 

is weak, it is not feasible for these variables to have a 

common factor, and a correlation between these variables is 

not studied. Kaiser–Meyer–Olkin (KMO) and Bartlett’s 

tests of sphericity (BTS) are then applied to the studied 

variables in order to validate if the remaining variables are 

factorable.  

2. Extracting the factors: An appropriate number of 

components (Factors) are extracted from the inter-

correlation matrix based on the initial solution. Due to the 

standardization method, there should be a certain rule to 

extract the selected effective factors.  

3. Rotating the factors: Sometimes one or more variables 

may load about the same on more than one factor, making 

the interpretation of the factors ambiguous. Thus, factors are 

rotated in order to clarify the relationship between the 

variables and the factors. While various methods can be 

used for factor rotation, the Varimax method is the most 

commonly used one.  

Let’s summarize and formulize the above steps as follows. 

In this study, we skip the rotation step.  

First, the correlation matrix, namely R, is computed on the 

basis of data due to the standardized variables, dij: 

R = Corr( D ) = D
T
D (5), 

where, D is an n× p matrix of p variables for n DMU’s. 

This matrix can be decomposed to a product of three 

matrices:  

R = V L V 
T
 (6), 

where, V is the p×p matrix of eigenvectors and 

L = Diag([λ1, …, λp]) is a diagonal matrix of the 

eigenvalues, assorted descendingly. 
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At the second step, different criteria may be applied to 

extract the most important factors. Since sum of the first r 

eigenvalues divided by the sum of all the eigenvalues, 

( λ1+λ2+…+ λr ) / ( λ1+λ2+…+λp ), represents the 

“proportion of total variation”  explained by the first r 

factor components, we select r principal components as the 

factors, if  (λ1+λ2+…+ λr)/( λ1+λ2+…+λp) > 90%. Another 

criterion is to cut the matrix L from a point that the ratio of 

λi / λi+1 is maximized. However, r eigenvalues are defined as 

dominant eigenvalues. The dominant eigenvalues are saved 

and the other are skipped. To explain more, suppose L and 

V are decomposed as follows: 









=

2

1

0

0

L

L
L     (7), 

where L1 (r×r) and L2 are diagonal matrixes. Consequently, 

the eigenvectors V will be separated into two parts too: 

V = [ V1 , V2 ]  (8), 

Similarly, V1 and V2 are p×r and p×(p-r) matrices, 

respectively. Suppose (6) is rewritten as follows:  

( )( )TVLLVR  =  (9). 

Then, replacing L with the form given by (7), the first 

part 11 LV  is called the Factor Loading matrix and 

denoted by A (p×r). Equation (9) is frequently called the 

fundamental equation for FA. It represents the assertion that 

the correlation matrix is a product of the factor loading 

matrix, A, and its transpose [6]. It can be shown that an 

estimate of the unique or specific variance matrix, Φ, in (4) 

is: 

B = I – A A
T
 (10), 

where I(p×p) is the identity matrix.  

So far our study of the factor model has been concerned 

with the way in which the observed variables are functions 

of the (unknown) factors, f. Instead, factor scores can be 

estimated by the following pseudo-inverse method:   

S
T
 = (A

T
 B

-1 
A )

-1 
A

T
 B

-1
 

F = D S 

(11), 

(12), 

where F is a n×r matrix, each row of which corresponds to 

a DMU. The estimate in (12) is known as Bartlett’s factor 

score, and S is called the factor score coefficient matrix. 

In this paper, we use the FA technique to evaluate DMUs by 

reducing inputs and outputs whilst minimizing the loss of 

information. This will be introduced in the next section. 

 

IV- New approach: FA method 

In here, ratios of individual output to individual input is 

used to describe of proposed approach.  Thus this 

proportion is applied to evaluate and rank DMUs according 

to their performances which are given as follows: 

  ijrj

j

ir xyd = ; i =1, …, m; r =1, …, s;  (13), 

j=1,…,n 

for each DMUj. Where the  d j

ir gives the ratio between 

every output and every input. Obviously, the bigger the
j

ird , 

the better the performance of DMUj in terms of the r
th

 

output and the i
th

 input [8]. 

Now let 
j

ir

j

k dd = , with, e.g. k=1 corresponds to i=1, r=1 

and k=2 corresponds to i=1, r=2, etc., where k=1,…, p' ; 

p'=m×s; for example: ,.....    ,
2

1
2

1

1
1 x
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d
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We need to find some weights that combine those p' 

individual ratios of 
j

kd  for DMUj. Consider the following 

n×p' data matrix, composed by
j

kd ’s:  D
T
= [d1, …, dp'] n×p' , 

where each row represents p' individual ratios of 
j

kd  for 

each DMU and each column represents a specific 

output/input ratio, i.e. [ ]Tn

kk d,...,d 1=kd . In a modified 

approach, proposed by Premachandra [9], D
T
 is re-defined 

as an augmented matrix, the ending column of which is 

equivalent to the sum of the elements in the first p' columns 

of the original matrix:  

n,...,jdd
p

k

j

k

j

p 1     
1

1 ==∑
′

=
+  (14). 

The new added variable, is supposed to take into account 

the overall performance of each DMU with respect to all the 

variables
j

ird . As a normalizing skill, each column is then 

divided by its least element, thus a new matrix, D p×n ; 

p=p'+1, is generated which will be processed from now on.    

In this paper, the factor analysis is employed to find out new 

independent measures which are respectively different 

linear combinations of d1, …, dp. In fact, we apply the 

estimation given by (12) to obtain factor scores, thus, the 

FA process of D is carried out as follows: 

Step 1: Calculate the sample correlation matrix, given by 

(5), to obtain eigenvalues and eigenvectors (solutions to |R 

– λ 1p | = 0 where 1p is a p×p identity matrix), as introduced 

in (6). 

Step 2: Considering λ1 ≥ λ2 ≥ … ≥ λp as the sorted 

eigenvalues, compute the following weightings, which 

determine share of each factor in the model: 

p,...,iw
p

k

k

i
i 1  ; 

1

==

∑
=

λ

λ
 

(15). 

Each weighting actually determines the share of each 

eigenvalue out of a whole. This approach uses the same 

method of Zhu [3] to obtain sign of the weightings wi, i.e. if 
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sum of the corresponding eigenvector elements is positive, 

then wi is considered positive, otherwise it is negative. 

Step 3: Apply FA technique on D to obtain S
T
 and then F, 

as defined by (11) and (14). 

Step 4: Select the factor components by determination of 

the dominant eigenvalues according to one of the criteria 

proposed in Section 3.  

Step 5: Compute: 

  
1

∑
=

=
r

i

iiw fz  (16), 

 where fi is the i
th

 column of the matrix F in (14) and r is the 

number of the dominant eigenvalues. The value of z gives a 

combined measure to evaluate and rank  performance of 

DMUs.  

 

V- Numerical results 

The proposed method is applied to several sets of sample 

data, the numerical results of which are illustrated and 

compared to other methods in this section. 

 

Example1: In this example, we apply data set used by 

Wong et al. [11], to compare efficiencies of seven 

university departments. Three inputs and three outputs are 

defined as follows, data of which is listed in Table 1. 
   
x1: Number of academic staff 

x2: Academic staff salaries 

x3: Support of undergraduate students 

y1:  Number of undergraduate students 

y2:  Number of postgraduate students 

y3:  Number of research papers published 

Table 1: Data set used by Wong et al.[11] 
DMU x1 x2 x3 y1 y2 y3 

dmu1 12 400 20 60 35 17 

dmu2 19 750 70 139 41 40 

dmu3 42 1500 70 225 68 75 

dmu4 15 600 100 90 12 17 

dmu5 45 2000 250 253 145 130 

dmu6 19 730 50 132 45 45 

dmu7 41 2350 600 305 159 97 

 

The same procedure of section 4 is followed. The matrix D 

is generated by 10 variables extracted out of data in Table 1, 

and four dominant eigenvectors are selected. Table 2 

illustrates eigen-analysis applied for PCA and FA, and 

Table 3 includes the results of ranking. 

 

 

 

 

Table 2: Eigen-analysis for FA and PCA 

approaches 

Eigen values 4.15 3.09 1.73 0.85 

Shares of Eigen 
values (wi) 

0.41 0.31 0.17 -0.08 

Eigen vector v1 v2 v3 v4 

vi1 -0.08 0.33 0.53 -0.40 

vi2 0.11 -0.23 0.63 -0.26 

vi3 0.33 -0.41 0.09 -0.02 

vi4 0.24 0.43 -0.25 -0.28 

vi5 0.39 0.20 -0.29 -0.29 

vi6 0.38 -0.28 -0.24 -0.23 

 

In this example the correlation between results obtained by 

PCA (Zhu) and DEA is 0.321, while correlation between 

DEA&PCA (PM) is 0.678. However, the new approach of 

FA riches to a higher correlation with the DEA, that is 0.75, 

due to the scores given to the dmu5 and dmu6. This 

example shows that the FA approach can lead to better 

results, in the sense of DEA ranking, compared to the both 

PCA approaches proposed by Zhu and Premachandra.  

 

Example 2: As the last case, we compared the PCA (Zhu), 

PCA (PM) and FA approaches on the base of the DEA 

approach as performed in Kim et al. [10] for 33 telephone 

offices in S. Korea ( See Table 4 for more information). 

Corresponding correlations which are given in Table 5, are 

0.63, 0.75, and 0.77 respectively. While all the methods are 

statistically significant at 1% level, the new method based 

on FA shows better capability for ranking.  

 

VI- CONCLUSION 

The current article presents alternative approach to rank and 

evaluate DMUs which have multiple outputs and multiple 

inputs. The DEA –non-statistical method– uses linear 

programming technique to obtain a ratio between weighted 

outputs and weighted inputs. The new approach proposed in 

this paper is applied to evaluate efficiencies and rank 

DMUs. Factor analysis is a multivariate statistical method 

that uses information obtained from eignvalues to reduce 

data. Results obtained by numerical experiments employed, 

show that there is a high correlation between DEA and FA 

methods, even higher than what obtained by the PCA 

methods. Thus, we can use FA to evaluate efficiency and 

ranking DMUs instead of DEA with significance and 

minimum lose of information. 
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Table 3:  Efficiencies and rankings obtained by the three methods 
DEA PCA(Zhu) PCA(PM) FA(New method) 

DMU 
Score Rank Score Rank Score Rank Score Rank 

dmu1 1.829615 1 0.51261 2 4.13838 1 2.011187 1 

dmu2 1.048895 6 0.288772 4 3.315666 5 1.712316 5 

dmu3 1.198308 4 0.011661 5 3.25405 6 1.559566 6 

dmu4 0.819737 7 -1.9633 7 1.616393 7 0.895427 7 

dmu5 1.219992 3 0.456634 3 3.801057 3 1.943119 2 

dmu6 1.190642 5 0.918423 1 3.846452 2 1.917534 3 

dmu7 1.266094 2 -0.2248 6 3.47953 4 1.883721 4 
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Table 4:  Data for Telephone Office

DMU X1 X2 X3 Y1 Y2 Y3 Y4 Y5 

dmu1 239 7.03 158 47.1 16.67 34 28 2 

dmu2 261 3.94 163 37.5 14.11 20 26 3 

dmu3 170 2.1 90 20.7 6.8 12.6 19 3 

dmu4 290 4.51 201 41.8 11.07 6.27 23 4 

dmu5 200 3.99 140 33.4 9.81 6.49 30 2 

dmu6 283 4.65 214 42.4 11.34 5.16 21 4 

dmu7 286 6.54 197 47 14.62 13 9 2 

dmu8 375 6.22 314 55.5 16.39 7.31 14 1 

dmu9 301 4.82 257 49.2 16.15 6.33 8 3 

dmu10 333 6.87 235 47.1 13.86 6.51 6 2 

dmu11 346 6.46 244 49.4 15.88 8.87 18 2 

dmu12 175 2.06 112 20.4 4.95 1.67 32 5 

dmu13 217 4.11 131 29.4 11.39 4.38 33 2 

dmu14 441 7.71 214 61.2 25.59 33 16 3 

dmu15 204 3.64 163 32.3 9.57 3.65 15 4 

dmu16 216 2.24 154 32.8 11.46 9.02 25 2 

dmu17 347 5.65 301 59 17.82 8.19 29 1 

dmu18 288 4.66 212 42.3 14.52 7.33 24 4 

dmu19 185 3.37 178 33 9.46 2.91 7 2 

dmu20 242 5.12 270 65.1 24.57 20.7 17 1 

dmu21 234 2.52 126 31.6 8.55 7.27 27 2 

dmu22 204 4.24 174 32.5 11.15 2.95 22 3 

dmu23 356 7.95 299 66 22.25 14.9 13 2 

dmu24 292 4.52 236 50 14.77 6.35 12 3 

dmu25 141 5.21 63 21.5 9.76 16.3 11 2 

dmu26 220 6.09 179 47.9 17.25 22.1 31 2 

dmu27 298 3.44 225 42.4 11.14 4.25 4 2 

dmu28 261 4.3 213 41.7 11.13 4.68 20 5 

dmu29 216 3.86 156 31.6 11.89 10.5 3 3 

dmu30 171 2.45 150 24.1 9.08 2.6 10 5 

dmu31 123 1.72 61 12 4.78 2.95 5 1 

dmu32 89 0.88 42 6.4 3.18 1.48 2 5 

dmu33 109 1.35 57 10.6 3.43 2 1 4 
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Table 5:  Efficiencies and rankings obtained by the three methods 
DEA PCA(Zhu) PCA(PM) FA(New method) 

DMU 
Score Rank Score Rank Score Rank Score Rank 

dmu1 1.00000 3 2.11492 1 11.48890 1 0.67729 2 

dmu2 1.00000 13 1.34052 7 9.39700 5 0.49045 6 

dmu3 1.00000 11 1.48560 5 11.13670 2 0.75307 1 

dmu4 0.86818 20 -0.51486 20 5.25150 17 -0.13271 16 

dmu5 0.99367 18 0.49112 10 7.19350 11 0.19885 12 

dmu6 0.84137 24 -0.69660 24 4.74490 22 -0.22910 21 

dmu7 0.86995 29 -0.45802 18 4.52720 23 -0.27669 25 

dmu8 0.72081 33 -1.04620 29 2.99440 31 -0.59070 32 

dmu9 0.82025 26 -0.71586 25 3.44640 29 -0.38017 28 

dmu10 0.75450 32 -1.33681 32 2.69360 33 -0.62922 33 

dmu11 0.77697 31 -0.72447 26 4.01270 27 -0.40117 29 

dmu12 1.00000 1 0.22024 12 9.27820 6 0.47063 8 

dmu13 1.00000 12 0.46137 11 7.01790 13 0.15976 13 

dmu14 1.00000 2 0.99676 8 7.62280 10 0.28591 10 

dmu15 0.87213 23 -0.62439 21 4.96000 20 -0.16108 19 

dmu16 1.00000 9 1.47139 6 8.31010 8 0.54230 4 

dmu17 0.83311 7 -0.20785 14 4.50530 25 -0.25663 24 

dmu18 0.84828 17 -0.18136 13 5.56040 14 -0.08199 14 

dmu19 0.79771 30 -0.93114 28 3.23510 30 -0.44558 30 

dmu20 1.00000 4 1.70960 4 7.08100 12 0.33851 9 

dmu21 1.00000 16 0.89027 9 7.86410 9 0.47226 7 

dmu22 0.84563 27 -0.43421 17 5.08270 18 -0.21236 20 

dmu23 0.85252 14 -0.28974 15 4.25360 26 -0.29092 26 

dmu24 0.89417 21 -0.47861 19 3.96960 28 -0.23178 23 

dmu25 1.00000 10 1.78330 2 11.07270 3 0.67505 3 

dmu26 1.00000 8 1.71207 3 9.54480 4 0.50040 5 

dmu27 0.86546 22 -1.07657 30 2.70010 32 -0.48153 31 

dmu28 0.88027 6 -0.63001 22 5.04150 19 -0.14681 17 

dmu29 0.83361 28 -0.42143 16 4.92900 21 -0.23122 22 

dmu30 0.91892 15 -0.63932 23 5.28470 16 -0.11320 15 

dmu31 0.77394 25 -0.73120 27 4.51310 24 -0.35090 27 

dmu32 1.00000 5 -1.11510 31 8.52320 7 0.23242 11 

dmu33 0.93490 19 -1.42338 33 5.55320 15 -0.15314 18 
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Abstract- Possibility of equality between two or more 
fuzzy numbers is a popular method to consider their 

degree of fitness. Possibility of equality may be applied 

to establish the constraints of fuzzy linear regression in 

which conjunction problem is under consideration. In 

this study, a new concept of the possibility of equality, 

that creates new restrictions, will be introduced and 

applied in fuzzy regression model, and then a more 

precise method will be represented to calculate the 

amount of error. To compare the performance of the 

proposed approach with the other methods, numerical 

examples are given. Total amount of error is calculated 

to confirm the efficiency of the proposed approach. 

 
Keywords: Fuzzy linear regression; Possibility of equality; 
Fuzzy number.  

I- INTRODUCTION 

        Regression analysis is a statistical method applied to 
consider the relationship between the dependent and 
independent variables. Fuzzy regression model is an 
extension of common regression in which one of the input 
and output data or both of them are regarded as fuzzy 
numbers. Probability distribution function is used to 
estimate parameters in classical regression and possibility 
theory which was introduced by[26] is applied to estimate 
fuzzy regression parameters.  
Fuzzy linear regression was introduced by Tanaka et al.[25] 
in which the input and output data were crisp and fuzzy, 
respectively. It has been successfully implemented in 
several fields of forecasting ([21],[17][18], [14],[2] ,[13] 
,[10] ,[16] ,[3],[20],[19],[24]).  In general, fuzzy regression 
models are classified into two classes:   
1) The possibilistic model: Minimize the fuzziness of the 
model by minimizing the total spreads of its fuzzy 
coefficients, subject to covering the observed data by the 
estimated data of the model ([25], [23],[22]). 
2) The least-squares model: Minimize the distance between 
estimated output of the model and the observed amount, 
based on their modes and spreads ([6], [11],[8],[4],[17]). 
Fuzzy Number: Based on Dubois and Prade[7] Ã is 
defined a fuzzy number which satisfies the following 
criteria: 
First: normality, ∃x∈R such that µÃ(x)=1   
Second: convexity, ∀x1,x2∈R, ∀h∈[0;1] 

µÃ(hx1+(1-h)x2)≥min(µÃ(x1), µÃ(x2)) 
Ã = (cL, a, cR)LR is a LR-type fuzzy number where a, cL and 
cR are the center, left spread and right spread of fuzzy 
number, respectively (cL& cR >0 ). When cL=cR=c, we have 
a symmetric triangular fuzzy number. Thus, Ã = (a, c)L is a 
symmetric triangular fuzzy number if: 

( ) ( ) caxca
c

xa
c

xaLx
A

+≤≤−
−

−=




 −=        , 1~µ  (1) 

In this paper symmetric triangular fuzzy numbers is only 
considered for simplicity. 
 

