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Travelling safely and comfortably on high speed railway lines requires excellent conditions of 

the whole railway infrastructure in general and of the railway track geometry in particular. 

The maintenance process required to achieve such excellent conditions is largely complex and 

expensive, demanding an increased amount of both human and technical resources. In this 

framework, choosing the right maintenance strategy is a very important issue. A reliable 

forecast of the railway geometry ageing process is indispensable for an optimised planning 

and scheduling of maintenance activities. For this reason the French railway operator SNCF 

has been measuring periodically the geometrical characteristics of its high speed network 

since its commissioning, i.e. for more than 20 years now. In this paper a hybrid system model 

to obtain such a forecasting is presented. The proposed method uses a “grey-box” approach: a 

model structure and its constraints are specified basing on previous knowledge of the process 

to be identified, then the set of parameter values which best fits the signal measurements is 

searched. As previous knowledge indicates that the process is non linear the parameters are 

searched by means of the Levenberg-Marquardt (LM) algorithm, an iterative technique that 

finds a local minimum of a function expressed as the sum of squares of nonlinear functions. 

Finally, the method is applied on real data of a French high speed TGV line and its results 

compared with those of benchmark approaches. 

1 Introduction 
Measuring and keeping railway geometry under control are fundamental tasks of the railway 

infrastructure maintenance process. Railway geometry is representative of the travelling 

comfort and the derailing risk, so if its deviation exceeds a certain limit value, the travelling 

speed on that sector must be reduced. Therefore, railway geometry is both a measure of 

travelling quality and safety. 

For these reasons the French railway operator SNCF has been measuring periodically the 

geometrical characteristics of its high speed network since its commissioning, i.e. for more 

than 20 years now.  

 

Figure 1 shows the measurements of the longitudinal levelling (in French Nivellement 

Longitudinal, NL) for a 1 Km track sector for the last 20 years. The NL parameter is the 

longitudinal mean deviation of rails respect to the ideal position, and it is considered 

representative of the general railway geometry deterioration [Meyer-Hirmer]. By default the 

deterioration grade increases with time, reflecting the track geometry deterioration. Thus 

decrements take place only when some maintenance activity is performed. In figure 1 two 

different types of maintenance activities are included: tamping (red bars) and grinding (grey 

bars). Their heights represent the fraction of the railway sector affected by the maintenance 

activity. Tamping yields a visually more obvious effect, generating a sudden drop in NL. On 
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the other hand, grinding yields a more subtle, still according to expert knowledge significant 

effect. 
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Figure 1: Course of longitudinal levelling degradation for a railroad sector. 

 

Due to high logistic costs constraints, most track geometry maintenance activities need to be 

planned up to one year in advance. This is why a precise forecasting of the railway geometry 

is a key factor for effective maintenance activities planning, helping to answer the 

fundamental questions about when and where maintenance will be needed. 

In this work we present some benchmark approaches to railway track geometry degradation 

and restoration forecasting, and we introduce an alternative discrete-continuous (hybrid) 

approach. In section 5 the these models are applied on real data and the obtained results are 

analysed and compared. 

 

2 Problem definition 
Railway geometry is measured periodically by means of special measuring coaches equipped 

with mechanical and/or electrical sensors. As it can be observed in figure 1, the periodicity of 

the measuring runs has been irregular since line commissioning, so the first problem for 

forecasting railway geometry deviation is the irregular sampling rate. To overcome this, we 

interpolate the measured points using splines, and then resample with the sampling rate of the 

last years. This is a compromise solution minimising information loss in the last measurement 

years and keeping the addition of artificial measurements in the first years at an acceptable 

level. 

 

The resampled data is then used to tune a series of models expressed as grey boxes, i.e. 

models with variable parameters for which optimal values are to be found by means of an 
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optimisation process (see sections 3 and 4).  The performances of the different grey boxes are 

then compared and the most suitable models are chosen. 

 

Figure 2 shows a schematic overview of the complete forecasting model selection process 

hereby described. 