Problem Definition: In order to define the possibility of 
equality between two fuzzy numbers, (Dubois and Prade 
[7]) proposed the following index:    

)}(),(min{  sup)
~~

(
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~~21 xxAAPoss
AA

Rx

µµ
∈

==  
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where Poss is short for Possibility. 
Finding out a suitable mathematical model along with the 
best fitting coefficients of the model from the observed data 
is one of the fuzzy regression analysis goals. 
The Min, Max and Conjunction problems are three types of 
possiblistic linear regression analysis to gain the mentioned 
aim that dealt with by Tanaka et al.[24]. 
Conjunction problem is a popular method that uses the 
concept of fuzzy number inclusion to find the best fitting 
coefficients. Some papers evolve conjunction problem's 
constraints by the definition of the possibility equality of 
two fuzzy numbers (for more information see Shakouri G. 
and Nadimi [17],[12]). Besides that, Shakouri G. and 
Nadimi[17] introduced Non-equality possibility to designed 
a new objective function.  
The scope of this paper is limited to the conjunction 
problem. It deals with some problems about the possibility 
equality index. Afterward, a new possibility equality index 
is presented to encounter the problems and to establish new 
constraints in fuzzy linear regression. 
 Figure 1 is considered based on the mentioned aim. Ã1 is 
supposed a fuzzy number in a set of fuzzy number 
observations. Different objective functions will lead to 
different estimated parameters in which the above index is 
considered as a criterion to find out the best estimated 
coefficients. For instance, Ã2 and Ã3 can be two optional 
estimated fuzzy numbers for Ã1. The possibility equality 
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index is the same for both Ã1& Ã2 and Ã1& Ã3 but the 
common area is different for them. Meanwhile the spread of 
Ã2 is wider than Ã3.Therefore estimating fuzzy linear 
regression parameters is caused a little deviation to actual 
amount of parameters considering the mentioned index. It 
drives us out of the fuzzy regression analysis aim. Proposed 
approach is stated to solve this problem in section 4.  

 

Figure 1: Equality Measure of three fuzzy numbers 

This study introduces a new possibility equality index to 
establish new constraints in fuzzy regression analysis with 
an optimal confidence level, named h – level, in which 
conjunction problem is under consideration. Besides that a 
more precise method is described to calculate the amount of 
error calculation.  
 

II- FUZZY LINEAR REGRESSION MODELS 

Fuzzy Linear Regression (FLR) model was introduced 
initially by Tanaka et al. (1982) as:  

iXA
~~

...
~~~

1100
* =+++= inniii XAXAXAY 

(3) 

Where Ỹ*
i  ,i=1,…,m, are the estimated data, Ãj=(aj, cj)L, 

j = 0,1, ..., n are the set of symmetric fuzzy coefficients, and 
Xi =[ Xi0, Xi1,…, Xin]

T are the vector of independent 
variables.  
The extension principle ([27]) plays basic role in the fuzzy 
set theory. It provides a fundamental for all manipulations 
on fuzzy sets. By applying it for the fuzzy linear regression 
model, the membership function of Ỹ*

i can be defined as: 
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According to the extension principle, the optimization 
process is formulated as follows: 
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Where Ỹi=(yi,ei) i=1,2,…,m  are the fuzzy output 
observations. |L-1(h)| is supposed to be equal with 
|L(h)| = 1 – h; 0 < h < 1, provided that the coefficients to be 
triangular fuzzy numbers. The role of h here is like a 
confidence level controller. In fact, it is close to zero in 
which more risk isn't acceptable and vice versa, it goes to 
one when the problem is considered at an optimistic point of 
view. Later, restriction, c|Xi| ≥ 0; i=1, …, m, (where c = [c0, 
c1,..., cn]) was substituted instead of c ≥ 0 by (Change and 
Lee, 1994b), where m is the number of observations 
(Change and Lee [5]). 
 

III- THE NEW APPROACH 

A small change in constrictions regarding to new definition 
of the possibility of equality is taken into account here. 
Introducing new definition about the possibility equality 
index brings about some variation in constrains, especially 
the influence of h-level on the fuzzy regression model.     
The conjunction problem, (6), guarantees that there will be 
always an overlap between the given outputs, Ỹi, and the 
estimated fuzzy numbers, Ỹ*

i.  

0 ]
~

[  ]
~

[ * /≠/∩ hihi YY    (6) 

A possibility of equality definition is given in follow based 
on Problem Definition which was described above, to 
identify more precise estimated parameters with 
establishing new constraints in fuzzy linear regression 
models. For this reason the centers and spreads of two fuzzy 
numbers are regarded simultaneously.  
Proposed Definition:  
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Where Ã1=(a1,c1) and Ã2=(a2,c2) are two symmetric 
triangular fuzzy numbers. 
According to proposed definition, possibility of equality 
between two fuzzy numbers is one, if both of the following 
conditions are to be correct at the same time. 
(i): aXi = yi 

Ã 

µ 

1 Ã1 Ã2 Ã3 

Difference Area between two Poss Indexes 

Poss(Ã1 =Ã2) 

= Poss(Ã1 =Ã3) 
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(ii): c|Xi | = ei 
Where aXi and c|Xi | are the center and spread of the 
estimated symmetric triangular fuzzy numbers, respectively 
(Ỹ*

i=(aXi , c|Xi |)). The spreads of two fuzzy numbers are 
regarded as the criteria to compare them in which the first 
condition is right but the second is not. So that increasing of 
estimated spread, c|Xi|, with keeping constant of common 
area between two fuzzy numbers, causes to lessen the 
amount of possibility of equality, whereas this issue isn't 
seen in the possibility of equality index which has been 
introduce by (Dubois and Prade[7]). In other position, 
distance between the centers of two fuzzy numbers will be 
important factor when the spread of estimated data is to be 
equal with the spread of the output observation. Moreover, 
the maximum distance between aXi and yi (the centers of 
two fuzzy numbers) in which the Conjunction problem is 
applying, equals to (c|Xi | + ei). Thus, it guarantees that the 
numerator of fraction in proposed definition is less than its 
denominator and proposed index is ever less than or equal 
to one.  
 
Lemma 1: with respect to proposed definition, 
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where h = min{h1, h2,...,hm}. 
Proof:  
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Last equation is divided into four cases which are listed as 
follows: 
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(11) 

Objective Function: To achieve best objective function, it 
is necessary to consider the distance between centers, 
spreads and h-level, all together in order to get more reliable 
results. Shakouri G. and Nadimi [17] proposed an objective 
function based on Non-equality possibility index with 
considering the mentioned factors. It is applied here, which 
is given as follows:  

min ∑(|a Xi + L-1(h) c |Xi| – yi – L-1(h) ei| + |a Xi – L-1(h) 
c

 |Xi| – yi + L-1(h)ei|) 
(12) 

Based on (12) and Lemma 1, the optimization problem is 
summarized as follows:  
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Kim and Bishu [9]) proposed a criterion to evaluate fuzzy 
regression result, it is defined by the following index:  

,
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(14) 

where D is difference between the two observed and 
estimated membership functions, which is obtained as 
follows:    
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where *~
iY

S and
iY

S ~ are the supports of observed value, Ỹi, 

and estimated value, Ỹ*
i, respectively.  
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But there are some problems in this criterion, which are 
described as follows: 
 Denominator of (14) is an observed value which is 
constant. It can be estimated with different fuzzy numbers. 
For instance, Figure 2 shows three fuzzy numbers, that Ã1 is 
an observed value, which has to be estimated. Ã2 and Ã3 can 
be dealt with as two options for the estimation of Ã1. As you 
can see, Ã2 and Ã3 have common areas with Ã1, but the 
spread of Ã2 is wider than Ã3, while there is a little 
difference in the intersection area. According to mentioned 
criteria both estimated fuzzy numbers, Ã2 and Ã3, may be 
assumed suitable for the observed fuzzy number,Ã1, with 
regard to some amount of error. Whereas to calculate the 
amount of error, not only it is required to consider the area 
of common region, but also it is necessary to take into 
account the unshared area, too. With regard to Kim and 
Bishu's criteria, the total amount of error for Ã1& Ã2 to Ã1& 
Ã3 isn't greater because there is no difference in their 
common area.  

 

Figure 3: Compare Measure of three fuzzy numbers 

To solve this problem which rises from the constant value 
of denominator in E1, it is necessary to consider estimated 
and observed membership functions, together in the 
denominator of E1.  
 
 
 
 
 
 
 

 

Figure 4: Concept of Union and Intersection in fuzzy numbers 

So union and intersection concept (as shown in Figure 4) is 
applied to compare and evaluate two fuzzy numbers 
equality as follows: (for more information, see [26], [27])  

 
By adding the union concept in the denominator of (16) the 
abovementioned problem can be solved. The numerical 
examples will confirm the improvement of the model.   

IV- NUMERICAL EXAMPLE 

Four examples are considered to evaluate the new approach 
and to compare them with other methods. Tanaka’s method 
(TM) (Tanaka et al.[24]), Savic and Pedrycz method (SP)  
(Savic and Pedrycz [15]), Kim and Bishu method (KB) 
(Kim and Bishu [9]), Modarres Approach (MA)  (Modarres 
et al. [12]), Shakouri and Nadimi method (NA) (Shakouri 
G. and Nadimi[17]) are chosen to evaluate and compare 
with the New Approach (NA1).  
Example 1. Tanaka's data (Tanaka et al.[24]), shown in 
Table 1, is used as the first example. Applying NA1 to these 
data, the following fuzzy regression model is obtained: 

*~
Y = (5.209, 4.962)L + (1.558, -0.512)L x  , h = 0.535 

where the fuzzy coefficients are given according to the 
format of Ãj=(aj, cj)L. Corresponding errors of this method is 
also given in the same table, where it is compared to the 
other methods. It is demonstrated that the total error of NA1 
is 2.469, which is the least as compared to all other 
methods, which shows better performance.  
 
 
 
 
 
 

Table 1: Original Data and the Estimation Errors for Example 1 
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Errors in estimation 
I xi (yi, ei) 

TM SP KB MA NA NA1 

1 1 (8,1.8)L 0.745 0.691 0.735 0.780 0.746 0.699 

2 2 (6.4,2.2)L 0.640 0.687 0.827 0.780 0.804 0.692 

3 3 (9.5,2.6)L 0.431 0.467 0.369 0.205 0.259 0.322 

4 4 (13.5,2.6)L 0.519 0.605 0.729 0.782 0.804 0.756 

5 5 (13.0,2.4)L 0.569 0.512 0.328 0.091 0.000 0.000 

Total errors 2.905 2.962 2.988 2.962 2.614 2.469 

 

Table 2: Data for Example 2  

 Response time 
Inside control 

room 
experience 

Outside control 
room 

experience 
Education 

Team 1 (5.83, 3.56)L 2.0 0.0 15.25 

Team 2 (0.85, 0.52)L 0.0 5.0 14.13 

Team 3 (13.93, 8.5) L 1.13 1.5 14.13 

Team 4 (4, 2.44) L 2.0 1.25 13.63 

Team 5 (1.65, 1.01) L 2.19 3.75 14.75 

Team 6 (1.58, 0.96) L 0.25 3.5 13.75 

Team 7 (8.18, 4.99) L 0.75 5.25 15.25 

Team 8 (1.85, 1.13) L 4.25 2.0 13.5 

Table 3: Comparison between Estimation Errors for Example 2 

Errors in estimation 
Team Number 

TM SP KB MA NA NA1 

Team 1 0.84 0.82 0.76 0.87 0.58 0.00 

Team 2 0.99 0.99 1.00 0.79 0.34 0.19 

Team 3 0.26 0.57 0.92 0.91 1.00 1.00 

Team 4 0.92 0.81 0.44 0.43 0.36 0.33 

Team 5 0.93 0.95 0.92 0.83 0.93 0.55 

Team 6 0.98 0.96 0.97 0.83 0.03 0.17 

Team 7 0.60 0.63 0.84 0.92 1.00 1.00 

Team 8 0.93 0.87 0.72 0.75 0.00 0.00 

Total errors 6.45 6.61 6.56 6.34 4.25 3.23 

 

Example 2. Kim and Bihu (Kim and Bishu [9]) applied data 
relative to the nuclear power plant control room crew. The 

following fuzzy regression model is obtained by applying 
NA1 approach to the data given in Table 2: 
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*~
Y = – (10.499, 9.425) L – (0.192, 0.399) L x1 – (0.816, 

0.421) L  x2 + (1.096, 0.857) L x3 

Which h = 0.0010 is the optimum value. The error for each 
sample output and the total error are obtained by (16) and 
illustrated in Table 3.  
The results show that the proposed method, NA1, has 
considerably reduced the total error in comparison with 
other methods.  
 
Example 3. Shakouri and Nadimi [17] considered an 
example to compare their approach with other methods 
based on the fuzzy regression for which the fuzzy 
parameters were available, as well as the inputs. The 
example is given as: 

Ỹ = (2., 1)L + (3, 0.5)L x (17) 

where: 

A0 = (a0, c0) L = (2,1) L, A1 = (a1, c1) L = (3,0.5) L 

Therein the fuzzy regression model is regarded in diverse 
way. In brief, they presupposed that fuzzy regression model 
is available and then they estimated the parameters of the 
model to calculate error terms and accuracy of their 
approach. Here the results of proposed approach are 
compared with other methods. The fuzzy outputs, however, 
can be calculated by the given model. NA1 approach is used 
to compare with the NA and MA methods. Results for Ỹ 
= (y, e)L are given in Table 4 based on corresponding x.   

Table 4: Crisp inputs and the corresponding fuzzy 

outputs for model (17) 

X y E 

1 5 1.5 

2 8 2 

3 11 2.5 

4 14 3 

5 17 3.5 

 
Three methods are applied to estimate the fuzzy parameters 
and the results of each approach are summarized in the 
following table: 
 
 
 

Table 5 : Fuzzy Parameters Estimates by MA, NA 

and NA1 

Method A0 = (a0, c0) L A1 = (a1, c1) L 

Original Parameters (2.000000, 
1.000000) L 

(3.000000, 
0.500000) L 

Parameters estimated 
by MA 

(1.998005, 
1.840016) L 

(3.000000, 
0.160000) L 

Parameters estimated 
by NA 

(2.000000, 
1.000111) L 

(3.000000, 
0.500089) L 

Parameters estimated 
by NA1 

(2.000000, 
1.000000) L 

(3.000000, 
0.500000) L 

 
Here, MA method is calculated with a tolerance of ε = 
0.000001 to find the optimal h-level by iteration Modarres 
et al. (2005). In this example the amount of h for MA, NA 
and NA1, is equal to 0.9985722, 0.8623157 and 0.2512473, 
respectively. Table 5 shows that the proposed approach is 
closer to the real data as compared to MA. There are 
however a few differences between NA and NA1 
approaches. C0 and c1 are two cases with differences of 
0.000111 and 0.000089, respectively. Based on the results 
which were demonstrated in Table 5, NA1 approach is more 
precise than NA method. 
 
Example 4. In this example MA method is left out, NA and 
NA1 results are taken into account and compared as follows. 
Tanaka's data, (Tanaka [22]) which has been shown in 
Table 6, is considered here to evaluate and compare the 
NA1 approach with NA method.  

Table 6: crisp input and fuzzy output with fuzzy 

error 

x1 x2 x3 Y e 

3 5 9 96 42 

14 8 3 120 47 

7 1 4 52 33 

11 7 3 106 45 

7 12 15 189 79 

8 15 10 194 65 

3 9 6 107 42 

12 15 11 216 78 

10 5 8 108 52 

9 7 4 103 44 

Herein, at first, fuzzy linear regression model is considered 
with the assumption of Ã0, afterwards it is dropped off the 
model.  Equations (18) and (19) demonstrate the results of 
NA and NA1 approaches, respectively.  
NA  , 
h=0.93
1, 

Ỹ = (2.9574, 2.8893)L  x1+ (8.2470, 
1.2419)L x2 +(4.6636, 2.3257)L  x3 

(18) 
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NA1 , 
h=0.85
4, 

Ỹ = (2.9712, 2.8793)L  x1+ (8.2057, 
1.0338)L x2 +(4.7143, 2.6460)L  x3 

(19) 

Above fuzzy linear regressions were achieved without 
considering Ã0. The model parameters are estimated once 
more by the NA and NA1 methods with inclusion of Ã0 
which are given as follows: 
 

NA   Ỹ =(8.2670, 0.4792)L  + (2.3613, 2.0617)L  
x1+ (8.1775, 0.9281)L x2 +(4.4179, 
3.4107)L  x3 

,h=0. 891, 

(20) 

NA1  
 

Ỹ =(7.1071, 13.3249)L  +  (2.4299, 1.2944)L  
x1+ (8.1821, 0.9020)L x2 +(4.4722, 
2.7789)L  x3     ,h=0.906, 

(21) 

 
 
Table 7 demonstrates the error of each approach in two 
different states. It is evident from the data that there are 
some differences between NA and NA1 approaches. Here, 

the total errors for the proposed approach in each state are 
also less than the NA method. 
 

 

Table 7 : Comparison between Estimation Errors with two methods 

Errors in estimation 

With Ã0 Without Ã0 Number 

NA1 NA NA1 NA 

1 0.0000 0.1012 0.1043 0.1474 

2 0.0000 0.0000 0.1886 0.2000 

3 0.1426 0.1008 0.2202 0.2350 

4 0.1136 0.0619 0.0394 0.0517 

5 0.0251 0.0566 0.0968 0.1207 

6 0.0000 0.0000 0.0000 0.0000 

7 0.1552 0.0174 0.1948 0.1953 

8 0.1859 0.1831 0.1265 0.1290 

9 0.0193 0.0191 0.0568 0.0318 

10 0.1097 0.0363 0.0061 0.0000 

Sum of the Output Errors 0.57624 0.75137 1.03338 1.11089 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

V- CONCLUSION REMARKS 

Possibility of equality was developed with its application in 
fuzzy regression analysis in this study. It was then used to 
formulate new constraints in fuzzy regression model based 
on conjunction problem. Meanwhile an accurate criterion, 
based on union and intersection concept, was introduced to 
assess a fuzzy regression result. The results of examples 
confirmed the accuracy and improvement of proposed 
approach as compared to the other methods. 
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Abstract 

 
Experimental Design is a branch of research in many areas, very varied structures and 

with many answers not yet known, being one of the most fascinating fields of research in 

Statistics. It has underlying ideas as important and in vogue as the optimization of factors, 

models and features, quality and competitiveness. It is a current powerful technique, 

indispensable in any experience, either in the definition of data to study – what type of 

data and how much data, or to choose the method and conditions of gathering the 

samples, always looking for the maximization of feedback information and minimizing 

costs.  

Experimental Design applications are known from experiments in areas as diverse as 

Medicine, Engineering, Cryptography, Bioinformatics, Social Sciences and Education 

Sciences. 

The technological innovations of today allowed prodigious advances in all areas of 

research and in particular at the level of Statistics and Experimental Design. Besides the 

usual computer programs such as STATISTICA, SPSS and SAS, with a relevant role in 

the programs of classroom teaching, researchers and teachers felt the need to create 

simple software, free, open to the community and manageable according to the specific 

needs in each case. R emerges as the current program for more investment in the scientific 

community of Statistics, making it especially attractive in education programs online. 

This paper investigates strategies and methods of Experimental Design, as well as R 

developments, aimed at applications in e-Learning/e-Teaching of these important themes 

in Masters courses online. Examples of experiences at UAb-Portugal will be presented. 
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1. Introduction  

The importance of Statistics and Experimental Design in the education of future 

professionals in the various fields of scientific and technological knowledge is very well 

known as a current challenge. In general, teaching in these areas tends to be increasingly 

based on the use of Web resources and Software for specific assistance, because they 

are both popular and quite attractive, and also because they allow the development of an 

experimental and interacting components to the learning process, that was largely absent 

from the pedagogical tools and approaches previously used. We observe the online 

teaching programs with a growing trend, so it urges to pay special attention to 

developments aiming at new features which may complement the more traditional way 

of teaching. To this end, we will review the main resources available to support the 

online teaching of Experimental Design topics, emphasizing the role of Software R in 

this context. We will try to point out ways that lead to good practices for the future in 

this area, presenting the brief history of e-learning/e-teaching in the Master Course on 

Statistics, Maths and Computation at the Universidade Aberta (UAb), Portugal. 

2. The impact of current Experimental Design 

The strong impact of Experimental Design currently is mainly due to the fact that it has 

underlying ideas as important and in vogue as quality, competitiveness and optimization 

of resources, of factors and of models. It is a powerful methodology, indispensable in any 

experience, either in the definition of samples and data to study, what type of data and 

sample size, whether in choosing the method and conditions of sampling. The main 

objectives of Experimental Design are the maximization of information response and the 

minimization of the costs involved. The role on well designed experiences is crucial and 

applications of Experimental Design are known in areas as diverse as Medicine, 

Engineering, Cryptography, Bioinformatics, Social Sciences and Education Sciences.  

In the twenty-first century we have been assisting to the fact that many of the best-

qualified jobs place as a reality the need of developing new skills in mathematical, 

statistical and computational abilities. So, whether in developed or developing countries, 

we assist in the last decade to a trend of increasing demand in respect of courses and 

subjects related to Statistics in general and Experimental Design in particular. 
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Simultaneously, in the last decade we are witnessing the success of the impact of online 

learning, emerging to address the difficulties inherent in traditional presence and in 

traditional distance education, now allowing students to follow lectures in any place, at 

anytime and at a very affordable cost.  

All these developments and changes are very recent, and although there are many strong 

research teams looking for new results and advances in Experimental Design, less 

attention has been paid to the need of developing new tools and new methodologies to 

better accomplish the teaching of these techniques, according to the new century trends 

and demands of E-learning/E-teaching courses. This is a very challenging new field of 

research with many open problems to be known and answered.  

It was already noticed besides from short time experience that, for students on the online 

learning of statistics and experimental design topics, it is very stimulating to develop 

interactive activities, involving student-student and student-teacher-student interactions. 

Particularly in Master courses the role of the teacher increasingly assumes the character of 

a companion study, of course in parallel with the transmission of knowledge, but always 

encouraging the process of self-learning. The role of software R becomes here 

fundamental. Software R proves to be a powerful tool, bridging the needs felt by 

researchers and teachers on the creation of free software, open to the community, simple 

and manageable according to the specific needs in each case.  

 

3. E-learning/E-teaching Experimental Design: Tools and computational resources   

Currently Experimental Design is one of the most fascinating fields of research, providing 

a powerful challenge and opportunity to obtain new results on theses and on research 

projects with links to many different areas. This leads to the increasing development of 

Experimental Design issues in Graduate and Master Courses, not only in Maths and 

Statistics, but also in areas such as Engineering, Environmental Sciences, Health Sciences 

and Feeding Consuming Sciences.   

The use of Web and of computational resources to support education deserves special 

attention, especially when it comes to online learning, since in this scenario it will 

certainly be an important complement to the student. We will present a retrospective 

summary of the main resources currently available on the Web to support the online 

teaching of Experimental Design, especially those of free access. Currently it is easy to 
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find online interesting virtual labs to support teachers and students, interactive applets as 

tools of great potential for learning, electronic books and the particular software adequate 

to the e-learning/e-teaching of Statistics and Experimental Design - R: a free open source 

for Statistics learning.  

Among other available e-books in Statistics, MD*BOOKS site present a very good 

selection on statistical subjects at the website: 

 http://www.xplore-stat.de/ebooks/ebooks.html . 

Canavos and Koutrouvelis(2009) present an e-book on the introduction to the Design and 

Analysis of Experiments and some other important e-books on Experimental Design can 

be found at the websites: 

http://www.math.vu.nl/sto/onderwijs/doeanova/notes.pdf; 

http://instructors.coursesmart.com/0136158633 ; 

http://www.itl.nist.gov/div898/handbook/index.htm; 

http://www.itl.nist.gov/div898/handbook/pri/pri.htm 

Particular emphasis to the potential of R software on the support to the teaching of 

Experimental Design in the online environment is now stated together with a brief 

introduction. Information about the project and how to download the program, as well as 

sources of documentation are available at http://www.r-project.org .  

R is an integrated project involving, among other means, a language and environment for 

statistical computing. As a part of the GNU Project it is an affordability free source to the 

entire scientific community, and the community that supports it, provide access to state-

of-the-art of statistical graphics, visualization and computing, considering many levels of 

users expertise. This project was initiated and developed from the language S by Ross 