 
Figure 2: Schematic overview of the forecasting selection method 

 

3 Applied models 
 

In this section the implemented grey-box models are described. We consider railway 

deterioration being subject to two processes: deterioration and restoration (maintenance). 

Different models are proposed for each of them and then put together in grey-box models. 

3.1 Restoration model 

In contrast to the deterioration process, restoration process models are not numerous. 

In this work we consider the non linear model proposed by [Miwa], described by equation 3.1 

 

101 ββ +⋅=−+ ttt NLNLNL    (3.1) 

 

In order to be able to apply this model on real cases, where sometimes track sectors are only 

partially restored (tamping is applied on only a fraction of the sector), we define 

 

lengthsector  total

 at time track  tampedoflength t
ut =  

 

as a signal with value 0 when no tamping takes place, and a value between 0 and 1 when 

tamping takes place in the sector, according to the fraction of the sector tamped. Then 

 

ttttt NLuuNLNL ++=+ 101 ββ   (3.2) 

 

is used to forecast NL after tamping. 
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3.2 Deterioration models 

The railway track geometry deterioration process has been deeply investigated in the 

last 30 years. As stated in [Sadeghi & Askarinejad 08], there are two main types of 

approaches: the engineering approach and the statistical approach. 

The engineering approach aims to asses the mechanical properties of track 

degradation, providing a good understanding of how track responds to vehicle loading. 

In general, technical references agree that degradation depends on traffic intensity, 

travelling speed and axle load. Most of them aim to finding an equation describing 

deterioration rate as a function of these three variables. For an overview of the 

different formulas proposed see [Ubalde et al. 05]. 

On the other hand, the statistical approach aims to analysing observations of actual geometry 

deviations. The latter is then considered the dependant variable and the explanatory variables 

can be for example accumulated axle load or simply time. The aim of this work is not to 

define degradation rate as a function of known variables, but to forecast degradation at l steps 

in time, assuming that all other variables affecting degradation remain unchanged. This is in 

general a valid assumption for the aimed forecasting periods, namely up to 1 year. Therefore, 

this work belongs to the statistical approach.  

We consider four different models: double exponential smoothing, generic, autoregressive 

and hybrid. In section 5 an analysis of their performances is presented. 

3.2.1 Exponential smoothing 

In [Miwa et al. 00] a double exponential smoothing based approach is proposed for modelling 

railway track geometry deterioration. Exponential smoothing is widely used for forecasting 

time series in the field of econometrics, and was developed by [Brown 62]. Double 

exponential smoothing assumes an only locally constant linear model of first order (locally 

constant linear trend), thus giving more weight to recent observations. At time n the 

parameters n,0β and n,1β are determined by minimizing 

 

∑
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The constant ω ( 1<ω ) is a discount factor that discounts past observations exponentially. 

At time n the l-step ahead forecasts )(ˆ lnZ + are calculated using  

 

llnZ nn ,1,0
ˆˆ)(ˆ ββ +=+    (3.2) 

 

For the model to also successfully explain the effects of degrading and restoration, it is 

necessary to combine the models expressed in equations equations 3.1 and 3.2. Figure 3 

describes this combination. If the jumps caused by tamping are added to the original signal, a 

new signal is obtained which represents the effects of degradation only. On the other side 

these jumps seen as impulses make up another signal which represents the restoration process. 

Applying equation 3.1 on the restoration signal (here it is off course assumed that the dates of 

future tamping activities are known) and 3.2 on the degradation signal we obtain forecasts for 

both processes. Finally by combining again both signals, a forecast for the combined process 

is obtained. 
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Figure 3: Procedure to decouple degradation and restoration processes 

 

3.2.2 Polynomial 

In [Jovanovic] a “generic/universal deterioration model” for railway track geometry is 

proposed. In this model deterioration is assumed to be a sum of processes running in parallel. 