Ihaka and Robert Gentleman from the 1990s. R provides a wide range of resources, from 

packages developed by researchers on a worldwide network, with applications in most 

areas of science, e-books in several languages and on different themes in the field of 

Statistics and Experimental Design. It presents an integrated environment for data 

manipulation, calculations and graphical representations and is highly extensible. 
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Advantages of using R on online teaching programs, instead of classical computer 

programs such as STATISTICA, SPSS and SAS are then obvious, mainly considering the 

expensive cost licences, difficulting their usage at public education institutions.  

In what concerns to Experimental Design issues using R the website 

http://www.stat.washington.edu/fritz/DATAFILES/Stat421Rintro.pdf presents a brief and 

very simple introduction and at http://cran.r-project.org/doc/contrib/Vikneswaran-

ED_companion.pdf we find the basic methodologies of Experimental Design using R, 

which gives an important help on the students approach.  

R has a nice amount of functionality for Experimental Design or Design of Experiments 

(DOE) which appears in various R packages. Gromping, U. (2008-2009) present the 

CRAN Task View on Design of Experiments, available at http://cran.r-

project.org/web/views/ExperimentalDesign.html. Several packages were developed 

concerning to solve DOE problems, such as AlgDesign which creates full Factorial 

Designs and Mixture Designs, among others; Conf.design which is a package adequate to 

create a design with certain interaction effects confounded with blocks, allowing combine 

designs in several ways; Package blockTools which is adequate to assign units to blocks 

in a Block Design and Package agricolae which was especially developed to solve 

agricultural and plant breeding experiments. Some further packages handle special 

situations in DOE, but still some Designs have open fields to look for adequate software 

developments. 

Baier and Neuwirth (2007) refer to the convenience of integrating R in Microsoft Excel 

since this provides a good way to combine the advantages of a spreadsheet with the 

flexibility of R. This seems very interesting since it will help to provide solutions for 

some non-regular situations of Designs for which still there are not yet R convenient 

available packages.  

4. Practices and strategies on teaching Experimental Design topics online: examples 

We present strategies adopted to teach Experimental Design online, considering classes 

with a big number of students and classes with not so big number of students, which 
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sometimes allow to go a bit further and fit students needs according to their professional 

fields. 

In the first case, we refer to Darius and Schrevens (2006), where a very interesting 

experience was presented. The authors alert to that students typically have little 

opportunity to get experience in the ability to design experiments, since in most of the 

courses there is more emphasis on the analysis of data already collected than on the actual 

design process. Also usually in classes, exercises are presented to students with data 

supplied, and luck of information on the reasons that led to the particular way of obtaining 

data. This concern is also present in several classical books, as Dean and Voss (1998) and 

Montgomery (2009). In literature many authors stressed the importance of including 

projects into the courses, in which students have to perform and analyse a real 

experiment, but such projects are unfeasible for classes with a big number of students. To 

go over this situation Darius and Schrevens (2006) present as strategy the use of virtual 

experiments in teaching design and analysis of experiments. A tool is explored for gaining 

design experience: computer virtual experiments. This consist in “software environments 

which mimic a real situation of interest, pose a research question, then invite the user to 

collect associated data which, when statistically analysed, will shed light on the research 

question”. A collection of sorts referred to as ENV2EXP, available at 

http://www.kuleuven.be/ucs/env2exp have been experimented and three of the applets 

were discussed in this work: The Factory Applet (adequate to study designs such as 

Fractional Factorial or other Screening Designs, Full Factorial Designs, Box-Behnken) ; 

the Greenhouse Applet (this applet allows the user to get comparative experience with 

almost all classical designs, as completely randomized, complete or incomplete block 

designs and Latin Square Designs) and the Shooting Applets (very simple, can be used in 

the context of an introductory statistics course). With these applets is was shown that 

nowadays technology allows the creation of accessible and rich environments, adequate to 

improve the online teaching, providing students with new experience skills. Darius and 

Schrevens (2006) recommend a companion collection of programs referred to as 

VESTAC (Darius et al., 2000, and at http://www.kuleuven.be/ucs/java) to illustrate many 

associated statistical concepts.  

In the second case we present and discuss our work experience on teaching Experimental 

Design issues at Universidade Aberta - UAb, Portugal in a Master course for the last three 
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years. After a long period of teaching in distance education in its most traditional form, 

the UAb implemented a new pedagogical online teaching model in 2007, which uses 

Moodle - Modular Object Oriented Dynamic Learning Environment- as a platform to 

teach and conduct under graduate and Master courses online. The yet short experience so 

far already allows us to draw some conclusions and ideas for the future. The Department 

of Science and Technology is currently responsible for teaching the third Edition of the 

online Master in Statistics, Maths and Computation (MSMC). One of this Masters Course 

options is Computational Statistics and for this we have the following curricula: 

Table 1   Master in Statistics, Maths and Computation - Computational Statistics: A 

structure overview 

Semester I Semester II 

Statistics I Statistics II 

Sampling and Data Analysis Multivariate Data Analysis and 

Applications 

Quality Control Numerical Methods 

Statistical Computation I Statistical Computation II 

 Significant Learning of Sciences 

 

On the MSMC – Computational Statistics, semester II, in Statistics II some topics of 

Experimental Design are presented, based in using R packages to solve practical 

problems.  

To illustrate R simplicity we present a generic exercise of a Randomized Block Design 

in which R and package STAT was used on variety comparison with ANOVA. 

 Table 2: Results on melon yield (Kg by plot), in an experiment to compare 4 varieties 

(Oliveira, T.A. 2004, pg. 279) 

Blocks Variety 

I II III 

Green Plain 130.0 130.2 131.5 

Greem Rough 131.8 125.3 131.2 

White Plain 138.4 146.7 145.7 

White Rough 131.3 130.0 129.7 

Instructions in R should follow the input: 

> y<-scan() 
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1: 130.0 

2: 130.2 

3: 131.5 

... 

10: 131.3 

11: 130.0 

12: 129.7 

13:  

Read 12 items 

 

Then it follows the construction of a data.frame , with the data and indicators for blocks 

and varieties. 
exe1<-data.frame(variedade=factor(rep(1:4, each=3)), bloco=factor(rep(1:3, 

4)), resp=y) 

In a first approach exploring data, we have the Box-Plot: 

> names(exe1) 

[1] "variedade" "bloco"     "resp"      

 

> summary(exe1) 

 variedade bloco      resp       

 1:3       1:4   Min.   :125.3   

 2:3       2:4   1st Qu.:130.0   

 3:3       3:4   Median :131.2   

 4:3             Mean   :133.5   

                 3rd Qu.:133.4   

> attach(exe1) 

> plot(resp~variedade+bloco) 
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Figure 1: Box Plot for the Melon yield example 

And to obtain the ANOVA Table, R instructions follow: 

> exe1.av<-aov(resp~bloco+variedade) 

> anova(exe1.av) 

Analysis of Variance Table 

 

Response: resp 

          Df Sum Sq Mean Sq F value  Pr(>F)    

bloco      2   6.57    3.29  0.3126 0.74278    

variedade  3 411.54  137.18 13.0505 0.00487 ** 

Residuals  6  63.07   10.51                    

 

Students are encouraged to undertake special projects to gain experience in design, data 

analysis and statistical computing. In this Master we have been observing a growth 
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trend in the number of students: first edition with 8 students, second edition with 20 

students and third edition with 33 students. However in the optional class of Statistics 

II, second semester, still the number of students in the third edition is not too big (8), 

which still allow us to adopt some strategies not feasible otherwise, namely in what 

concerns to the last activity proposed to the students. Along the online classes students 

are introduced to the learning activities, in which they are invited to actively participate 

in Forums and to do some collaborative and web research on Experimental Design 

issues, according to the program: Introduction to Experimental Design; Fixed, Random 

and Mix Models in Experimentation; Complete and Incomplete Block Designs; 

Factorial Designs; Fractional Factorial Designs; Response Surface Methodologies and 

Advanced Experimental Design Models. Exercises are proposed and through the 

resolution of problems and reflexion supported by experimentation, available 

computational resources are explored, namely in what concerns using R and the DOE 

package. Some activities are individual and some are to be solved in group, as it is 

explained to the students in a previous schedule of activities, currently described in the 

platform webpage. The Moodle system, as screenshots is depicted in Figure 2. 

  

Figure 2  Environments in the Moodle system 

The methodological strategies applied during the activities development include the use 

of real data bases, the resolution of problems presented in the adopted books by using R, 

as well as simulations and visualizations. In the last activity we promote collaboration and 

reflection on students own ideas and experiences to stimulate the use of the acquired 
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knowledge as a tool to improve their professional development and skills. Students are 

asked not only to perform and analyse a real experiment - using at least one of the DOE 

tools explored, but are also invited to suggest an application according to their 

professional fields. With the use of this strategy we provide a learning environment in 

which we can be assured that students will better understand the problem and surely will 

be motivated to solve it. As very interesting results of applying this strategy for three 

years, some master thesis projects were designed, some papers were presented by the 

students in national meetings and even some collaboration projects between the 

University and some Public Institutions are going on.    

     5. Considerations and Perspective Research 

In a highly competitive and evolving world it seems crucial fostering the interest and 

involvement of research teams and universities on the solution of real world problems 

experienced in various relevant public and private institutions, by designing surveys and 

experimental designs, by developing and investigating stochastic models and computer 

simulations. The adoption of teaching strategies aimed at solving real problems will 

stimulate the professionals from many areas to look for Universities with the aim of 

improving their skills.  

In a prospective research it’s our aim to develop an experimental design in order to 

identify significant differences between using R and using other classical software for 

statistical simulations on student’s knowledge and skills achievement, considering the two 

SMC-Master areas at UAb: Computational Statistics and Computational Mathematics. 
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Abstract: A new statistical test for uniformity based on the sum of squared distances 
between neighboring one-dimensional observations is proposed. Analytical results for the 
statistics moments are presented as well as a computational recursive procedure for p-value 
calculations. Examples of testing the uniformity of scattering of pathway genes along 
genomes are given. The results are compared with those obtained using traditional Pearson 
and Kolmogorov-Smirnov tests. 
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1  Introduction 
 

Testing the uniformity of observations is a common problem in a great variety of 
fields such as history (distribution of specific events along the time axis), biology 
(distribution of special bio-markers along a chromosome), geology (time series of 
earthquakes), queuing theory (arrival events for the needs of customer service), 
evolution (time series of significant changes). The results of these tests can give a 
new view of the field being a good argument against “full randomness” 
(uniformity) while elucidating the non-uniform structure of events. In particular, 
overall genes are known to be evenly (uniformly) distributed along the two strands 
of chromosomes, while genes controlling a specific function tend to cluster on the 
chromosomes to facilitate co-transcription or to provide stoichiometry [2,3,4,5].  
The goal of this study Our goal here is to testing the hypothesis alternative to 
uniformity, hypothesis (i.e. the tendency to clustering) against uniformity. For this 
purpose, two traditional approaches have been traditionally used, namely, the 
Pearson test and the Kolmogorov-Smirnov test (see, for example, [1]). Both of 
these give a good solution under the condition that the number of observations is 
large enough since because all the mathematical test results for the tests are about 
of the order of their asymptotical values. That is why our goal is to fill the gap 
between the case of large datasets, where the  tools for mathematical analysis have 
been developed, and cases  with comparatively low number of observations (<50), 
but with exact calculations of test characteristics such as significance or p-value. 
The idea of our approach is that, for a uniform distribution, the sum of squared 
distances between neighboring observations after their ordering should be small as 
compared to that for the alternative situation of clustering. In the section Method 
we give the formal definition of the test, the related theoretical results and a 
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description of its numerical evaluation. In the Application section we compare the 
proposed test with those, known tests from the literature, that could be applied to 
evaluating the distribution of the same pathway genes along the E. coli K-12 
MG1655 chromosome belonging to same pathways. The obtained results suggest 
the advantage of our test in comparison with those of Pearson and Kolmogorov-
Smirnov.  
 
2   Method 
 

Let be independent observations of a random variable nxxx ,...,, 21 X with 

unknown continuous distribution function , all the observations belonging to 
the interval (0,1). Our goal is checking the hypothesis 

)(xF

0H : F(x) x,   0 x 1= ≤ ≤ , 
i.e., the uniform of the distribution under consideration against the alternative of 
all other distributions. For the sake of notation simplicity, it is assumed that the 
observations are ordered, i.e., nxxx ,...,, 21

1...0 1210 =<<<<<= +nn xxxxx  . 

Statistics      is introduced.  
n

2
n i i i

i 0
S (n 1) ,   x x+

=

= + ∆ ∆ = −∑ 1 i

First of all, we will show that statistics satisfies inequalitynS 11 +≤≤ nSn . 

Using Lagrange multipliers for the minimization of function with the 

restriction , one can easily see that

nS

∑
=

=∆
n

i
i

0
1 nS≤1 , and from another 

side . Thus the minimum is reached by observations 

scattered along the interval with equal distances of 

1)( 2

00

2 =∆≤∆ ∑∑
==

n

i
i

n

i
i

1
n 1+

between ordered 

observations, while the maximum is a result of observations concentrated only at 
the points 0 and 1. It is shown, thus, that statistics can, indeed, discriminate 
between two contrary levels of uniformity.  

nS

 

Statistical characteristics of the distribution of : nS
The random vector follows the Dirichlet distribution [1], i.e., the 

uniform distribution over the simplex

0 1 n{ , ,..., }∆ ∆ ∆
n

n 1
i

i 0
1 R +

+
=

∆ ≤ ⊂∑ . Using standard 

integration, one can easily get 
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Thus for large values of n, the distribution of statistics converges to the 
distribution concentrated at the point 2. 

nS

For numerical evaluation of the distribution function of nS
n 1+

, we have developed 

an algorithm based on the following consideration. By definition,                  

Introducing new variables 
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The last formula gives the recursion for calculating the distribution function 
 through integrating the distribution function with n-1 observations )( 2SFn

2 2

n 1 2

SF
(1 )−

⎛ ⎞− ∆
⎜ −∆⎝ ⎠

⎟ . The starting function is the distribution function 

for , where 

)( 2
1 SF

22 )1( XX −+ X follows the uniform distribution on (0,1). It can be 

easily shown that 2 2
1F (S ) 2 0.5 S 0.25= ⋅ −  for 20.5 S 1< < . The recursion 

was implemented by means of consecutive numerical integration of (1) with 10000 
nods in the interval and the results are presented in Figure 1. 

 
Fig. 1. Results of recursive calculations of  distribution, n=3,5,10,15. nS

 
3   Application 
 

In this section we describe the application of the proposed technique to testing the 
uniformity of gene scattering in two biological pathways along bacterial 
chromosomes. The results are compared with those obtained by means of the  
Pearson -test and Kolmogorov-Smirnov test. 2χ
To find out if the genes of certain E. coli pathways are uniformly distributed along 
the chromosome or tend to cluster, we have selected two KEGG (Kyoto 
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Encyclopedia of Genes and Genomes) pathways [6] to study the gene locations on 
the chromosomes. The position of each gene is presented by its ratio to the length 
of the chromosome, which allows to consider the observations as following a 
continuous distribution on the interval (0,1). 
First we examined the small KEGG, the so-called tyrosine metabolism, pathway. 
Tyrosine is one of the 20 amino acids found in the cell. It has a phenol group and 
can serve as a precursor for the synthesis of other molecules of various types (such  
as hormones and pigments) in the process of metabolism. In particular, the KEGG 
tyrosine metabolism pathway is the one to produce tyrosine. The pathway consists 
of only nine E. coli genes, three of which belong to the leading strand, whereas the 
rest six belong to the lagging strand. To our knowledge, there does not exist any 
test that could deal with such a small number of observations.   
The results of testing the uniformity hypothesis are presented in Table 1. Our 
calculations show that the p-values are 0.0116 and 0.3958 for the lagging strand 
with 6 genes and for the leading strand with 4 genes, respectively. This result 
enables us to unambiguously reject the hypothesis of uniformity of the pathways 
genes on the lagging strand and accept this hypothesis for genes on the leading 
strand. Thus our test can be employed in the case of very small datasets, where the 
traditional Pearson  and Kolmogorov-Smirnov (K-S) tests are inapplicable. 
Moreover, it has been demonstrated that our test allows accurate calculations of 
the p-value.    

2χ

The second pathway with the KEGG database is that of purine metabolism, which 
contains a total 84 E. coli genes, 54 of which form 39 operons and the rest can be 
regarded as single-gene operons. Purines – adenine (A) and guanine (G) - are two 
of the four nucleotides which are used in building the DNA molecule. The purine 
metabolism pathway consists of a series of biochemical reactions in which A and 
G molecules are synthesized and degraded.  
 

Table 1. Evaluation of p-value for the testing of uniformity of genes positions 
using three different tests 

Number of Genes Our Test Pearson test (# of intervals)      
4          5          6          7         8 

2χ K-S test 

49,  leading strand .0057 .1631 .0329 .0027 .0039 .0006 .0222 

35,  lagging strand .0035 .0399 .2729 .0046 .0255 .0779 .0646 
 
The results presented in Table 1 show fluctuation of the p-value in the Pearson test 
with different number of intervals, while the Kolmogorov-Smirnov test provides 
much higher p-values as compared to our test. Taking into account that our test is 
the only one that is not asymptotic, we argue that it is much more reliable than 
others for testing uniformity.  
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Abstract: In this paper the present developments in the physics of complex systems, in 

particular the structural relaxation of supercooled liquids and glasses, are discussed by using 

a stochastic cluster-based model. We are able to depict the impact of the interface between 

the nucleus considered as a cluster of a certain number of molecules and the liquid phase for 

the enhancement of the overall nucleation process. In general, these mathematical models 

describe the interactions of agents in heterogeneous populations and they are developed 

within the framework of the recent discussions about the gap between agent-based 

computational models (ABM) and stochastic analytical models. In particular, it is shown 

that even a relatively simple stochastic model, which appears phenomenological if it is not 

agent-based, can describe precisely the outcomes from multiple agent-based simulations 

where there is a lack of probabilistic insight and which should be long enough to equilibrate 

the states of large systems.  

Keywords: Stochastic modeling, Phase transitions; Nucleation; ABM  

 

1  Introduction 
 

In terms of clusters, growth/removal is the process in which a new cluster or a free 

agent is introduced/removed to/from the system. Fragmentation can be defined as a 

process in which a cluster breaks up into isolated agents. Coagulation is when two 

clusters join making a single one. Addition can be described as a special type of 

coagulation in which a free agent already in the system is added at random to 

another cluster. Attachment is the process in which new incoming agents attach 

themselves to an existing cluster, and this allows both the system and the clusters 

to grow in size. Only restricted combinations of these ingredients cause the models 

to differ [1−3].  

One purpose of this paper is to get new insights into microscopic explanations of 

stochastic models which may be compared with the agent-based computational 

models, and to bridge the gap between agent-based models and stochastic 

processes. The application refers to the nucleation process, a widely spread 

phenomenon in both nature and technology, which may be considered as a 

representative of the aggregation phenomena in complex systems. The recent 

discovery of the generation and extinction of crystal nuclei at very low 

temperatures [4, 5] suggests that stochastic generation of crystal nuclei would be 
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considered as the result of fluctuation of complex cluster structure of the 

supercooled liquid. Considering that the crystal nucleation is just one extreme 

event in the fluctuation of a clustered structure, for example, another metastable 

liquid   phase  with  a  different  structure  from  the  ordinary  one  would  also  be 

potentially nucleated in a similar procedure. Stochastic generation of crystal nuclei 

may thus be considered as the result of fluctuation of cluster structure of a 

supercooled liquid.  

The role of both heterogeneity and the interface between clusters in the 

enhancement of nucleation rate has still to be explained. In particular, it was 

observed that nuclei could almost always be formed near the surface of the cluster 

instead of in the interior, and one factor favoring nucleation near the surface would 

be the greater freedom of motion and, hence, a larger nucleation probability [6]. 

This is surprising because it is known that the surface layers of the nuclei tend to 

be disordered and melt at significantly lower temperatures than their cores.  

 

2  The Model  
 

Let us consider N atoms which can be in 3 different states (cluster, liquid and their 

interface), and can perform 4 possible moves: liquid to interface, interface to 

liquid, interface to cluster, and cluster to interface. One can identify 4 different 

combinations denoted with probabilities p1…p4. That is, drawing randomly one 

particle, it will be of type i with probability pi. Let N=1,2,…∞ be the total number 

of atoms in the system, and { }4321 ,,, nnnn  are their partition into 4 subsets. Each 

subset can be called cluster, and the process itself – clustering. The number of 

possible partitions in this case is ,)(
!3

1
)(

3

1

∏
=

+=
i

iNNP  where 

4,1,,0 == iNni  and Nn
i

i =∑
=

4

1

. For example, in a system of N=1000 atoms, 

P(N) equals to 167668501! Such an interaction in the ABM model always involves 

an active agent and a passive one: the agents have preferences over their states and 

they can play both roles interchangeably. Accordingly, the number of repeated 

computer runs due to different possible partitions would be very large.  

Let’s consider further that each particle interacts with the entire group both as an 

aggressor (in terms of the Kolmogorov theory) and as a passive agent (in terms of 

the ABM models) as well. Then the mean π, namely the stability index, takes here 

the form  

)())(()( 244432132311 pppppppppppp −+−++−++−=π  
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or, taking into account that 1
4

1

=∑
=i

ip , one can exclude one probability, for 

example p4, from the above equation:  

)221)(()1)(21()( 3232321321311 ppppppppppppp ++−++−−−−−−+−=π . 

One can represent the distribution of states as a three dimensional point  

222

4321 ),,,(),,( crlppppdcrld ++=≡ , 

where the axes are labeled l, c and r: l=p1–p3, c=p2+p3–p1–p4, r=p4–p2, where 

l+c+r=0 and [ ]2,0∈d . Thus different distributions of states can lead to the 

same point in the sphere, i.e. different microscopic partitions can generate the same 

result on aggregate inside a sphere around the origin. Preliminary results for the 

two limit cases are obviously: if all particles would show the same behavior, then 

2=d  and there is a maximum stability of states in such a completely 

asymmetrical system, but π=0 for a homogeneous system, p1=p2=p3=p4=
1
/4, and 

for combinations such as 31 pp =  and 42 pp =  in the case of unstable steady-

states. To represent a two-dimensional graph describing the stability/instability of 

the system, we consider some fixed probabilities. Fig. 1  depicts  such  dependence 
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of  the  cluster  instability, 1–π, on the probability p1 for a system of 100 particles, 

where the atoms at the liquid-cluster interface are missing, (a); share of atoms at 

the interface p2+p3 is just 1/10 of their total number in the system, (b); and 

corresponding share of particles at the interface is equal to 3/10, i.e. p2=p3=0.15 

(c), p2=0.1, p3=0.2 (d) and p2=0.2, p3=0.1 (e). Note that in the absence of an 

interface between liquid and cluster, as we expected, the system is in a state of 

maximum instability for p1=p4=0.5. While the number of particles at the interface, 

i.e. p2+p3 increases, the stability of the system decreases simultaneously, regardless 

of whether the particle flow at the interface is achieved at the expense of the liquid 

phase or particles in the cluster. However, particles at the liquid-cluster interface 

definitely accelerate the formation of clusters due to the displacement of the 

0 0.5 1

0

0.5

1

a

b

c
d

e

1−
π

p1

in
s
ta
b
ili
ty

interface is absent

interface is 0.1

interface is 0.3

liquid cluster

Fig. 1. Dependence of the cluster instability, 1–π, on the 

probability p1 for the cases: (a) particles at the liquid-cluster 

interface are missing; (b) share of atoms at the interface 

represents 1/10 of their total; corresponding share of atoms at 

the interface represents 3/10, i.e. p2=p3=0.15 (c), p2=0.1, p3=0.2 

(d) and p2=0.2, p3=0.1 (e). A total number of 100 agents in a 

similar ABM model is considered.  
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maximum instability in the region of smaller values for p1. In other words, the 

nucleus formation is indeed a random event with a chance largely determined by 

the nucleation work which increases with the subnuclei size [7], and thus a decline 

in share of atoms, p1 in such a cluster, namely a decline in the critical nucleus size, 

would be followed by the appearance of a crossover point to the supernuclei at the 

lower value of the energy spent on the cluster formation. Curves (d) and (e) in this 

figure also show that a greater flow from liquid phase (p2>p3) or from cluster 

(p2<p3) causes a minor increase in the instability of the related branches, but for 

p2+p3=const the value of maximum π remains constant too.  

 

3  Conclusions 
 

We have proposed a stochastic cluster-based model for crystal nucleation. It is 

generally known that first-order phase transitions occur by nucleation mechanism, 

and both the nucleus, a cluster of molecules or atoms, and the nucleation work, a 

energy barrier to the phase transition, are basic thermodynamic quantities in the 

theory of nucleation. However, the critical nucleus formation is statistically a 

random event with a probability largely determined by the nucleation work. It was 

shown that while the number of particles at the liquid-cluster interface increases, 

the stability of the entire system decreases simultaneously, and the nucleus 

formation would be definetely enhanced due to the displacement of the bifurcation 

point in the region of smaller clusters. Finally, we have shown that even relatively 

simple stochastic models can describe precisely the results of agent-based 

computational models.  
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A New Method for Dynamic Panel Data Models with Random Effects   

by 

Savas Papadopoulos 

Democritus University of Thrace 

Abstract 

 A simple‐open‐form estimator is introduced for the dynamic coefficient and it can be applied 
to levels.  In a dynamic model without additional regressors, a lag of order three is included 
which handles the random effects. It is shown via simulations that the difference between the 
two OLS coefficient estimators of order‐one and order‐three lags estimates consistently the 
dynamic coefficient. In a model with other regressors, a method is suggested which estimates 
all the coefficients individually using restricted least squares (RLS). After estimating all the 
coefficients of the static regressors, the dynamic coefficient can be estimated by restricting 
the coefficients of the regressors to their estimated values by the suggested method (RLS) or 
by another method, e.g., transformed MLE (TMLE) or GMM. The RLS method can be applied 
when the sample size N is relatively small to the number of periods T and when the methods 
TMLE and GMM cannot be applied. In an application, it is shown that the RLS method 
provides smaller RMSE’s than TMLE and GMM. Simulations compare RLS with TMLE and 
GMM. In general, RLS performs better than GMM. TMLE gives better results than GMM and 
RLS in some cases but indicates convergence problems when N and T are small.     

Keywords: Restricted regression, transformed maximum likelihood, Arellano‐Bond Estimator. 

 

1. Introduction 

 In a regression model of panel data, we may include a lagged dependent variable as a 
regressor to explain dynamic economic phenomena. The appearance of a lagged dependent 
variable may be also used as a proxy variable for unobserved explanatory variables. In almost 
all economic environments, latent variables appear, e.g., quality of life, government politics, 
business confidence, operational risk, morale, customer satisfaction, consumer behavior, 
product quality, conservatism, management, marketing, etc. As a proved result in 
econometrics, the omission of such variables creates severe bias to their estimated 
coefficients, when these variables are considered as main explanatory factors. Therefore, a 
dynamic model would mitigate the bias of the exogenous variables included in the model. On 
the other hand, the exclusion of latent variables in the model would create bias in the 
dynamic term too. Thus, the dynamic panel data models could be applied in almost all 
applications with panel data, if not in all.  
 
Probably, the most important issue in panel‐data models is the individual effects. Most of the 
methods use first differences which theoretically wipe out those effects. Economically 
thinking, it makes also sense for the first differences to have individual effects to the same 
degree as it does for the levels. In most studies, applied researchers do not check if there are 
effects after taking the differences based on their theoretical elimination that could be an 
illusion. The application with financial ratios that we illustrate in this paper is an example with 
random effects on a model with first differences in the model. Differences of some order 
could be taken in order to deduct trend and to accomplish stationarity, and not only to 
remove effects. On the other hand, trend and nonstationarity could be treated by other 
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methods, e.g., partialing out the time variable. In this paper, the following classical dynamic 
model is considered and is estimated by analyzing levels and not differences,  
(1)

                   , , 1 , , ,  1,2, , ;  1,2, , .i t i i t i t i ty a y e i N t Tβ γ− ′= + + + = =x … …  

The most popular methods consider Model (1) and then take the differences to wipe out the 
effects 
(2)        

           
, , 1 , , .i t i t i t i ty y eβ γ− ′∆ = ∆ +∆ +∆x  

Then, in model (2), we have to deal with correlation in the errors and correlation between the 
errors, ,i te∆ , and , 1i ty −∆ . The most popular methods use GMM, e.g., Arellano Bond (1991), or 

maximum likelihood that takes into account the difference structure (transformed maximum 
likelihood, TMLE, see, Hsiao, Pesaran and Tahmiscioglu (2002)). 
 
In this paper we introduce a new technique to estimate consistently the coefficient of the 
dynamic term, β , by just fitting the following restricted regression, 

(3)                    , 1 , 1 3 , 3 , ,ˆ ,  1,2, , ;  1,2, , .i t i t i t i t i ty y y e i N t Tτ τ γ− − ′= + + + = =x … …
 

In (3) the vector parameter, γ , can be estimated by a new method introduced in Section 3 or 

by other methods, e.g., GMM, TMLE, etc. It turns out that, 1 3ˆ ˆτ τ− , estimates consistently the 

coefficient of the dynamic term, β , by restricted least squares (RLS), restricted the vector 
parameter, γ , to its estimate from another step of our methodology or from another method.  
 
In the next Section a detailed literature review is presented for panel data. In Section 3, we 
present the general notation of our model with its assumptions and an open form of the 
estimator. We also explain the estimation process and we give special cases as examples for 
an easier understanding. Results from a simulation study are presented in Section 4, which 
support our method against the existing methods. An application, considered in Section 5, 
also supports our method since we apply out‐of‐sample prediction to several methods and 
our method gives the smaller mean‐square‐prediction error.    
  

2. Literature Review for Panel Data 
 
 Extensive studies in panel data started almost fifty years ago. Zellner (1962) proved that in 
seemingly unrelated regression we gain more efficiency if we analyze all the equations 
simultaneously and not each equation individually. Balestra and Nerlove (1966) estimated a 
dynamic model and they noted bias for the pooled OLS and the LSDV estimator, assuming a 
first‐order time series structure for the errors. Parks (1967) for a system of regression 
equations with correlated error showed asymptotic robustness for the Aitken estimator. 
Wallace and Hussain (1969) for a two‐way‐random‐effect model showed asymptotic 
equivalence between covariance estimators and the Aitken estimator considered by Zellner 
(1962). Nerlove (1967) considered numerically and more carefully the bias of the dynamic 
modes with no effects. Thereof, Nerlove (1971) proposed a two‐stage estimator for a two‐
way‐random‐effect model. In the numerical results of Nerlove (1967), it is shown that the bias 
increases as the error correlation increases. Later, Maddala (1971) considered MLE as an 
estimation technique for dynamic panel data model with error components and noticed bias.   

For the two‐way‐random‐effect model, estimates were proposed for the variances of the 
components by Amemiya (1971). Swamy and Arora (1972) developed a new estimator for the 
covariance matrix of the errors and introduced a modified Aitken estimator. Fuller and 
Battese (1973) suggested transformations that make the errors uncorrelated with constant 
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variances, but such transformations produce bias to the estimates. Fuller and Battese (1974) 
constructed a new estimation method for the one‐way and the two‐way random effects 
model. Their model allows constant variables over cross section or time. Avery (1977) 
extended the seeming unrelated regression model, considered by Zellner (1962), with error 
components. The estimator of the latter model was proved by Baltagi (1980) to be 
asymptotically inefficient and an efficient estimator was introduced by Baltagi (1980) based 
on Amemiya’s (1971) work. Baltagi (1981a) for a non‐dynamic two‐way‐error‐component 
model examined the performance of several tests and estimators. Baltagi (1981b) considered 
simultaneous equations with error components showing that the full information estimator is 
more efficient than other standard alternative estimators.   

The bias in dynamic panel data models with fixed effects was expressed analytically by Nickell 
(1981) in the simple case with no exogenous variables. Consistent instrumental variable 
estimators at differences are suggested by Anderson and Hsiao (1981). The analysis of 
differences aimed to the elimination of individual effects. Hausman and Taylor (1981) studied 
the instrumental‐variable estimator when the individual effects are correlated with some 
exogenous variables. Various estimates were considered and compared under different 
assumptions by Anderson and Hsiao (1982). Linear and non‐linear multivariate model with 
error components via maximum likelihood were considered by Magnus (1982). For 
applications of a non‐linear multivariate model, see Sickles (1985), and linear multivariate 
model, see Sickles and Taubman (1986). Estimation for a linear system of simultaneous 
equations by instrumental variables was considered by Amemiya and MaCurdy (1986). 
Autoregressive models of high order for the endogenous and the exogenous variables were 
considered by Holtz‐Eakin, Newey and Rosen (1988), taking the differences and using 
instrumental variables. The estimators by Hausman and Taylor (1981) and Amemiya and 
MaCurdy (1986) were compared and discussed by Breusch, Mizon and Schmidt (1989). A new 
estimation method for a two‐way‐error‐component model is proposed by Wansbeek and 
Kapteyn (1989) for unbalanced data. For unbalanced data, the ANOVA, MLE, and MIVQUE 
estimators are compared by Baltagi and Chang (1994) and Baltagi, Song and Jung (2002).           

Generalized method of moments (GMM) was used to estimate dynamic panel data by 
Arellano and Bond (1991). The elimination of the individual effects is done by taking the 
differences or orthogonal deviations.  The efficiency for dynamic panel data under GMM can 
be improved by adding linear and nonlinear moment conditions, see Ahn and Schmidt (1995) 
and their method is supported by Wansbeek and Bekker (1996). Arellano and Bover (1995) 
suggested a method, with predetermined variables, for efficient IV estimators for a model 
with random effects. Later, Blundell and Bond (1998), suggested conditions and restrictions 
that improve the performance of the first‐difference GMM estimator, and their work was 
further investigated by Hahn (1999). An alternative estimator, derived on a two‐stage‐least‐
square process, was also suggested by Keane and Runkle (1992) when the instruments are 
predetermined but not strictly exogenous. For more detailed discussions on all these 
methodologies see Arellano (2003). Bayesian estimation method is used by Hsiao and 
Tahmiscioglu (1997) and Tahmiscioglu (2001) on financial constraints and investment. A new 
estimator for nonstationary panel data is proposed by Phillps and Moon (1999). Because the 
LSDV estimator provides more efficiency than the GMM estimator, Kiviet (1995) proposes bias 
correction for LSDV and this problem was further examined by MacKinnon and Smith (1998), 
Hahn and Kuersteiner (2002), and Bun and Carree (2005). Also, Pesaran and Smith (1995) 
proved, for dynamic models with different coefficients over groups, that while the pooled and 
aggregated estimators are inconsistent, the cross‐section estimator is consistent. Assuming T 
and N going to infinity, Hahn and Kuersteiner (2002) for fixed effects, and Alvarez and 
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Arellano (2003) for random effects, considered asymptotically bias corrected OLS, and GMM 
and LIML, respectively. In the latter paper, it is shown that, for fixed T and N going to infinity, 
GMM and LIML are consistent and asymptotically equivalent. Hsiao, Pesaran and Tahmiscioglu 
(2002) showed numerically that an MLE estimator, based on a transformed likelihood for 
dynamic panel data, has less bias than GMM and IV estimators. Their estimation method is 
used in our simulation and their results are also verified by our numerical results. For panel‐
data models with multifactor error structure, Pesaran (2006) considered common correlated 
effects estimators that give satisfactory results for small samples. 

The last years the panel data models have been considered with spatial correlation in the 
errors, e.g., Batlagi (2006) and Kapoor, Kelejian, and Prucha (2007). On the choice of 
estimating discrete‐dynamic‐panel‐data models, see Carro (2007). A comparison of standard 
errors in panel data was done by Petersen (2009) in financial data. And, many other studies 
have been conducted on panel data the last fifty years. We just pointed out some of them 
that had some specific impact on the area of panel data and especially on dynamic models. 
Definitely, there are still many other remarkable papers not mentioned in this paper, but it is 
not feasible to mention all of them. For further reference on panel data see Baltagi (2008), 
Hsiao (2003), Nerlove (2002) and Wooldridge (2002). 

This paper aims to contribute to the area of dynamic panel data a novel estimation method, 
based on restricted regression, applicable to cases in which the existing methods cannot be 
applied, when T and N are both small.  

 

 
3. Model and Estimation Procedure  
We assume the following panel‐data model with K dynamic equations with random effects. 

(4)                        
1

( ) ( ) ( ) ( ) ( , ) ( ) ( )
, 1 , 1 , ,

1
,   1, 2, ,

k
k k k k k m m k

i t i i t i t i t
m

x x x e k Kα β γ
−

−
=

= + + + =∑ …  

The k‐th random variable is regressed on its first lag and on all or some of the variables ( )
,
m

i tx , 

1, 2, , 1.m K= −…  The model recognizes only one‐way direction effects, as all the standard 
regression models and not as a system of simultaneous equations do, which include two‐way 
direction effects. That is, for k>m the m‐th variable ( )

,
m

i tx may affect the k‐th variable ( )
,
k

i tx  but 

not vice versa. The individual effects ( )k
iα  are assumed to be random. The errors ( )

,
k

i te  are 

assumed to be independent over i, t and k.   
 
We propose the following novel estimator for Model (4). Let us define 

(5)               

( )
1,0

( )
0

( )
,0

k

k

k
I

 
 

=  
 
 

x
x

x
# , 

( )
,4

( )
,0

( )
,

k
i

k
i

k
i T

x

x

 
 

=  
 
 

x # , for 1, 2, ,i I= …  

(6)               
( ) ( ) ( )

1 3
k k k

− − =  x x x , 

( )
1, 1

( )
1

( )
, 1

k

k

k
I

−

−

−

 
 

=  
 
 

x
x

x
#  , 

( )
1, 3

( )
3

( )
, 3

k

k

k
I

−

−

−

 
 

=  
 
 

x
x

x
# , 
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( )
,3

( )
, 1

( )
, 1

k
i

k
i

k
i T

x

x
−

−

 
 

=  
 
 

x # , 

( )
,1

( )
, 3

( )
, 3

k
i

k
i

k
i T

x

x
−

−

 
 

=  
 
 

x #

 

for k ≥ 1

                                                         

 

(7)                ( ) 1
( ) ( ) ( ) ( ) ( )

0
ˆ k k k k kθ

−
′ ′= x x x x ,      for k ≥ 1        

  

(8)               
( ) ( ) ( ) ( )

0
ˆˆ k k k kθ= −e x x ,     for k ≥ 1 

 

(9)               

(1)

( , ) ( )

( ) ( 1) ( 1)
0 0

ˆ ,                                     1,  =0                             
ˆ ,                                    2, 1,                      
ˆ ,  3,  2, 3,

k m m

m m k

k m
k m k

k m k k+ −

=
= ≥ = −

  ≥ = − − 

e
y q

q x x" , 2,1 





 …

,          

(10)            
( ) 1

( , ) ( , ) ( , ) ( , ) ( )
0̂ ˆk m k m k m k m kλ

−
′ ′= y y y e ,   for 2 and 1, 2, , 2,1 k m k k≥ = − − …  

(11)             ( , )
1 ( 1 ) 1 1

k m
k m k m− − × − − =  R 0 I , for 2,  2, 3, , 2,1 k m k k≥ = − − …         

(12)   

( ) ( )
( , 1)
0

11 1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , 1
0 1 1 1

ˆ ,  for 2, 1                                                                                        

ˆ ˆ ˆ

k k

k m k m k m k m k m k m k m k m k m k m

k m kλ

λ λ λ

−

−− −
+

≥ = −

 = ′ ′ ′ ′+   
y y R R y y R ( )) ( , ) ( , )

1 0̂ ,

  for 2, 2, 3, ,2,1 

k m k m

k m k k

λ




 −

 ≥ = − −

R

…
 

(13)             
( )
( )

( ) ( )
1 3( )

( ) ( ) (1) ( 1)
1 3 0 0

,                             for 1

,  for 2

k k

k

k k k

k

k

− −

−
− −

 == 
≥

x x
z

x x x x"
,                

(14)            
( ) 1

( ) ( ) ( ) ( ) ( )
0 0ˆ k k k k kτ

−
′ ′= z z z x ,  for 1k ≥  

(15)           ( )
2 ( 1) 1 ( 1) 1 1
k

k k k− × − × − =  R 0 0 I ,     for k ≥ 2,       

 

 

(16)  ( ) ( ) ( )

( )
0

( ) 11 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ,1) ( ) ( )