Maintenance activities “reset” one or more of these processes. In this work we consider 2 

parallel deterioration processes: one represents the deterioration which can not be corrected 

by means of tamping, but only by ballast renewal, and the other represents deterioration 

which is effectively corrected by tamping. According to this model, track geometry condition 

NL(t) can be described as  

 
2

4321),( sltsltslt tttttNL αααα +++=  

 

where sltt  is the elapsed time since the last tamping activity and 41...αα are parameters for 

which adequate values must be found. This model explains both deterioration and restoration. 

3.2.3 Autoregressive model 

In [Hamid & Gross 81] the use of ARMA (autoregressive moving average) models for 

railway track geometry deterioration is proposed. To apply this model, we consider tNL as a 

discrete signal sampled at regular intervals. Furthermore we define 
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as the cumulated tamping. 

Then we can define the ARIMA model used in this work as 

 

61524132211 αααααα +++++= −−−−− ttttttt NLuUUNLNLNL  

 

which is an AR model of second order plus the non-linear restoration model of equation 3.1. 

D(t) 

D(t)+R(t) 

R(t) 

+ 

- 

D(t+n) 

Eq. 3.2 

R(t+n) 

Eq. 3.1 
D(t+n)+ R(t+n) 

+ 
+ 
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3.2.4 Hybrid model 

By observing track geometry degradation curves like the one of figure 1 and the performances 

of the forecasting model presented in 3.2.1, 3.2.2 and 3.2.3, some remarks can be asserted: 

 

• The gradient of the curve (degradation speed) between two tamping activities remains 

constant or at least locally constant. 

• The gradient of the curve very often changes abruptly after tamping. 

• The forecasting models presented so far seem to work satisfactorily for the first years, 

but after some tamping activities become inappropriate. 

 

[Lunze 06] argues that “...state jumps are the basic hybrid phenomenon that cannot be 

represented and analysed by methods elaborated either in continuous or discrete systems 

theory...”. Having said this, we propose a hybrid model considering tamping activities as state 

jumps. 

For modelling the degradation process, double exponential smoothing is used. But in contrast 

to the model presented in 3.2.1, after each tamping activity the measurements before tamping 

are forgotten, and a new set of parameters is identified. This leads to a model adapting itself 

very quickly after each tamping, and very slowly between tampings.  

 

The algorithm for obtaining the l-step forecast )(ˆ lnZ +  at time n can be described as follows: 

 

1- Let M={m0, ..., mn} be all available measurements since the last tamping activity 

and T={t0,...,tn} their associated times, excluding those who are too near tamping 

activities, i.e. excluding all measurements IMESETTLING_T: <− ntii ttm , where 

im is a given measurement, it its associated time and ntt is the time of the tamping 

activity nearest to that measurement. 

2- If size(M)>MIN_CYCLE_SIZE then apply double exponential smoothing with 

smoothing coefficient OMEGA to find the estimations n,0β̂  and n,1β̂ , and go to step 5, 

else go to step 3.  

3- If the current tamping cycle is not the first one then take the estimations n,1β̂  from 

the tamping cycle immediately before the current one, and n,0β̂ such that 

inni tm ,1,0
ˆˆ ββ +=  holds, where im is the last measured value and it its associated time, 

and go to step 6, else go to step 4. 

4- Take n,1β̂ = INIT_β1 and n,0β̂  such that inni tm ,1,0
ˆˆ ββ +=  holds. 

5- Calculate llnZ nn ,1,0
ˆˆ)(ˆ ββ +=+  as the forecast at l steps 

6- If a tamping activity is planned within the next l steps, i.e. at step n+k, with k<l, 

then update the forecast )(ˆ lnZ +  by subtracting to it the expected tamping effect 

given by tuknZNL )AMPINGNL_AFTER_T)(ˆ( −+=∆  

 

The algorithm uses a series of parameters, for which an explanation is next given. 

SETTLING_TIME: In approx. the first 2 months after and/or before tamping takes place, the 

behaviour of the track geometry can be strongly non linear [Meier-Hirmer], so the 

measurements taking place in this lapse are discarded. 