0 2 2 2 2 0

ˆ ,                                                                                                for 1
ˆ

ˆˆ ˆ ,  for 2

k

k
k k k k k k k k k k k

k

k

τ
τ

τ λ τ
−− −

 =
=   ′ ′ ′ ′+ − ≥  

z z R R z z R R





 

(17) ( ) ( ) ( ) ( )
0ˆ ˆk k k kτ= −q x z ,  for 2k ≥  

Actually, the unknown parameters of Model (4) are estimated by the following 2K‐1+K(K‐1)/2 
regressions: 
(18)        ( ) ( ) ( ) ( ) ( ) ( )

, 1 , 1 3 , 3 , ,       2, ,k k k k k k
i t i t i t i tx x x v k Kθ θ− −= + + = …  

(19)        
1

( ) ( , ) ( ) ( , ) ( ) ( , )
, , , ,

1

ˆˆ ˆ ,  2, , ,  1, 2, , 2,1
k

k k m m k j j k m
i t i t i t i t

j m

v q x w k K m k kλ λ
−

= +

= + + = = − −∑ … …  

(20)        
1

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )
, 1 , 1 3 , 3 , ,

1

ˆ ,       1,2,3, ,
k

k k k k k k m m k
i t i t i t i t i t

m
x x x x q k Kτ τ λ

−

− −
=

= + + + =∑ …
 

 

By the above regressions (18), (19), and (20), we actually estimate the following parameters in 
(4):  

i) by (19) for 1, 2, ,k K= …  and 1, 2, , 2,1m k k= − − … , it is estimated ( , )ˆ k mγ  by ( , )ˆ k mλ and  

ii) by (20) for k=1,3,…,K it is estimated ( )
1̂

kβ  by ( ) ( )
1 3ˆ ˆk kτ τ− .  
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The estimators presented in (5‐17) are computed by regressions (18‐20). Restricted 
regressions are executed in (19) and (20), while unrestricted multiple regressions are run in 
(18). The restrictions are imposed to the estimated parameters, with hat, being estimated by 
previous steps. In (18) we regress only the dynamic part and we also include the extra lag of 
order three. The additional lag of order three encounters the appearance of random effects in 
(4). Based on our simulations, when we use the lag of order three we have small bias while 
when we use the lag of order two the bias is not negligible.   
 
A brief description about the estimation system (18‐20) follows. The method consists of three 
stages executed for each of the k variables included in the model. In the first stage, we 
compute the residuals after regressing each variable on its dynamic term and on its lag of 
order three. In the second stage, we estimate the coefficient of the k‐th variable on the m‐th 
variable by regressing the residuals of the first stage on the residuals of the third stage from 
the previous iteration, k‐1. The regressors also include all the variables with indices between 
m+1 and k‐1 by restricting their coefficients equal to their estimated values from previous 
steps. The third stage estimates the coefficient of the dynamic term. The regressors include 
the regressors from the first stage plus all the variables with indices less than k‐1, by 
restricting their coefficients equal to their estimated values from the second stage. 
 
Equation (19), for each k, is regressed k‐1 times estimating each time one of the coefficients of 
(4), ( )k

mγ , m=k‐1,k‐2,…,2,1, starting from k‐1, and descending by 1 up to 1. For each k and m we 

regress the residuals from (18), ( )
,ˆ k

i te , on the residuals from (20), ( )
,ˆ m

i tv , and on ( 1)
,
m

i tx + , …, ( 1)
,
k

i tx − , 

by restricted the coefficients of the variables ( 1)
,
m

i tx + , …, ( 1)
,
k

i tx −  equal to the estimates obtained 

by previous executions for smaller k. Also, the residuals ( )
,ˆ m

i tv  have been estimated by previous 

iterations of Equation (20) for smaller k. It turns out that the estimator ( , )ˆ k mλ  estimates 
consistently the coefficient ( , )k mγ   of ( )

,
m

i tx  in (4) based on our simulation studies. The residuals 
( )
,
k

i tv  and ( )
,
m

i tq  are free of dynamics and random effects and ( )
,
m

i tq
 

are also free of the 

variables (1)
,i tx , …, ( 1)

,
k

i tx − . The residuals ( )
,
k

i tv  and ( )
,
m

i tq  have the same units as the variables ( )
,
k

i tx  

and ( )
,
m

i tx  , respectively. Thus, in (19) by regressing ( )
,ˆ k

i tv  on ( )
,ˆ m

i tq , ( 1)
,
m

i tx + , …, and ( 1)
, ,k

i tx −

 
and by 

restricting the coefficients of ( 1)
,
m

i tx + , …, ( 1)
,
k

i tx −  on consistent estimates obtained by previous 

regressions, we estimate the direct effect of ( )
,ˆ m

i tq
 
on ( )

,ˆ k
i tv

 
which is equivalent to the direct 

effect of  ( )
,
m

i tx  on ( )
,
k

i tx , according to structures of equations (4) and (19). If we do not restrict 

the coefficients of ( 1)
,
m

i tx + , …, ( 1)
,
k

i tx −  on consistent estimates then in (19) we will not estimate 

the direct effect of ( )
,ˆ m

i tq
 
on ( )

,ˆ k
i tv

 
since the variables ( 1)

,
m

i tx + , …, ( 1)
,
k

i tx −  also include the variable 
( )
,
m

i tx  as it follows from (4). Note that the variables ( 1)
,
m

i tx + , …, ( 1)
,
k

i tx − include indirect effects of  
( )
,
m

i tx  on ( )
,
k

i tx . By this method, we can estimate the indirect effects in addition to the direct 

effects and therefore the total effects among the variables. Similarly, in Equation (20) we 
execute restricted regression with consistent estimates of ( , )k mγ , m=1,2,…k‐1 from (19). Thus 

we restrict the coefficients of the variables ( )
,
m

i tx , m=1,2,…k‐1 on ( , )ˆ k mλ  and so we obtain the 

desirable direct dynamic effect. Also, Model (4) can be used for predicting all the variables at 
the period t using only the variables from the previous period, t‐1. 
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To explain better the model we illustrate the model and the estimation process for K=4. 
Model (4) in this case is: 

(21)          (4) (4) (4) (4) (4,1) (1) (4,2) (2) (4,3) (3) (4)
, 1 , 1 , , , , ,i t i i t i t i t i t i tx x x x x eα β γ γ γ−= + + + + +   

(22)          (3) (3) (3) (3) (3,1) (1) (3,2) (2) (3)
, 1 , 1 , , , ,i t i i t i t i t i tx x x x eα β γ γ−= + + + +

 

(23)          (2) (2) (2) (2) (2,1) (1) (2)
, 1 , 1 , , ,i t i i t i t i tx x x eα β γ−= + + +                 

 

(24)         (1) (1) (1) (1) (1)
, 1 , 1 , ,i t i i t i tx x eα β −= + +    

 

For the above system (21‐24) the estimation method (18‐20) is written:  

for k=1 

(25)              (1) (1) (1) (1) (1) (1)
, 1 , 1 3 , 3 ,i t i t i t i tx x x qτ τ− −= + +

   
 

for k=2 

(26)             (2) (2) (2) (2) (2) (2)
, 1 , 1 3 , 3 ,i t i t i t i tx x x vθ θ− −= + +  

(27)             (2) (2,1) (1) (2,1)
, , ,ˆ ˆi t i t i tv q wλ= +  

(28)             (2) (2) (2) (2) (2) (2,1) (1) (2)
, 1 , 1 3 , 3 , ,

ˆ
i t i t i t i t i tx x x x qτ τ λ− −= + + +  

for k=3 

(29)             (3) (3) (3) (3) (3) (3)
, 1 , 1 3 , 3 ,i t i t i t i tx x x vθ θ− −= + +  

(30)             (3) (3,2) (2) (3,2)
, , ,ˆ ˆi t i t i tv q wλ= +  

(31)             (3) (3,1) (1) (3,2) (2) (3,1)
, , , ,

ˆˆ ˆi t i t i t i tv q x wλ λ= + +        

(32)             (3) (3) (3) (3) (3) (3,1) (1) (3,2) (2) (3)
, 1 , 1 3 , 3 , , ,

ˆ ˆ
i t i t i t i t i t i tx x x x x qτ τ λ λ− −= + + + +  

and for k=4 

(33)             
(4) (4) (4) (4) (4) (4)
, 1 , 1 3 , 3 ,i t i t i t i tx x x vθ θ− −= + +

 

(34)              
(4) (4,3) (3) (4,3)
, , ,ˆ ˆi t i t i tv q wλ= +

 

(35)              
(4) (4,2) (2) (4,3) (3) (4,2)
, , , ,

ˆˆ ˆi t i t i t i tv q x wλ λ= + +  

(36)              
(4) (4,1) (1) (4,2) (2) (4,3) (3) (4,1)
, , , , ,

ˆ ˆˆ ˆi t i t i t i t i tv q x x wλ λ λ= + + +            

(37)              
(4) (4) (4) (4) (4) (4,1) (1) (4,2) (2) (4,3) (3) (4)
, 1 , 1 3 , 3 , , , ,

ˆ ˆ ˆ
i t i t i t i t i t i t i tx x x x x x qτ τ λ λ λ− −= + + + + +  
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 In Table 1 it is shown how the parameters of the true model in (21‐24) are estimated by the 
fitted regressions (25‐37).

 

Table 1. Estimators for the parameters of model equations (21‐24) by regressions (25‐37).  

 
 

Estimated 
parameter 

Estimator

K=1 (1)
1β

(1) (1)
1 3ˆ ˆτ τ−

 
K=2 

(2,1)γ (2,1)λ̂
(2)

1β
(2) (2)
1 3ˆ ˆτ τ−

 
K=3 

(3,2)γ (3,2)λ̂
(3,1)γ (3,1)λ̂
(3)

1β
(3) (3)
1 3ˆ ˆτ τ−

 
K=4 

(4,3)γ (4,3)λ̂
(4,2)γ (4,2)λ̂
(4,1)γ (4,1)λ̂
(4)

1β
(4) (4)
1 3ˆ ˆτ τ−

 

4. Simulation Results for RLS, TMLE, and GMM 

Data were generated by Model (4) for K=4. The model equations are given analytically in 
Section 3 in Equations (21‐24). In Table 2 results from simulation studies are reported by the 
method of Restricted Least Squares (RLS) described in Section 3, and by two of the existing 
methods, the Transformed Maximum Likelihood Estimator, (TMLE, see, Hsiao, Pesaran, and 
Tahmiscioglu (2002)), and by the Generalized Method of Moments, GMM (see, Arellano and 
Bond (1991)). Other methods such as bias correction methods will be considered in future 
studies but such studies use the GMM estimator to estimate the bias correction. Absolute bias 
and Root Mean Square Error, RMSE, for the dynamic coefficient,  (4)

1β β= , and the regression 

coefficients, (4,1) (4,2) (4,3)γ γ γ γ= = = , from Equation (21) are reported. Note that the 
regression coefficients are not restricted to be the same but they are just given the same true 
values. For simplicity, for the three regression coefficients we report the average absolute bias 
and the average RMSE. To the sample sizes ( , )T N we give the following values (5, 15), (5, 30), 
(5, 50), (10, 35), (10,40), (10, 100), and (100, 10), and for such a case we run the same model 
for true values of ( , )β γ  as (0.1, 0.3), (0.25, 0.25), and (0.4, 0.2). We also used the following 

true values for { }( )
,Var 0.5k

i te =  and { }( )Var =0.2k
iα . The same true values were also used to 

Equations (22‐24). The model was replicated 1,000 times for each case.  

In Table 2, in cases for ( , )T N  equal to  (5, 15),  (10, 35), and (100, 10), in which N is small 
relative to N, the methods TMLE and GMM cannot be applied since  they invert a matrix that 
is not invertible in these cases. Note that “N/A” stands for “Not Applicable”. The method RLS 
not only applies, but also gives satisfactory results. On the best of our knowledge, we do not 
know any other method applicable for dynamic panel data  models with random effects for 
such small  N and T. Obviously this a main advantage of the suggested method RLS. In general 
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the bias of the dynamic coefficient under the GMM method is quite large and the RLS method 
performs much better than the GMM method in terms of the dynamic coefficient. The TMLE 
works better than the RLS method for T=10 but both methods give satisfactory results. For 
T=5 and N=30 the TMLE appears convergence problems in some iterations and the problems 
are more severe when N=20 and N=25. Note that the estimator of the RLS method has an 
open form given in (12) and (16). The TMLE and the GMM methods perform better than the 
RLS method for the regression coefficients, γ, when they can be applied. The RLS method can 
be combined with the TMLE or the GMM method. We can first apply the TMLE or the GMM 
method and then regress Equation (20) by restricted the coefficients ( , )k mλ  to the 
corresponding estimated coefficients by TMLE or GMM. We apply these combined techniques 
to financial data for out‐of‐sample predictions in the next section and they perform very well.         

 

Table 2. Absolute Bias and Root MSE are given for parameters of Model (21) under three estimation methods, RLS, TMLE, and 

GMM for different sample sizes, T, and  N and different sizes for the dynamic coefficient. Note that (4)
1β β=  and that for 

the three γ parameters in (21) we report the average |Bias| and RMSE. (N/A=not applicable).    

Case  |Bias|   RMSE  
T N  RLS TMLE GMM  RLS TMLE GMM 
5 15 β=0.1 .0149 N/A N/A  .2692 N/A N/A 
  γ=0.3 .0177 N/A N/A  .2159 N/A N/A 
  β=0.25 .0230 N/A N/A  .2868 N/A N/A 
  γ=0.25 .0184 N/A N/A  .2122 N/A N/A 
  β=0.40 .0351 N/A N/A  .3104  N/A N/A 
  γ=0.20 .0182 N/A N/A  .2096 N/A N/A 
5 30 β=0.1 .0189 .0510 .1948  .1900 1.502 .2235 
  γ=0.3 .0101 .0077 .0038  .1412 .1995 .1158 
  β=0.25 .0161 .0066 .1401  .1793 .1154 .1708 
  γ=0.25 .0081 .0047 .0048  .1427 .1169 .1149 
  β=0.40 .0221 .0567 .2608  .2002 1.266 .2871 
  γ=0.20 .0112 .0061 .0072  .1400 .1885 .1165 
5 50 β=0.1 .0015 .0016 .0877  .1354 .0841 .1193 
  γ=0.3 .0069 .0035 .0049  .1119 .0901 .0889 
  β=0.25 .0002 .0036 .1296  .1441 .1106 .1585 
  γ=0.25 .0101 .0034 .0051  .1116 .0916 .0897 
  β=0.40 .0023 .0196 .1853  .1529 .1939 .2114 
  γ=0.20 .0118 .0036 .0065  .1112 .0946 .0900 

10 35 β=0.1 .0008 N/A N/A  .0760 N/A N/A 
  γ=0.3 .0071 N/A N/A  .0698 N/A N/A 
  β=0.25 .0005 N/A N/A  .0813 N/A N/A 
  γ=0.25 .0106 N/A N/A  .0692 N/A N/A 
  β=0.40 .0013 N/A N/A   .0861 N/A N/A 
  γ=0.20 .0125 N/A N/A   .0686 N/A N/A 

10 40 β=0.1 .0016 .0007 .0779  .0736 .0479 .0900 
  γ=0.3 .0070 .0015 .0005  .0646 .0589 .0588 
  β=0.25 .0014 .0019 .1042  .0757 .0527 .1146 
  γ=0.25 .0095 .0016 .0038  .0655 .0596 .0603 
  β=0.40 .0019 .0029 .1315  .0814 .0578 .1409 
  γ=0.20 .0112 .0016 .0074  .0651 .0581 .0600 
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5. Application 

Panel data were analyzed for a ten‐year period, (1995‐2004, T=10) for 179 quoted Greek 
companies for which data were available for all ten years. Credit institutions and insurance 
companies were excluded. Non‐consolidated annual data from the balance sheets were used. 
The following variables and model were fitted    

                   5Total Operating Income - Operating Profitln( 2.2 10 )
Assets

EXPOA −= + +
       

 
          

       

5Equityln( 10 )
Liabilities

EQUOL −= + ,        

                  

5Current Assets - Inventoryln( 10 )
Liabilities

LIQOL −= +         
 
 
 
 

The numerator of the ratio in EXPOA  is a result from financial operations and it is a measure 
for the expenses. The numerator of the ratio in LIQOL includes the so‐called quick current 
assets, and it is a measure for liquidity. The denominators of all three ratios in EQUOL, LIQOL  
and EXPOA count for the size of the companies. In the ratios of  EQUOL and LIQOL we divide 
by liabilities and not by assets because the numerators are included in the assets and not in 
the liabilities. The constants added to the ratios make the logarithmic quantities positive.   

 

We fitted a dynamic panel data model with random effects under the RLS method described 
in Section 3, under the methods transformed MLE (TMLE) and GMM (Arellano‐Bond), and 
under the combined methods RLS‐TMLE and RLS‐GMM and the results are shown in Table 3. 
The models were fitted on the first nine years 1995‐2003 and the last year 2004 was used for 
out‐of‐sample predictions. The RMSE’s for the out‐of‐sample predictions are presented in the 
last column of Table 3. We remind that the combined methods RLS‐TMLE and RLS‐GMM first 
apply the TMLE and the GMM methods to differences and then apply the restricted regression 
of Equation (20) to levels to estimate the dynamic coefficient.  

The methods RLS‐TMLE, RLS, and RLS‐GMM provide smaller RMSE’s than the GMM and TMLE 
methods and this is a numerical indication that they provide better estimates for this 

10 100 β=0.1 .0023 .0005 .0358  .0468 .0302 .0474 
  γ=0.3 .0057 .0010 .0009  .0418 .0370 .0370 
  β=0.25 .0035 .0003 .0506  .0494 .0326 .0612 
  γ=0.25 .0087 .0009 .0022  .0417 .0365 .0367 
  β=0.40 .0020 .0014 .0704  .0516 .0360 .0802 
  γ=0.20 .0111 .0013 .0040  .0420 .0361 .0368 

100 10 β=0.1 .0006 N/A N/A  .0392 N/A N/A 
  γ=0.3 .0061 N/A N/A  .0436 N/A N/A 
  β=0.25 .0026 N/A N/A  .0367 N/A N/A 
  γ=0.25 .0091 N/A N/A  .0475 N/A N/A 
  β=0.40 .0045 N/A N/A  .0416  N/A N/A 
  γ=0.20 .0106 N/A N/A  .0411 N/A N/A 
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particular application. By comparing the estimated coefficients of the regressors EQUOL and 
LIQOL under the methods RLS, GMM and TMLE we note that the estimates of RLS are close to 
the middle between the GMM and the TMLE estimates. For instance, the estimates for the 
coefficient of the variable EQUOL under the methods GMM and TMLE are 0.0017 and 0.0021 
and the estimate under RLS is 0.0019, right in the middle. Similarly, the estimates for the 
coefficient of the variable LIQOL under the methods GMM and TMLE are 0.0055 and 0.0043 
and the estimate under RLS is 0.0049, again right in the middle. The estimates of the dynamic 
coefficient for the methods RLS‐TMLE, RLS, RLS‐GMM, GMM and TMLE are 0.3849, 0.3819, 
0.3781, 0.2223, and 0.3734. The coefficients of the dynamic coefficient for RLS‐TMLE, RLS, and 
RLS‐GMM are very close to each other and closer to the corresponding TMLE estimate than to 
the GMM estimate.   

The results of the application indicate that the RLS method itself or combined with TMLE or 
GMM provide more accurate out‐of‐sample predictions and therefore better coefficient 
estimates than the GMM and the TMLE methods in the considered application. In this 
application if we would like to fit the model to the 30 largest companies that would be 
feasible by RLS and not by GMM and TMLE, due to small N relative to T, as we explained 
earlier. 

 

Table 3. Estimates for the years 1995‐2003 and Root Mean Square Errors of predicted values 
for the out of sample year of 2004.  

Method Estimates RMSE 

 

RLS‐TMLE 

, , 1 , ,

, 3

0.38 0.0021 0.0043
                 +0.44 0.058

i t i t i t i t

i t

EXPOA EXPOA EQUOL LIQOL
EXPOA
−

−

= ⋅ + ⋅ + ⋅ +

+ ⋅  

0.0083

 

RLS 

        

, , 1 , ,

, 3

0.38 0.0019 0.0049
                 +0.44 0.058

i t i t i t i t

i t

EXPOA EXPOA EQUOL LIQOL
EXPOA
−

−

= ⋅ + ⋅ + ⋅ +

+ ⋅  

0.0084 

 

RLS‐GMM 

, , 1 , ,

, 3

0.38 0.0017 0.0055
                 +0.44 0.057

i t i t i t i t

i t

EXPOA EXPOA EQUOL LIQOL
EXPOA
−

−

= ⋅ + ⋅ + ⋅ +

+ ⋅  

0.0086 

 

GMM 

      

, , 1 ,0.22 0.0017 0.0055i t i t i tEXPOA EXPOA EQUOL LIQOL−∆ = ⋅∆ + ⋅∆ + ⋅∆
 

0.0088 

 

TMLE 

      

, , 1 ,0.37 0.0021 0.0043i t i t i tEXPOA EXPOA EQUOL LIQOL−∆ = ⋅∆ + ⋅∆ + ⋅∆
 

0.0096
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Abstract: In the present the entrance probabilities and the probability distribution of the 
number of transitions to a state are studied to provide some answers to questions related to 
state occupancies for the semi Markov model. Biological sequences and Web navigation are 
two cases that initially seem to be different but to a certain extend they do have similarities. 
Two main aspects of word occurrences in biological sequences are: (a) where do they occur 
and (b) how many times do they occur. In Web navigation the similar questions are (a) when 
a node is visited and (b) how many times a node is visited. So, the theoretical results of this 
study are applied to model these two cases and derive distributions of word location or node 
occurrence and frequency of occurrences. Rewards/costs are included in the Web navigation 
model and analytic forms for the means, variances and moments of total interval 
rewards/costs are provided.        
Keywords: Semi Markov chains, Entrance probabilities, State occupancies, Biological 
sequences, Words, Web navigation, Rewards/Costs 
 
1  Introduction 
 

In semi Markov processes we are sometimes concerned with the entrance of the 
process into a state rather than with the presence of the process in that state. Also 
because the semi Markov model allows a distinction between the number of time 
units that have passed and the number of transitions that have occurred we have the 
opportunity of asking the probability distribution of the number of transitions to a 
state that occurred through a time interval (Howard (1971)). An overview of 
probabilistic and statistical properties of words, as occurrences in biological 
sequences is provided in Reinert et al (2000). Studies of biological sequences using 
semi Markov models can be found in Chryssaphinou et al (2008), Barbu & 
Limnios (2008). Some cases of Markov and semi Markov reward models are 
examined in McClean (2004,2008), Papadopoulou (2001,2004). In this paper new 
sequences of matrices referring to probabilities of the semi Markov model are 
studied and an extension of the sequences given in Papadopoulou (1998, 2007) is 
given for two reasons: First, to provide some answers to questions referring to state 
occupancies i.e. when and how many times does a state appear and second to apply 
these results in order to answer the equivalent questions concerning biological 
sequences and web navigation. In Section 2, the entrance probabilities concerned 
with the number of transitions are defined and a closed analytic form in relation 
with the basic parameters is provided. Some asymptotic results are derived. Then, 
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the probability distribution of the number of transitions to a specific state through a 
time interval is defined and a study of the basic recursive equation applying 
geometric transforms is provided. In Sections 3 and 4 definitions and results of 
Section 2 are applied in biological sequences and web navigation. Finally, in 
Section 4 rewards/costs are included in the model and analytic forms for the 
means, variances and moments of the total interval rewards/costs produced by 
navigation, through a time interval, are provided.        
    
2  The Semi Markov Model 
 

In semi Markov processes we are sometimes concerned with the entrance of the 
process into a state rather than with the presence of the process in that state. Also 
because the semi Markov model allows a distinction between the number of time 
units that have passed and the number of transitions that have occurred we have the 
opportunity of asking the probability distribution of the number of transitions that 
occurred in a specific time interval. So, let us now consider a semi Markov chain 
with finite state space S={1,2,…,N}, { } Sjiij sps

∈
= ,)()(P  the transition probability 

matrix of the imbedded Markov chain and { } Sjiij mhm
∈

= ,)()(H  the holding time 

mass function matrix for the semi Markov chain. Let also 
( )snk ,/E Sjiij snke ∈= ,)},/({  be the matrix where ),/( snkeij  is the probability that 

the process which entered state i at time s will enter state j at time s+n on its k-th 
transition concerning the interval (s,s+n]. Using probabilistic argument we can 
derive the following equation 

( ) =snk ,/E ∑
=

+−−+
n

m
msmnkmsnk

1
),/1(),()()( ECIδδ                (1)  

where )()(),( msms HPC ◊=  is the Hadamard product of the matrices P(s), H(m) 
and 1)( =nδ  if n=0 or else 0)( =nδ . If we follow a similar methodology with that 
of Papadopoulou (1998) we can provide a closed analytic form, in relation with the 
basic parameters, for the matrix ( )snk ,/E  given below 

IE )(),/0( nsn δ= , ),(),/1( nssn CE = , ∑
=

−+=
n

m
mnmsmssn

1
),(),(),/2( CCE , 

=),/( snkE )1,1(),,2( 2
2

+−−+− −
=
∑ jnjsmsk kj
n

j
CS ),,1( 11 −+ −= kn mskS ,  

for every 3≥k ,                    (2) 
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kj
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kj
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−
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−

−=

−−+⋅⋅⋅= ∑ ∑ ∑ ∏ 1
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1
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for 2+≥ kj , while for 2+< kj , ( ) 0,, =kj mskS .   
Asymptotically and if we consider that the imbedded Markov chain converges as 

∞→s , i.e. PP =∞→ )(lim ss  and take geometric transforms over k and n in equation 

(1) we finally get that E ( ) =zygg / 1))(( −−Ι zy gC .                 (3) 
Another interesting question is the one that refers to the number of transitions to a 
state during a time interval. Thus, if we define the matrix 
VS ( )snx ,/ Sjiij snxvs ∈= ,)},/({ , where ),/( snxvsij  is the probability that the number 
of transitions during the interval (s,s+n] to state j equals x given that the process 
entered state i at time s,  then we can derive the following results 
Case 1 In that case when i=j we shall not count the initial occupancy at time s in 
computing the number of visits to state j. If we define as ),( snW> Sii snw ∈

>= )},({ , 

and ),( snwi
> = ∑ ∑

∞

+= =1 1
)()(

nm
ij

N

j
ij mhsp  we can derive equation (4) below      

VS ( ) =snx ,/ >)(xδ W ( )sn, U+ ∑
=

n

m
ms

0
),(C [VS ( )msmnx +−− ,/1 ◊I] 

   ∑
=

+
n

m
ms

0
),(C [VS ( )msmnx +− ,/ ◊(U-I)]                  (4) 

where U is the matrix with all elements equal to 1. Asymptotically and if we 
consider that the imbedded Markov chain converges as ∞→s , i.e. PP =∞→ )(lim ss  
and take geometric transforms over x and n in equation (4) we have  
VS ( )zygg / >= W ( )zg U )()1( zy gC−+ [VS ( )zygg / ◊I]+ )(zgC VS ( )zygg / .  (5) 
Equation (5) is of the form A=C1+C2[A◊I]. We can use the property 
[C[A◊I]]◊I=[C◊I][A◊I] (Howard 1971) to replace the term [VS ( )zygg / ◊I] and 

then solve to find VS ( )zygg / . If we apply some more properties of the core 
matrix (Howard 1971) we can get the solution of equation (5) as follows   

VS ( )zygg / =
z−1

1 U- 
z
y

−
−

1
1 1)]([ −− zgCI )(zgC [ ] 11 ])]()[[1(

−− ◊−−+ ICII zyy g .  

                     (6)            
Case 2. In that case when i=j we shall count the initial occupancy at time s in 
computing the number of visits to state j. Then we have  

VS ( ) =snx ,/ [U-I)]◊[ >)(xδ W ( )sn, U ∑
=

+
n

m
ms

0
),(C [VS ( )msmnx +−− ,/1 ◊I]+ 
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∑
=

+
n

m
ms

0
),(C [VS ( )msmnx +− ,/ ◊(U-I)]]+ >− )()1( nx δδ W ( )sn, +  

+I◊[ ∑
=

n

m
ms

0
),(C [VS ( )msmnx +−− ,/1 ◊(U-I)]].                  (7)    

Asymptotically and if we consider that the imbedded Markov chain converges as 
∞→s , ( PP =∞→ )(lim ss ) and take geometric transforms over x and n  in (7) we get 

VS ( )zygg / = 1)]([ −− zgCI >[ W ( )[ ] ]yzg +− IU )1( −+ y 1)]([ −− zgCI  

[[C ( )zg VS ( ) I◊]/ zygg ] )1( −+ y 1)]([ −− zgCI ( )])([ IUC −◊zg [VS ( ) ]/ I◊zygg  
                       (8)     

Equation (8) is of the form A=C1+C2[[C3A]◊I]+C4[A◊I]. We can use again the 
property [C[A◊I]]◊I=[C◊I][A◊I] in order to replace at first the term [[C3A]◊I] by 
[Ι-[C3C2]◊I]-1[[C3C1]◊I]+[Ι-[C3C2]◊I]-1[[C3C4]◊I][A◊I] and result to the equation 
A=C1+C2[[Ι-[C3C2]◊I]-1[[C3C1]◊I]+[Ι-[C3C2]◊I]-1[[C3C4]◊I][A◊I]]+C4[A◊I]. We 
can apply once more the same technique, to replace the remaining term [A◊I]. 
Finally, and if we use again properties of the core matrix and equation 
>W ( )zg = 1]1[ −− z ( ) ][ ][ UCI zg◊  we can provide the solution of (8) below 
A=C1+C2[Ι-[C3C2]◊I]-1[[C3C1]◊I]+[C2[Ι-[C3C2]◊I]-1[[C3C4]◊I]+C4][Ι-[[C2◊I] 
[Ι-[C3C2]◊I]-1[[C3C4]◊I]+[C4◊I]]]-1[[C1◊I]+[C2◊I][Ι-[C3C2]◊I]-1[[C3C1]◊I]],     (9) 
where  C1= 11 )]([[]1[ −− −−− zz gCIU ( ) ]]][[ UCI zg◊ 1)]([ −−+ zy gCI , 

 C2= )1( −y 1)]([ −− zgCI , C3= )(zgC , C4= )1( −y 1)]([ −− zgCI ( ) [ ]][ IUC −◊zg .  
Remark In the above we had to deal with two equations of the following form 
A=C1+ C2[A◊I],  A=C1+C2[[C3A]◊I]+ C4[A◊I]. So, it is interesting to provide the 
general type for equations of this form and the basic steps of the applied technique 
in order to find the solution. The form is as follows  

A=C0+ 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
◊
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∏∑
−

==

IABC
1

01

k

i
i

n

k
k ,  Β0=Ι.                             (10) 

Step 1: We construct the term 
⎥
⎥
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⎢
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◊
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
∏
−

=

IAB
1

0

n

i
i using equation (10) and the property 

[C[A◊I]]◊I=[C◊I][A◊I] and then find it in relation with the rest of the terms i.e. 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
◊
⎥
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⎤
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−

=

IAB
1

0

k

i
i , k=1,2,…,n-1. We replace the result in equation (10) and reduce it 
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 to A= 1
0C +

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
◊
⎥
⎥

⎦

⎤
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Step x (x=2,…,n-1) We construct the term 
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procedure as in Step 1 and result to the equation  
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Step n The result from Step n-1 is the equation A= 1
0
−nC + [ ]IAC ◊−1

1
n . If we follow 

once more similar procedure as in Step 1 we will result to the solution A= n
0C .                                

 
3  Modeling a biological Sequence 
 

In what follows, the above definitions and results will be applied in biological 
sequences. In the present, a biological sequence is either a DNA or a protein 
sequence i.e. a sequence of letters either in the 4-letter DNA alphabet {A, C, G, T} 
or the 20-letter amino acid alphabet. To model such a sequence we will consider 
the semi Markov chain with discrete finite state space S={w1,w2,…,wN} where wi, 
i=1,2,…,N  is a specific word i.e. a combination of letters taken from the alphabet 
with known length (li). Through out the present we will consider only finite words 
and non–overlapping occurrences of them. Two main aspects of word occurrences 
in biological sequences are: (a) where do they occur and (b) how many times do 
they occur. To provide some answers, we will use the previously defined semi 
Markov model to derive distributions of word location and frequency of 
occurrences. Let us define as P(s) the transition probability matrix with elements 
equal to the probabilities of transition between the words i.e. pij(s)=P[next 
occurrence is of word wj given that the previous occurrence was of the word wi at 
position s]. Let us now assume that the letters that appear between successive 
words correspond to the holding times of the semi Markov chain. Thus, if the 
previous word occurred is wi at position s, the next one is wj  and the number of 
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letters in between is m then the holding time in state wi is m while the position of wj 
is at s+m+li where li is the length of wi. Then, if we define as ),,/( iij lsnke =P[the 
word wj will occur at s+n+li position and k word occurrences will happen during 
the interval (s,s+n+li] given that the word wi occurred at position s], we can derive 
the following recursive equation        

),,/( iij lsnke = )()( kln iij δδδ + + ),,/1()()(
1 0

kikkj
N

k
ik

n

m
ik llmslmnkemhsp ++−−−∑∑

= =

 (13) 

with initial conditions ijiiij lsle δ=− ),,/0( , 0),,1/( =− iiij lslke , 0),,2/( =− iiij lslke , 

… , 0),,1/( =− iij lske , 0),,0/( =iij lske , where hi,j(·) is the conditional probability 
function of the number of letters that appear after the occurrence of wi, given that 
the next occurrence is that of  the word wj. If we take geometric transforms over k 
in relation (13) and replace the transform variable with 1 we obtain interesting 
results concerning the probabilities of the word occurrence at specific position, i.e. 
probabilities concerned only with position and not with both position and number 
of word occurrences. Similarly, we can get recursive equations for related 
probabilities such as probabilities of the first occurrence of a word concerned with 
position or number of word occurrences or both. Finally, if we define vsi,j(x/n,s,li) 
to be the probability that the number of occurrences of wj, during (s,s+n+li] equals 
x given that the word wi occurred at position s, and li is the length of wi,, we have  

),,/( iij lsnxvs = ),()( snwx i
>δ + ),,/1(),(

0
jijjj

n

m
ij llmslmnxvsmsc ++−−−∑

=

+ 

      +∑∑
≠ =

++−−
jk

kikkj

n

m
ik llmslmnxvsmsc ),,/(),(

0
.              (14) 

 
4  Modeling Web navigation 
 

As in section 3 if we apply definitions and results of section 2 we can model Web 
navigation as a semi Markov chain. The state space S={1,2,…,N} of the chain  
represents the nodes that a web user possibly visits at some time. The matrix )(sP  
defines transition probabilities between the nodes and the matrix )(mH  defines the 
probabilities of the holding times to the nodes. Two main aspects referring to nodes 
in Web navigation are (a) when a node is visited and (b) how many times a node is 
visited. Let Sjiij snkesnk ∈= ,)},/({),/(E  be the matrix where ),/( snkeij  is the 
probability that the user which entered node i at time s will enter node j at time s+n 
on its k-th transition concerning the interval (s,s+n]. Also let 
VS ( )snx ,/ Sjiij snxvs ∈= ,)},/({  be the matrix where ),/( snxvsij  is the probability 
that the number of visits to node j, during the interval (s,s+n], equals x given that 
the user entered node i at time s. Equations (2), (3) and (4), (6), (7), (9) provide 
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some answers for the distribution of node occurrences and frequency of visits to a 
node at any time and for the steady state. Another interesting issue arises if we 
include rewards/costs of making a transition from one node to another or holding  
to the same node for some time. So, let us define as ijk  the reward/cost for making 

a transition from node i to j and ic  the reward/cost for occupying node i during a 
time interval of length 1. In what follows, we provide analytic forms for the means 
variances and moments of the total interval cost. If we define the vector ),( ntv  of 
the expected costs produced by a users navigation  through the interval (t,n] as 
follows =),( ntv ( ){ }ii ntv , , ( ) =ntvi , [the expected cost produced until time n, 
given that navigation started from node i at time t], it can be proved that 

+−+−◊′−= )()())((),( 1 tntntnnt 1bc1Gv

)]1()1())1([()]1()1([ 1
2
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and 

Sjiij nen ∈= ,)}({)(E , is the matrix of the entrance probabilities (Papadopoulou 

(2007)). Similarly, if we define as )(mxCK  the matrix =)(mxCK  

Sji
x

iji kmc ∈+= .}){( , for x=1,2,… and U0CK =)(m , )(nxc  the vector 

Si
xx

i ncn ∈= }{)(xc , for x=1,2,…, ),( ntxv  the vector Si
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),( ntvx
i  is equal to the x-th moment of cost produced until time n, given that 

navigation started from node i at time t, for  x=2,3,…, ),( ntxv  the vector 

Si
x

i ntvnt ∈= })],({[),(xv , for x=2,3,…, while for x=0,1 ),( ntxv  is defined to be 
Iv0 =),( nt  and ),(),( ntnt vv1 = , )(nxb  the vector 
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for x=1,2,… , it can be proved that the vector of the r-th moments of the cost 
through the interval (t,n] is equal to 

=),( ntrv +−◊− )()')(( tntn rc1G  
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Finally, if we define the vector of the variances of the cost as follows 
=),( ntvar ( ){ }ii nt,var , ( ) =nti ,var [the variance of the cost for (t,n] given that 

navigation started from node i at time t] applying the previous results we can get  
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Direct vs. indirect sequential Monte-Carlo

filters
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yohan.petetin@telecom-sudparis.eu, francois.desbouvries@it-sudparis.eu

Abstract. We address the recursive computation of the a posteriori filtering pdf
p

n|n in a Hidden Markov Chain (HMC). Classically p
n|n is computed via the recur-

sion p
n−1|n−1 → p

n|n−1 → p
n|n. In this paper we explore direct, prediction-based

(P-based) and smoothing-based (S-based) alternative loops for propagating p
n|n.

We next address sequential Monte Carlo (SMC) implementations of these filtering
paths, and compare our algorithms via simulations.
Keywords: Sequential Monte Carlo, Particle filtering, Sampling Importance Re-
sampling.

1 Introduction

Let (x,y) be an HMC : p(x0:n,y0:n) = p(x0)
∏n

i=1 p(xi|xi−1)
∏n

i=0 p(yi|xi).
Let pn|m be a shorthand notation for p(xn|y0:m). Bayesian filtering consists
in computing pn|n, or at least some approximation of the measure p(dxn|y0:n)
with pdf p(xn|y0:n). pn|n can be computed from pn−1|n−1 by using the path

pn−1|n−1
P
→ pn|n−1

U
→ pn|n, in which we first predict state xn, based on the

same measurements (whence superscript P), and then update the measure-
ments set {yk}

n−1
k=0 with the new data yn (whence superscript U). This path

is described by the well known equation (here N stands for numerator) :

p(xn|y0:n) =

p(yn|xn)

p(xn|y0:n−1)︷ ︸︸ ︷∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

p(yn|y0:n−1) =
∫
Ndxn

. (1)

However, computing (1) is often impossible in practice, so many approximate
techniques have been developed. Among them, particle filters (PF) [5] [1] are
SMC methods which propagate a discrete approximation of p(dxn|y0:n).

In this paper we do not try to further improve the PF algorithms based
on (1); we rather focus on (1) itself, or indeed explore alternate paths for
computing pn|n recursively, even if pn|n is obtained as a byproduct.

Let us consider only those paths in which one time index is incremented
at a time. The first alternative is pn−1|n−1 → pn−1|n → pn|n. Both paths
compute pn|n recursively and differ only by the intermediate step which is
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Fig. 1. The direct, P-based and S-based filtering paths.

either the one step predictive pdf pn|n−1, or the one step smoothing pdf
pn−1|n. Now, in turn pn|n−1 and pn−1|n can be propagated via the two paths
obtained by moving one index and next the other. This observation yields six
paths for computing pn|n recursively; the two paths already mentioned are
”direct”, i.e. pn|n is computed as the output of a loop with input pn−1|n−1;
two other paths are P-based, i.e. pn|n is computed indirectly from pn|n−1,
but the recursion itself now acts on pn|n−1; and two paths are S-based, see
Fig. 1. Out of these 6 paths only 4 are distinct, because the two paths
at the boundary direct/P-based and direct/S-based coincide (for instance,
the direct path pn−1|n−1 → pn|n−1 → pn|n coincides, up to a shift in time,
with the P-based path pn|n−1 → pn|n → pn+1|n). The paper is organized
as follows. We recall the four direct and indirect filtering paths in §2 and
consider their SMC implementations in §3 (see [3] for details). §4 is devoted
to simulations.

2 Direct, P-based and S-based paths

• The direct path pn−1|n−1 → pn|n−1 → pn|n is described by (1). Since it
involves the one-step ahead prediction pdf pn|n−1 we will call it 1-P;

• The alternate direct path pn−1|n−1 → pn−1|n → pn|n involves the one
step backward smoothing pdf pn−1|n and will thus be denoted as 1-S :

p(xn|y0:n) =

∫
p(xn|xn−1,yn) [

p(yn|xn−1)p(xn−1|y0:n−1)

p(yn|y0:n−1) =
∫
Ndxn−1

]

︸ ︷︷ ︸
p(xn−1|y0:n)

dxn−1; (2)

• P-based paths compute pn|n, but via a recursive loop involving pn|n−1.
Path pn|n−1 → pn|n → pn+1|n coincides with 1-P (up to a shift in time).
The other P-based path pn|n−1 → pn+1|n−1 → pn+1|n involves the two-
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Direct vs. indirect SMC filters 3

step ahead prediction pdf pn+1|n−1 and will thus be denoted by 2-P :

p(xn+1|y0:n) =

p(yn|xn+1,y0:n−1)

p(xn+1|y0:n−1)︷ ︸︸ ︷∫
p(xn+1|xn)p(xn|y0:n−1)dxn

p(yn|y0:n−1) =
∫
Ndxn+1

; (3)

• S-based paths compute pn|n, but via a recursive loop involving pn−1|n.
Path pn−1|n → pn|n → pn|n+1 coincides with (2) (up to a shift in time).
The other S-based path pn−1|n → pn−1|n+1 → pn|n+1 involves the two-
step backward smoothing pdf pn−1|n+1 and will be denoted by 2-S :

p(xn|y0:n+1)=

∫
p(xn|xn−1,yn,yn+1)

p(yn+1|xn−1,yn)p(xn−1|y0:n)

p(yn+1|y0:n) =
∫
Ndxn−1︸ ︷︷ ︸

p(xn−1|y0:n+1)

dxn−1.

(4)

3 SMC implementations

3.1 A practical toolbox

Each path (1) to (4) is made of the succession of a propagation step P (which

transforms some pdf p(x1) into p(x1)
P
7→ p(x2) =

∫
p(x2|x1)p(x1)dx1), and

of a Bayesian or updating step U (which transforms some density p(x) into

p(x)
U
7→ p(x|y) ∝ p(y|x)p(x)), or vice versa. Let us recall how we can propa-

gate a set of points sampled from p(x1) (resp. from p(x)) into a set of points
sampled (at least approximatively) from p(x2) (resp. from p(x|y)).

1. Propagating. Starting from N i.i.d. samples {xi
1}

N
i=1 ∼ p(x1), we get N

i.i.d. samples {xi
2}

N
i=1 ∼ p(x2) by sampling, for each i, xi

2 from p(x2|xi
1).

This is nothing but the Sampling step S of PF algorithms;
2. Updating [8]. Starting from {xi}N

i=1 ∼ p(x), we get N points {x̃i}N
i=1 (ap-

proximately) independently sampled from p(x|y) by associating to each
sample xi a weight proportional to p(y|xi), and then sampling {x̃i}N

i=1 ∼
∑N

i=1
p(y|xi)∑

N

i=1
p(y|xi)

δxi(dx). We just described nothing but the Weighting

step W, followed by the Resampling step R of PF algorithms.

3.2 SMC algorithms

We now routinely derive generic SMC implementations of (1) to (4).

1-P. (1) gives the Bootstrap [6] : Let p(dxn−1|y0:n−1) ≈
∑N

i=1
1
N

δ
x

i

n−1
(dxn−1).

S. For 1 ≤ i ≤ N , sample x̃i
n from p(xn|xi

n−1);
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W . For 1 ≤ i ≤ N , compute wi
n ∝ p(yn|x̃i

n),
∑

i wi
n = 1;

R. For 1 ≤ i ≤ N , sample xi
n from

∑N

i=1 wi
nδx̃i

n
(dxn).

1-S. (2) gives [2, Algorithm 8.1.1. p. 253], which is a reordering of the SIR
algorithm with optimal importance distribution p(xn|xn−1,yn) (and sys-
tematic resampling) (see [4], where the successive steps are S → W → R):

Let p(dxn−1|y0:n−1) ≈
∑N

i=1
1
N

δ
x

i

n−1
(dxn−1);

W . For 1 ≤ i ≤ N , compute wi
n ∝ p(yn|x

i
n−1),

∑N

i=1 wi
n = 1;

R. For 1 ≤ i ≤ N , sample x̃i
n−1 ∼

∑N

i=1 wi
nδ

x
i

n−1
(dxn−1);

S. For 1 ≤ i ≤ N , sample xi
n from p(xn|x̃i

n−1,yn).
2-P. Implementing (3) would require the knowledge of p(yn|xn+1,y0:n−1), but

this pdf is not directly available. We thus consider the alternative path
pn|n−1 → pn,n+1|n−1 → pn,n+1|n → pn+1|n, given by

p(xn+1|y0:n) =

∫
p(yn|xn)

p(xn,xn+1|y0:n−1)︷ ︸︸ ︷
[p(xn+1|xn)p(xn|y0:n−1)]

p(yn|y0:n−1) =
∫
Ndxndxn+1

dxn. (5)

Let us implement (5). Let p(dxn|y0:n−1) ≈
∑N

i=1
1
N

δxi
n
(dxn).

S. For 1 ≤ i ≤ N , sample x̃i
n+1 ∼ p(xn+1|xi

n);

W . For 1 ≤ i ≤ N , compute wi
n ∝ p(yn|xi

n),
∑N

i=1 wi
n = 1;

R. For 1 ≤ i ≤ N , sample xi
n+1 from

∑N

i=1 wi
nδ

x̃
i

n+1
(dxn+1).

Filtering. p(dxn|y0:n) ≈
∑N

i=1 wi
nδxi

n
(dxn).

2-S. We now implement (4). Let p(dxn−1|y0:n) ≈
∑N

i=1
1
N

δ
x

i

n−1
(dxn−1).

W . For 1 ≤ i ≤ N , compute wi
n+1 ∝ p(yn+1|x

i
n−1,yn),

∑N

i=1 wi
n+1 = 1;

R. For 1 ≤ i ≤ N , sample from
∑N

i=1 wi
n+1δxi

n−1
(dxn−1). We get N

points x̃i
n−1, (approximately) distributed ∼ p(dxn−1|y0:n+1);

S. For 1 ≤ i ≤ N , sample xi
n ∼ p(xn|x̃

i
n−1,yn,yn+1); then p(dxn|y0:n+1)

≈
∑N

i=1
1
N

δxi
n
(dxn).

Filtering. For 1 ≤ i ≤ N , sample xi
n+1 ∼ p(xn+1|xi

n,yn+1); then

p(dxn+1|y0:n+1) ≈
∑N

i=1
1
N

δ
x

i

n+1
(dxn+1).

4 Simulations

4.1 Simulations, linear model

We first consider the state-space model : xn+1 = 0.2xn+un, yn = 5xn+vn, in
which un ∼ N (0, Q) and vn ∼ N (0, R) are i.i.d., mutually independent and
independent of x0 ∼ N (0.5, 0.5). Even though exact Kalman filtering (KF) is
available, we compare to that benchmark solution the four SMC algorithms
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2-P, 1-P, 1-S, 2-S, and the SIR algorithm with optimal importance function
p(xn|xn−1,yn) (simply denoted SIR). Let J = 1

50

∑50
n=1(

1
200

∑200
j=1(x̂

j

n|n −

xj
n)2)

1
2 (200 is the number of realizations). Let N = 50 and R = 2. As we

see from Table 1 S-based algorithms outperform P-based ones, and for a class
of algorithms (P- or S-based) better results occur when updating precedes
propagation. For Q = 0.1 all algorithms are similar, but the P-based ones
degrade as Q increases, for strong variations of xn are better tracked when
yn (for SIR or 1-S) or yn and yn+1 (for 2-S) are taken into account. Next
in Fig. 2 Q = 0.1 and J evolves with N . The ordering of the algorithms is
maintained, but when N increases SIR, 1-S, 2-S and KF become very close.

2-P 1-P SIR 1-S 2-S KF

Q = 0.1 0.221996933 0.217401933 0.215515333 0.2136542 0.213415733 0.2116127

Q = 1 0.4304519 0.2955335 0.2745811 0.2724687 0.2723657 0.2696133

Q = 3 0.8114436 0.3258072 0.2827361 0.2801141 0.2773301 0.2766857

Q = 5 1.0114103 0.3932067 0.2856878 0.2840456 0.2834111 0.2810438

Q = 10 1.5200521 0.4607805 0.2870748 0.2853349 0.2848457 0.2822257

Table 1. Empirical standard deviation J , linear model.
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Fig. 2. Empirical standard deviation J , linear model.

4.2 Simulations, Kitagawa model

Let us now consider the model
{

xn+1 = fn(xn) + un

yn = x2
n/20 + vn

, (6)
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6 Petetin Y. et al.

with fn(xn) = 0.5xn+25 xn

1+x2
n

+8 cos(1.2(n+1)), and un ∼ N (0, Q) and vn ∼

N (0, R) are i.i.d., mutually independent and independent of x0 ∼ N (0.5, 0.5).
In (6) p(xn|xn−1, yn) and p(yn|xn−1) cannot be computed exactly. So we use
some approximation (linearization [4], [7], EMM [7] or UPF [9]).

2-P 1-P SIR(EMM) SIR(UPF) 1-S(EMM) 1-S(UPF)

R = 0.5 5.0124197 3.7637961 3.4181757 3.5046666 2.7191797 2.734824

R = 1 4.422289 3.6087193 3.447493 3.6076351 2.8830467 2.9981435

R = 5 4.1079475 3.6386135 3.705746 3.6928957 3.3874559 3.3369996

R = 10 4.4682053 4.0435623 4.020258 4.0743315 3.7412504 3.8619037

R = 20 5.0894144 5.0229244 4.8433825 4.8105053 4.7580243 4.8140369

Table 2. Empirical standard deviation J , Kitagawa model.

2-P 1-P SIR(EMM) SIR(UPF) 1-S(EMM) 1-S(UPF)

N = 50 7.1328 5.5397 5.2445 5.1169 4.7151 4.8542

N = 100 5.9246 4.9741 4.8057 4.9631 4.6840 4.8111

N = 150 5.4544 4.7726 4.8290 4.7241 4.5828 4.5029

N = 200 5.1171 4.6771 4.5407 4.7033 4.6551 4.5327

N = 300 4.9559 4.5545 4.4494 4.4312 4.4449 4.4393

Table 3. Empirical standard deviation J , Kitagawa model.

Let Q = 1, N = 50, and in UPF α = 1 and β = 0. Table 2 displays
J for different values of R. The ordering of the algorithms is maintained;
the difference between SIR and 1-S becomes significant; and for 1-S and
SIR EMM provides better results than UPF. Note that in (6) fn has strong
variations, so the influence of the new data yn is essential. This explains the
difference between P-based algorithms and the SIR and 1-S ones, at least
when R is small. On the other hand if the observations become very noisy
(R = 10) the performance of 2-P is unaltered, while SIR and 1-S degrade.

Next in Table 3 we set Q = 10 and R = 1 and we see how J evolves with
N . Let now α = 0.94 and β = 0. As above, 1-S outperforms the P-based
and the SIR algorithms, and we observe e.g. that 1-S(EMM) with N = 50
particles gives about the same result as 1-P with N = 200 particles.

4.3 Simulations, semi-linear models

In §4.2 we compared the P-based, SIR and 1-S algorithms, but not the 2-S
one, because in (6) p(xn|xn−1, yn, yn+1) and p(yn+1|xn−1, yn) are difficult to
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implement. Yet 2-S can be used in some situations. Let us first consider the
non linear model with linear measurements equation

{
xn+1 = fn(xn) + un

yn = 0.5xn + vn
, (7)

in which un ∼ N (0, Q) and vn ∼ N (0, R) are i.i.d., mutually independent
and independent of x0 ∼ N (0, 1) (the first equation of (6) and (7) coincide).

In (7) p(xn|xn−1, yn) and p(yn|xn−1) can be computed easily. p(xn|xn−1,
yn, yn+1) cannot, but the problem of computing p(xn|xn−1, yn, yn+1) from
(p(xn|xn−1, yn), p(yn+1|xn)) is the same as that of computing p(xn|xn−1, yn)