MIN_CYCLE_SIZE: In order to perform a linear regression with a reasonable confidence, a 

minimal number of samples is required. In this case we take MIN_CYCLE_SIZE=5. 
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OMEGA: As mentioned in section 3.2.1, double exponential smoothing uses a smoothing 

constant ω to give more weight to recent observations. [Brown] ω recommends choosing ω 

such that 0.84 < ω < 0.97. In our work we take ω =0.95. 

INIT_β0 and INIT_β1: When there are lesser than MIN_CYCLE_SIZE sample since the last 

tamping available, the line gradient n,1β̂ is taken from the last tamping cycle (we call tamping 

cycle the time between two consecutive tampings) and n,0β̂  is taken such that the curve 

determined by n,0β̂  and n,1β̂  contains the last measurement. But if the current tamping cycle is 

the first one, the only option left is to take an arbitrary initial value n,1β̂ . In this work we use 

INIT_β1=0.05, i.e. an initial degradation rate of 0.05 mm. per year. 

NL_AFTER_TAMPING: this is the typical value of NL after tamping a complete sector. In 

this work its value is set to 0.35. 

 

4 Case study 
In this section we apply the models presented in section 3 to real data measured on a TGV 

high speed line.  

All forecasts are made recursively, i.e., forecasts of ltNL + are made using information in time 

periods 1, 2, ..., t. For the forecast of ltNL + , parameters are estimated using the data (NL1, 

NL2, ..., NLt). In all models, parameters are estimated by minimizing the sum of squared 

residuals of the l-step ahead forecast. As we use a non linear restoration model (see 3.1), for 

solving these minimization problems [levmar], an implementation of the Levenberg-

Marquardt algorithm, is used. The Levenberg-Marquardt (LM) algorithm is an iterative 

technique that finds a local minimum of a function that is expressed as the sum of squares of 

nonlinear functions. 

 

Figures 4 to 7 show real measured values on a given track sector of 1 Km and the 1-year-

ahead forecasts of the four models presented in 3.2,. Figure 4 shows the forecasts using the 

AR model. In general the forecast errors increase abruptly after each tamping, and after a 

lapse of between 1 and 4 years, the forecasts converge again to the measured values. In the 

case of exponential smoothing (figure 5), the observed behaviour is similar in the sense that 

error increases after tamping, but the forecast converge much more quickly, so the average 

error is significantly lesser. The generic model of figure 6 seems to fail to identify the nature 

of the degradation and restoration processes, being its performance very poor. Finally, the 

hybrid model shows an improved behaviour in the first year after each tamping, and after that 

its forecasts are very similar to those of the exponential smoothing model. 
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Figure 4: Measured data, tampings and 1-year-ahead forecasting using an AR model 
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Figure 5: Measured data, tampings and 1-year-ahead forecasting using an exponential 

smoothing model 
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Figure 6: Measured data, tampings and 1-year-ahead forecasting using the generic 

degradation model 
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Figure 7: Measured data, tampings and 1-year-ahead forecasting using a hybrid model 
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Figure 8 compares the error signal tt NLNL
^

− for the two models with best forecasting 

performance on this track sector, namely the exponential smoothing model and the hybrid 

model. Additionally, the times where tamping activities take place are marked with red bars in 

the same fashion as in figures 4 to 7. Here it becomes evident that error peaks are much 

smaller for the hybrid system model, and in the time zones where absolute error is under 0.1 

both models behave similarly. 
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Figure 8: Comparison of the error signals of the hybrid model and the exp. smoothing model 

 

Figures 4 to 8 should deliver a glimpse of how well each of the presented methods performs 

on railway track geometry. But degradation and restoration of track geometry can be very 

different from one sector to another. Therefore, in order to asses the prediction potential and 

robustness of all 4 methods, we apply them on real data of 200 sectors of 1 Km length each. 

We record for each model and each sector the mean absolute percentage error (MAPE) and 

mean square error (MSE) defined as 
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where itNL is the value measured on sector i at time t, itNL
^

its 1-year-ahead forecast and iN is 

the number of samples available for sector i. 
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In table 1 the estimated mean value µ̂ and variance σ̂ for both MAPE and MSE are expressed 

for each of the presented methods, plus the naive forecast tlt NLNL =+

^
. The means and 

variances are calculated as 

 

200
)(ˆ

200
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== n

iX
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1200
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where X in this case are MAPE and MSE. 