from (p(xn|xn−1), p(yn|xn)) and so the approximation techniques recalled in
§4.2 can be adapted to (7) (a difference however is that the exact moments
of p(xn|xn−1, yn, yn+1) cannot be computed in (7)).

Let R = 2 and N = 50. For 2-S we use either a second-order Taylor
series expansion, or UPF with α = 0.73 and β = α2 − 1. Table 4 displays
J as a function of Q. As we can see, the ordering 2-P < 1-P < SIR < 1-S
is maintained. 2-S outperforms 1-S if Q is small, but 1-S performs better if
Q increases. The reason why is that in (7) p(xn|xn−1, yn) (used in 1-S) can
be computed exactly but p(xn|xn−1, yn, yn+1) (used in 2-S) cannot. Since all
techniques indeed approximate fn (up to the first orders), the results strongly
depend on this function. In (6) fn has strong variations; all orders matter, so
all approximations of fn at some point becomes very poor outside of a small
neighbourghood of that point, and such situations do happen if Q gets large.

2-P 1-P SIR 1-S 2-S(Taylor) 2-S(UPF)

Q = 0.1 1.649036 1.5608385 1.5513972 1.1820396 1.1017785 1.0886346

Q = 1 2.1070664 1.8257239 1.6739058 1.5607033 2.4151141 1.6287723

Q = 10 2.8134363 2.4198548 2.3303342 2.2850875 2.8866604 2.4475675

Q = 50 3.8612771 2.9077013 2.7306043 2.70971 2.7548658 2.7188303

Table 4. Empirical standard deviation J , semi-linear model.

Finally let us consider the semi-linear model (7), but in which the evolu-
tion equation is replaced by xn+1 = arctanxn +un. Let α = 0.88, β = α2−1,
N = 50 and R = 2. Table 6 displays J in terms of Q. By contrast with (7),
function fn = arctan is now very smooth. As a result all algorithms give sat-
isfactory results, especially if Q is low. Also observe that the ordering of the
algorithms is maintained, and in particular that 2-S outperforms 1-S, even
when Q is large. The reason why is that for the arctan function limited order
approximations are valid in a large domain, so the necessity of approximating
p(xn|xn−1, yn, yn+1) is no longer a handicap of 2-S w.r.t. 1-S.
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2-P 1-P SIR 1-S 2-S(UPF)

Q = 1 1.1240331 1.1202899 1.1118075 1.1041993 1.1033117

Q = 5 1.861067 1.8353582 1.8334354 1.8134666 1.8107098

Q = 20 2.611825 2.4849116 2.439016 2.4268744 2.4144096

Q = 50 3.1980866 2.761685 2.6592343 2.6345335 2.6329076

Table 5. Empirical standard deviation J , alternate semi-linear model.

5 Conclusion

We explored direct and indirect paths (and their generic SMC implementa-
tions) for computing pn|n recursively. These algorithms remain PF, in the
sense that their aim is to compute pn|n, but possibly via a predictive or
smoothing distribution. Our algorithms were validated by simulations. S-
based algorithms outperform P-based ones, and in each class of algorithms
better results are obtained (under fair conditions, i.e. when the necessary
approximations are valid) when updating precedes propagation.
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Abstract. The timetable problem, searching the timetable for the class assignment in the 

schools, belongs to the group of NP hard and NP complete problems. In Lithuanian high 

schools every pupil can choose a lot of subjects by his wish. The problem is more 

complicated when the every pupil has possibilities to choose not only subjects, but hour per 

week of this subject too. However, as the number of teachers, number of pupils, number of 

different subjects, number of different subject hours, time slots,  and the constraints 

increases, the required time to find at least one feasible solution grows exponentially. Global 

optimization algorithms are a quite common approach to solve this problem. In this paper, 

we describe the advantages of distributed school schedule optimization a software system 

was developed using Java technology and grid computing techniques. Optimization 

algorithms used in the software include the Monte-Carlo local optimization algorithm, the 

Simulated Annealing and Bayes global optimization algorithms. 

Key words: Global optimization, school schedule creation, distributed schedule 

optimization, Monte-Carlo, Simulated Annealing, Bayes. 

 

1 Introduction 
 

A timetable specifies which people meet at which location and at what time. The 

timing of events must be such that nobody has more than one event at the same 

time. School timetabling as a term refers to the construction of weekly timetables 

for schools of secondary education [14]. Specific feature of school timetabling 

field is a great number of research papers and widely used commercial software. 

Therefore a discussion of new results will be. 

The events are lessons in a subject, taught by a teacher to a group of pupils in a 

single room. The timetable assigns a teacher, a pupils group, a room, and a time 

slot to each lesson. The pupil groups are specific to the subject, we call them 

subject-groups. A high school is referred here as the last grades of a high school or 

gymnasium where the pupils can mostly choose their preferred learning profile 

subjects. Therefore, this task is more complex in comparison with a secondary 

school scheduling without high school classes. 

Some combinations of assignments lead to acceptable timetables, constraints 

follow from conditions imposed by rooms, pupils or teachers. We distinguish two 

types of constraints: conditions that must be met (“hard” constraints) and desires 

that should be fulfilled as well as possible (“soft” constraints). An important set of 

soft constraints is defined by didactic reasons. For example, by placing “hard” 

subjects, such as mathematics or physics, into morning hours. The maximal 

number of daily hours Tmax is obviously a hard constraint. Timetabling can be 

generally defined as the activity of assigning, subject to constraints, a number of 

events to a limited number of time periods and locations such, that desirable 
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objectives are satisfied as nearly as possible [26]. Educational timetabling can be 

divided into three main classes: school timetabling, course timetabling and exam 

timetabling [15]. The goal is to find a timetable that satisfies all the hard 

constraints and minimizes the violation of soft constraints. 

 

2 Overview of publications 
 

A survey on educational timetabling problems [23] gives an overview of the 

literature. Overviews on examination timetabling and university course timetabling 

are in [4, 12, 13]. A comprehensive overview of formulations and of state-of-the-

art approaches is in the surveys [4, 7, 8, 13, 15], in the proceedings of the PATAT 

conferences [5 – 7, 9, 10] and in the Lecture Notes in Computer Science series [9 – 

11]. The European working group on automated timetabling (EURO-WATT) 

maintains a website with information on timetabling problems [25]. 

 

3 New Elements 
 

The first new element of this work is the application and systematic investigation 

of the Bayesian Heuristic Approach [20] for optimization of heuristic parameters. 

These include the initial temperature and the cooling rate of Simulating Annealing 

(SA) algorithm and the randomization parameter of the local search algorithm. The 

formulation of the objective function in terms of Pareto optimality seems to be new 

in the field of school scheduling. The paper describes apparently the first web-

based platform-independent implementation of the software. Java servlet provides 

conditions for application at any school with internet connection. Any web browser 

works, no additional software is needed. Note that efficiency of recent versions of 

Java is close to that of the most efficient programming languages [9]. 

 

4 Defining Optimization Problem 
 

Ministry of Education of the Republic of Lithuania has confirmed basic rules for 

high school schedule forming. They can be complementary of each school's rules 

and restrictions. However, the main purpose of these limitations is to develop a 

schedule, which would evaluate of the Ministry of Education requirements. In 

addition, this schedule must be acceptable to both: pupils and teachers. 

Required schedule restrictions (formed by the Ministry of Education): 

* Working days d per week must be d ≤ 5. 

* The teacher simultaneously cannot work in several different places. 

* The teacher cannot have more than 36 hours per week. 

* The pupil simultaneously cannot learn few different subjects. 

* A pupil i may have 28 ≤ i ≤ 32 lessons per week. 

* It cannot be more then p≤7 lessons p per day. 

* Number of pupils i in one subject-group can be 15 ≤ i ≤ 30. 

* In each classroom simultaneously cannot be several different types of subjects 

(for example, mathematics and physics). 
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* Subjects, requiring special measures or facilities, shall be taught in the special 

classrooms (for example, IT, chemistry etc.). 

Technically any required restriction violations cannot be broken. There can be only 

some minor offenses necessary restrictions, if it significantly improves the quality 

of the schedule. To define with timetable is good or bad we use penalty points. The 

penalty point’s cr, which assessing these restrictions, should be imposed very 

strictly. 

The main required penalty point’s restrictions function is as follows: 

∑=
r

rrf NcF
, 

here cr – penalty for required restriction r; Nr – number of required restriction. In 

this case r = 1, .., 9. 

Some of required restrictions cr can be evaluated by the individual rules of each 

school. Such requirements are called needful, or “soft” constrains. They are valued 

differently in each school. 

The main needful restrictions of the schedule include: 

* Elimination of “windows” in teacher’s schedule.  

* Elimination of “windows” in pupil’s schedule.  

* Unacceptable working hours.  

* Unacceptable workdays. 

* Unacceptable order of subjects.  

* Changing of pupils in the formed subject-group. 

Usually penalty points for these restrictions are as follows: 

cm – penalty for the “window” on teacher’s m schedule. 

cs – penalty for the “window” on pupils s schedule. 

cmv – penalty for “bad” hour v of teacher m. 

cmd – penalty for “bad” day d of teacher m. 

csv – penalty for “bad” hour v of pupil s. 

cpd – penalty for violation of pedagogical didactic pd. 

cmg – penalty of the list change of subject-group g taught by teacher m. 

“Bad” hour/day is the hour/day, when teacher/pupil already has a work hour. 

Pedagogical didactic evaluates the difficulty of subjects. Most difficult subjects 

must be in the 1-4 lessons during the day. Less important subjects – in the end of 

the day. The importance of every subject is written in initial data file.  

The sum function of the needed restrictions penalty points is as follows: 

,∑∑∑ ∑∑∑

∑ ∑∑∑
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here mL
– number of “windows” on teachers m schedule; sL

– number of 

“windows” on pupils s schedule; 
v
mL

– number of “bad” hours v on the teachers m 

schedule; 
d
mL

– number of “bad” days d on the teachers m schedule; 
v
sL

– number 

643



 

 4 

of “bad” hours v on the pupils s schedule; Lpd – number of pedagogical didactic pd 

violations; nL
– number n of changing formed subject-group. 

All physical restrictions and inconveniences are showed in Figure 1. 

 
Figure 1. Restrictions for a creation of high school schedule 

 

A compromise solution is reached by defining penalties for violation of constraints 

and disregarding inconveniences. Therefore, penalty points are calculated: 

nf FFF +=
. 

where, Ff – is a sum of the penalties for the required restrictions; Fn – is a sum of 

the penalties for the needful restrictions (disregarding inconveniences). Optimal 

schedule will be schedule, which has as less as possible penalty points. To find 

such schedule, objective function F should be optimized. To not analyze the 

schedules with same number of penalty points, Pareto optimality was formulated. 

So we will get less variants to analyze and will save the users time. The 

optimization problem is 

)(min τ
τ

F
A∈ , 

where, F(τ) is the total penalty of some schedule τ; A is the set of schedules 

satisfying the physical constraints. The penalties F(τ) depend on expert 

evaluations, therefore we regard them as heuristics. 

 

5. Optimization Methods 
 

5.1 Defining Neighborhood 
 

Many different definitions can be used defining neighbourhood in a set A of 

feasible timetables d. The definition is important because local search is performed 

in the neighbourhood of the given point. We search for better timetables by 

subsequent closing of gaps for pupils and teachers. In this case the neighbours of a 

timetable d’ are all timetables d” that can be reached from d’ by a sequence of 

closing gap operations. This way we obtain locally optimal d*(d’) that depends on 

the initial point d’. 

Local search can be randomized by selecting current candidate (a pupil or a 

teacher) for gap closing with some probability x0. Closing gaps for randomly 

selected pupils and teachers, we modify the search sequences. However, this not 

helps to reach the global optimum since the neighbourhood remains the same. 
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5.2 Escaping Neighborhood 
 

Simplest algorithm to search for global optimum is just random search with 

uniform distribution of observations (observation is calculation of the objective 

function at some fixed point). The advantages are simplicity and convergence to a 

global minimum of continuous functions. A well-known way to escape the local 

minimum is Simulated Annealing [1, 2, 14, 19, 21, 22]. Denote 

)()( 1 nn
n dFdF −=

+δ
, 

Here d
n
 is a current timetable, d

n+1
 is a new timetable generated by closing gap 

operation. Define the probability 

0    ,
)1ln(/ 21 >=

+

−

n
nxx

n ifep

n

δ

δ

, 

0    ,1 <= nn ifp δ
, 

where parameter x1 is the “initial temperature”, parameter x2 defines the “cooling 

rate”. SA algorithm means: 

go to new timetable d
n+1 

with probability pn 

To apply the SA to a specific problem, one must specify the parameters x1 and 

x2.The choice can have a significant impact on the method's effectiveness. 

Unfortunately, there are no choices of these parameters that will be good for all 

problems. Analyzing Figure 2, we see different results using different initial 

parameters. Here difference of penalty points (between initial and optimal 

schedules) is calculated. Every column is received after 100 experiments with fixed 

initial parameters (Iterations, x1 and x2). In the left side of Figure 2 the results are 

grouped by x2 when x1 was between 100 and 1000. In the right side, the results are 

grouped by x1 when x2 was between 1 and 10. There are showed only best results.  

 

645



 

 6 

 
Figure 2. The best results of SA using different parameters 

 

We cannot see optimal parameters x1, x2 of SA. Optimal results depend on the 

initial soft constrains and number of iteration. A way to adapt these parameters to a 

given problem is automatic optimization. This is not an easy problem since we 

need optimize multi-modal function with considerable noise. Here the Bayesian 

Heuristic Approach (BHA) [20] is useful. Figures 3 and 4 illustrate efficiency of 

automatic adaptation of SA parameters using BHA. In these figures, the difference 

between initial and optimal timetable is showed. There we see 100 experiments 

with every different SA iteration. SA parameters were set automatically. Figure 3 

shows, that method is more efficient as more SA iteration are used. Figure 4 

illustrates the best results what was shown during 100 experiments with every 

different SA iteration. There we can see, that the best results we will get when it 

will be many SA and BHA iterations. 

 

5.3 Bayesian Heuristic Approach 
 

The Bayesian Heuristic Approach was designed for automatic optimization of 

heuristic parameters by filtering the noise during optimization of multi-modal 

functions [20]. We need to optimize three heuristic parameters x = (x0, x1, x2). 

Optimal parameters are obtained using the data of some specific school. 

646



 

 7 

 
Figure 3. Average of 100 experiments results using BHA 

 

 
Figure 4. The best results of BHA after 100 experiments with each different 

SA iteration 

However, the results can be used in similar schools as an approximation. 

 

6 “School schedule optimization” program working steps 
 

“School schedule optimization” program designed to high school scheduling. 

 
Figure 5. Forming subject-groups to teachers 
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Figure 6. Time table for teachers creation 

Figure 5 illustrates how subject-groups are assigned to teachers. Here pupils sij 

from groups Gi are grouped to the groups with identical subject Dt. Identical 

subject has same name and same hours per week. These groups are called subject-

groups (with x pupils in the group) and assigned to the teacher Ml. Figure 6 shows 

how teacher’s timetables are created. The subject-groups DtMl[Sx], with teacher Ml, 

subject Dt and pupils of this subject-group Sx, are putted to the free class-room and 

to school timetable. When process is finalized, the optimization process is ready to 

start.  

After optimizing, we can see such results of this program: 

* school schedule; 

* individual pupils schedules; 

* individual teachers schedules; 

* individual room schedules; 

* subject-group schedules; 

All results user can see in the program (on working time), or download them as 

archive personal computer. The program does not require much effort to the user, 

the payment to work with a computer, or a lot of time to understand how system 

works. 

 

7 Comparison of results 
 

Here are compared such results: real schedule created in a Lithuanian high school 

and, from pupils and teachers wishes, created and optimized schedule. Schedule 

was automatically optimized with Bayes method The results we can see in Figure 

7. Both, schedule and data are from the same school and same classes. Evaluating 

both types of schedules, penalty points were calculating for: 

* pupil window – 5; 

* teacher window – 300; 

* teachers wished free time – 10; 

* exceeding maximum hour limit – 2000; 

* pedagogical didactic – 5. 

Sum of seted penalty points for the real schedule was 380 020. It is always same, 

because after finishing the creation process it can’t be changed. Sum of penalty 

points after optimization process (was seted same penalty points) are showed in the 

Figure 7. There are few results after optimization with different initial parameters 

of optimisation method Bayes. The results are different while every time schedule 

is created from the new point. 
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Figure 7. Penalty points after creating and optimizing schedule from initial data file 

 

As we can see, the optimization results are much better as real schedule result. It is 

so, while optimization program creates and optimizes schedule only for high 

school classes. However, teacher can work in basic school to. However, in 

Lithuanian schools schedule creating starts from high school classes schedule. 

“School schedule optimization” program is working same way. 

 

8 Optimization in Commercial Software 
 

We discuss optimization possibilities of the following three commercial 

timetabling systems currently used in Lithuanian high schools: “Mimosa 2009”, 

“aSc TimeTables 2009”, and “Rector 2009”. “Mimosa 2009” [18] is the product of 

the Finnish company “Mimosa Software Ltd”. “Mimosa” provides convenient GUI 

for manual timetabling and reports constraints violations. Figure 8 shows a 

fragment of the output. In the upper-left side we can see pupils schedule, under it – 

pupils of the subject-group and in the right side – individual schedules of every 

pupil in the subject-group. The form is acceptable for Lithuanian schools. For 

example, “Ch3BK” means a chemistry lessons, pupils from 3-rd level, will learn as 

basic course.  

 
Figure 8. A fragment of “Mimosa 2009” output 
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Optimization is limited to closing some gaps in teacher’s schedules. The software 

is popular in basic schools. Application in upper classes of high schools is possible 

within some strict limitations by setting individual pupil schedules. Long and hard 

manual work is needed if the school is large. Any penalty points are calculated in 

this program.  

“Rector 2009” [24] is the product of the Russian company “P. Yu. Smykalov”. 

Figure 9 shows a fragment of output in the format similar to MS “Excel” forms 

used in local schools. In the upper side the subject for the group 12a are showed. 

Under it – all groups, lessons per week, subjects and teachers are showed. Green 

colour means, that no one works at the same time in two places. Reports, if one is 

trying to insert data to wrong place, are showed in red colour. Convenient for basic 

school scheduling. No automatic optimization. 

 
Figure 9. A fragment of “Rector 2009” output 

 
Figure 10. A fragment of “aSc TimeTable 2009” output 
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 “aSc TimeTables 2009” [3] is the product of the Slovak company “Applied 

Software Consultants s.r.o”. A fragment of resulting timetable for Monday and 

Tuesday in a compact form for eight pupil subject-groups is in Figure 10. The 

results of experimental calculations are in Table 1. They show that the software 

works well in basic schools and is not practical in large high schools. Any penalty 

points are calculated. 

 

Table 1. Testing „aSc TimeTables 2009“ 
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A timetable that satisfies all necessary conditions is regarded as feasible. A feasible 

timetable is optimal if it minimizes all undesirable factors. To compare the quality 

of different feasible timetables we must evaluate at least the most important 

undesirable factors. The difficulty is that desirability is subjective by definition and 

depends on the local conditions. This prevents comparison of results obtained by 

automatic optimization with decisions made by human operator.  

To compare results of different automatic optimization methods we need 

procedures for evaluation of undesirable factors in some fixed scales. In this paper, 

it is done in the framework of Pareto optimality [16]. The commercial software 

does not support this, since no direct comparison of decisions quality cannot be 

made. 
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9 Concluding Remarks 
 

* The new element of this work is application and systematic investigation of the 

Bayesian Heuristic Approach (BHA) [20] to optimization of heuristic parameters 

(with penalty points). These include the initial temperature and the cooling rate of 

SA algorithm and the randomization parameter of the local search algorithm. 

* BHA is intended for global optimization of functions with noise what is typical 

in optimization of heuristic parameters. 

* The formulation of the objective function in terms of Pareto optimality seems to 

be new in the field of school scheduling. 

* Application in some large schools shows some advantages comparing with 

commercial software. The web-site: http://soften.ktu.lt/~mockus and 

accompanying web-sites include corresponding.  
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