The last two rows of the table shows for each model the number of sectors for which it was 

better than all other methods, in the sense of MAPE and MSE, respectively.  

 

Table 1. Overview of forecasting results on 200 1-Km-long track sectors with all 5 models 

 Hybrid AR Generic Exp. Smooth. Naive 

)(ˆ MAPEµ  16.2% 18.7% 45.9% 24.7% 19.6% 

)(ˆ MAPEσ  2.79 × 10
-3

 3.59 × 10
-3

 13.1 × 10
-3

 4.18 × 10
-3

 3.97 × 10
-3

 

)(ˆ MSEµ  0.0149 0.0193 0.116 0.0314 0.0225 

)(ˆ MSEσ  3.85 × 10
-4

 3.44 × 10
-4

 37.0 × 10
-4

 3.93 × 10
-4

 3.36 × 10
-4

 

Sectors Best 

MAPE  

61.5% 16.5% 0% 10% 12% 

Sectors Best 

MSE 

66.5% 17% 0% 8% 6.5% 

 

The minimal mean value for both MAPE (16.2%) and MSE (0.0149) are obtained using the 

hybrid model. The minimal MAPE variance (2.79 × 10
-3

) is also achieved with the hybrid 

model, but in the case of MASE variance, the minimal value (3.44 × 10
-4

) corresponds to the 

autoregressive (AR) model. The hybrid model is also the most appropriate in most of the track 

sectors, both from the point of view of MAPE (61.5%) and MSE (66.5%).  

The generic model and the exponential smoothing models fail to improve the overall 

performance of the naive model, while the hybrid model achieves a MAPE reduction of 

17.3% and an MSE reduction of 33.8% respect to the naive model, and the AR model 

achieves a MAPE reduction of 4.59% and an MSE reduction of 14.2% respect to the naive 

model. 

The relatively low variances of MAPE and MSE achieved by the hybrid model show that the 

approach is robust in the sense that it can deliver satisfactory results in sectors with different 

degradation characteristics. 

5 Conclusions 
This paper presents an approach to railway track geometry forecasting modelling the 

degradation-restoration process as a hybrid system. The results obtained after applying this 

approach on the data collected in the lapse of almost 20 years on a 200 Km high speed 

railway track are compared with the ones obtained using some benchmark approaches. This 

comparison shows that the hybrid model in general achieves better results than the benchmark 

models, due mainly to its increased adaptability after tamping activities. 

The approach hereby presented is intended to be used by the tamping scheduling optimization 

system under development at the Institute for Traffic Safety and Automation Technologies of 

the Technische Universität Braunschweig in cooperation with the SNCF. 
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Data Mining Application for Eutrophication Control in 

Surface Waters  
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ABSTRACT 

 

High total phosphorus concentrations(TP) has been found to be the major cause for 

Eutrophication and the subsequent depletion of dissolved oxygen(DO), enhancement of 

dissolved organic carbon(DOC), and poor water quality in Truckee River in Nevada.  Identifying 

the exact pattern of relationship among multiple independent variables related to high TP levels 

is important to implement remediation methods.  In this study non-linear mixed (NLMIXED) 

modeling, time series cross sectional regression, and non-linear least squares (NLLSQ) 

minimization were used to model the relationship of multiple independent variables to TP as 

closely as possible.  Independent variables included alkalinity, total soluble phosphorus 

concentrations(STP), stream flow(SF), water pH, water temperature (Temp), DOC, and DO, 

sampled monthly at the same time of TP (from January 1997 to December 2007) over six 

monitoring sites (McCarran Bridge(MB), Wordsworth Bridge(WB), Steamboat Creek(SC), 

Derby Dam(DD), Lockwood(LW), and North Truckee Drain(NTD)) along Truckee River in 

Nevada.  Seasonal variations and man-made intervention in TP were included in the analysis.  

Fitted NLMIXED model closely predicted observed data explaining 96.7% of total variation (R
2
 

=0.908).  All independent variables influenced TP significantly at 1% significance level.  All six 

sites contributed significantly towards overall TP at 5% significance level (p<0.0001).  NLLSQ 

minimization solution (0.0694 mg/L) to TP was much above the observed overall minimum 

(0.001 mg/L).  Although much lower mean TP were observed at sites MB, DD, and LW, 

compared to SC and NTD, smaller variations in TP made them significant contributors towards 

overall TP.  Non-linearity in the relationship of TP to independent variables significantly 

influenced the prediction of TP hence should be included in all analyses related to prediction of 

TP in Truckee River.  TP in Truckee River is also subject to significant seasonal fluctuations and 

man-made interventions.  Non-linear programming is a suitable and accurate method to identify 

possible ranges of TP in Truckee River.   

 

INTRODUCTION 

 

Water quality management involves issues related to municipal, industrial and amenity 

irrigation practices.  Due to increasing population and urbanization in Nevada in the past few 

years, increased concentrations of total phosphorus (TP) in the Truckee River have been 

recorded.  The increased river diversions have increased agricultural practices which have lead to 

heavy growths of aquatic weeds and benthic algae, caused by high nutrient loads and low flows.  

Increased fertilizer use and sewage have modified the natural cycle of phosphorus, the 

relationships of which to soil use and agricultural, domestic and industrial activities are expected 

to rise in the future.  Subsequently dissolved oxygen (DO) levels in the river have decreased due 

to plant respiration and decaying biomass.  Low DO levels have impaired the river's ability to 

support populations of Lahontan cutthroat trout, a threatened species, and cui-ui (kwee-wee), a 
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national endangered species.  There is also spatial variability in different catchments in 

phosphorus loading into Truckee River which imposes tremendous uncertainty in pollution load 

estimation.  Water management practices must be improved in Nevada, to guarantee improved 

quality of water of sustainable water bodies affected by development of urban and suburban 

areas.  Determination of factors affecting or causing variation of total phosphorus concentrations 

can provide a robust solution to quantify total phosphorus pollution in urban areas in Nevada.   

Total phosphorus concentration (TP) in Truckee River varies both temporally and spatially 

and has been reported to be a function of several factors such as STP, SF, seasonality (Summer), 

man made intervention (X1), DOC, DO, Alkalinity (ALK), water pH (pH), and water 

temperature (Temp).  All the above variables are collected at discrete time intervals including TP 

and therefore form time series.  The degree and spatial variation of influence of the different 

factors on TP need to be predicted to reflect different sources of the phosphorus loading into the 

river.  In addition the relationship of many of the factors to TP in the river has been found to be 

non-linear (Ragavan, 2008).  Non-linear time series programming and modeling is an appropriate 

approach to analyze such data.  Statistical models in which both fixed and random effects enter 

nonlinearly are becoming increasingly popular.  Perhaps the greatest theoretical progress in time 

series analysis in the last ten years has been in the understanding of testing and modeling for 

nonlinearity.  Nonlinear time series analysis raises the possibility of improving the power of 

parameter estimation and forecasting techniques.  For any time series Yt that is normal ρk(Yt
2
) = 

{ρk(Yt)}
2 

(where ρk(.) denotes the lag k autocorrelation).  Any departure from this result indicates 

a degree of non-linearity.   

The major focus of this data mining study is to apply non-linear programming to identify 

and model the relationship of multiple independent variables to TP in Truckee River, as close as 

possible, which will enable designers to target and manage TP concentration in the Truckee 

River accurately as possible to their source of origination.  Least squares minimization solution 

to the fitted non-linear model that leads to the detection of minimum TP levels in the Truckee 

River was also found to help environmental policy makers and designers to help in developing 

criteria for phosphorus loading into the river.  The relationship between each independent 

variable included in the model to TP was predicted as accurately as possible before fitting the 

model.  The distribution of TP at the different sampling sites was modeled as a function of the 

multiple independent variables using the previously identified relationships between dependent 

and independent variables.  Monthly water quality data were obtained from Truckee Meadows 

Water Reclamation Facility (TMWRF, www.tmwrf.com) for the period from January of 1995 

through December of 2007.  The data from January of 1997 through December of 2004 were 

used to fit the non-linear mixed model.  The data from January of 2005 through December of 

2007 were used to validate the fitted model through forecasting.  The data from January 1995 

through December 1996 were excluded from model fitting due to missing values.  The fitted 

non-linear mixed model was used as the objective function (TP is the objective variable) to find 

solution to NLLSQ minimization with respect to TP.  The developed model can provide 

guidance to probable range and type of TP load generated and deposited into the Truckee River.    

 

Study site 
 

The Truckee River can be best described as a river in northern Nevada and northern 

California, that is140 mi (225 km) long, originates from the mountains, south of Lake Tahoe, 

flows into the Lake Tahoe at its south end, drains part of the high Sierra Nevada, and empties 

into Pyramid Lake in the Great Basin (USEPA, 1991).  It flows generally northwest through the 
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mountains to Truckee, California, and then turns sharply to the east and flows into Nevada, past 

Reno and Sparks and along the northern end of the Carson Range.  The river passes through the 

Reno-Sparks metropolitan area, located in Nevada's Truckee Meadows.  A picture of Truckee 

River taken from down town Reno, Nevada is shown in Figure 1.  East of the Truckee Meadows, 

fourteen ditches remove water for irrigation.  The most significant diversion is Derby Dam, 

where at least 32% of the river's water is diverted annually (Peternel and Laurel, 2005).  

TMWRF currently maintains 11 continuous monitoring stations within the Truckee water 

system. These stations are located at: Mogul, SC, MB, NTD, LW, Patrick, Waltham, Tracy, 

Painted Rock, Wadsworth and Marble Bluff Dam.  The Lockwood (LW) monitoring site is 

currently chosen as the compliance site for assessing total maximum daily loads (TMDL) for 

phosphorus into the Truckee River because most controllable sources are thought to be upstream.  

LW monitoring site is located in the lower Truckee River basin 65.6 river miles from Lake 

Tahoe located down stream, of MB, NTD, and SC monitoring sites and Vista (www.tmwrf.com) 

(Figure 2; source: http://truckeeriverinfo.org/gallery).  

 

The problem 
 

Truckee River’s waters are an important source of drinking and irrigation along its valley 

and adjacent valleys.  As discussed previously, increased urbanization and the prevalence of 

water diversions have caused
 
a decline in water quality, and the resulting detrimental effects

 
on 

habitat have brought about the need to restore the
 
river to a more natural condition to improve 

habitat and
 
the river's overall health.  The water is quite clear near Lake Tahoe, but as it 

descends, the water turns muddy and concentrated in nutrients by the time it passes Reno, 

Nevada. The California State Water Resources Control Board (State board) has classified the 

middle reach of the Truckee River as “impaired”, under Section 330(d) of the Clean Water Act.    

 Total phosphorus concentration in Truckee River is affected by spatial as well as 

temporal variations.  Currently there is a need for a consistent, scientifically defensible approach 

for assigning nutrient criteria for Truckee River water, to control Eutrophication.  Until now, 

exceedances of TP in Truckee River, has been found to be the major cause of Eutrophication 

(EPA, 2007).  Recently, researchers are reporting other variables such as DO, SF, Temp and 

water pH to affect biomass activity and growth in the river.  However, the relationship of these 

variables to TP in the river has not been studied and not fully understood.  All the above factors 

that affect biomass in the river also directly or indirectly influence TP.  This inadequacy of 

information currently limits the ability of NDEP to revise these values (required for determining, 

use status for the 303(d), Impaired Waters List (Category 5 of the Integrated Report)) to impose 

criteria for nutrients (NDEP, 2007).  Subsequently implementing the beneficial use criteria is 

challenged because the beneficial use criteria focuses, on phosphorus (not nitrogen) for 

Eutrophication control. Phosphorus criteria are in the regulations.   

 It is beneficial to know the relationship of the multiple independent factors that affect 

biomass in the river to TP to implement nutrient criteria for phosphorus.  The TMDL compliance 

level for total phosphorus concentration for Truckee River is currently at 0.075 mg/L (214 

lb/day) set at the Lockwood (LW) monitoring site.  The Eutrophication problem still persists.  

May be this level of compliance needs be revised in terms of value and location.  Currently SC is 

the major contributor towards overall TP in Truckee River.   

 The total phosphorus concentration (TP), has been classified by the Environmental 

Protection Agency (NDEP, 1994) as a -conservative pollutant (conservative pollutants persist in 

the water segment of the aquatic environment over time remaining essentially constant in 
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concentrations), hence not expected to be perturbed by seasonal variations or other short term 

cyclical and non-cyclical variations in the system but varies directly with the volumes of flows of 

dischargers of the receiving water body.  However, it is possible that TP concentration in 

Truckee River can be affected by seasonal Agricultural practices such as fertilizer use and other 

cyclical and non-cyclical man made activities.  This classification needs revising too in the 

future.  These variations are site specific and a suitable method to evaluate the overall TP level in 

the River, based on the data collected at the diverse monitoring sites is currently lacking.  

Optimization with respect to TP can be beneficial here.    

 Given the criteria of using phosphorus concentrations to predict Eutrophication impairments, 

it is not known in many cases, if the phosphorus levels are actually impacting the beneficial uses, 

e.g. aquatic life, recreation, etc.  Some algae are a necessary component of the ecosystem, while 

excessive Algae can impact the beneficial uses in a variety of ways.  According to EPA (2000): 

“Algae are either the direct or indirect cause of most problems related to excessive nutrient 

enrichment, e.g. algae are directly responsible for excessive, unsightly periphyton mats or 

surface plankton scums, and may cause high turbidity, and algae are indirectly responsible for 

diurnal changes in DO and pH”.  The exact relationship among DO, pH, DOC and TP need be 

identified.       

 

        
Figure 1: Truckee River in Reno, Nevada           Figure 2: TMWRF Monitoring Stations 

 

Time series cross sectional regression 
 

Time series cross sectional (TSCS) data analysis have become increasingly popular over 

the last ten years especially in environmental sciences.  With TSCS data both cross-sectional and 

cross-temporal variation can be tested. But this theoretical power comes at the cost of 

methodological complexity. TSCS data structures invariably violate the standard Gaussian error 

assumptions underlying classical linear regression models.  Hence much effort is required to 

develop and test models that can handle this pitfall.  Early attempts in TSCS data analysis 

involve running feasible generalized least squares, estimating the variance covariance matrix of 

the errors using the ordinary least squares (OLS) method  (Parks, 1967).  A more sophisticated 

method known as the “panel corrected standard errors” (PCSE) has been the most common 

techniques for performing TSCS data analysis in the past few years (Parks, 1967).  Due to a 

variety of problems with PCSE (they cannot account for unit effects, costly in terms of degrees 

of freedom, misspecification of model), the modern approach to modeling TSCS data is Time 
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Series Cross Sectional Regression (TSCSREG).  The TSCSREG approach was used in this 

study.  

 

Non-linear programming  
 

 TP in Truckee River is affected by spatial as well as temporal variations.  Non Linear 

Programming (NLP) is an efficient way to identify the range of possible TP values in the river 

along several monitoring sites over a long period of time.  NLP involves optimizing (minimizing 

or maximizing) a continuous non-linear objective function )(xf  with n independent (decision) 

variables, T
nxxx ),...,( 1= subject to constraints.  Constraints include be: i) linear and nonlinear, 

ii) equality and inequality, and iii) lower and upper bound.  For example the optimization 

(minimization) of the objective function )(xf  can be expressed as solving: )(min xfnRx∈
subject 

to the following constraints:  

     ei mixc ,...,10)( ==  

     mmixc ei ,...,10)( +=≥  

     nilxu iii ,...,1=≥≥  

where ic 's are the constraint functions, and ii lu , ’s are the upper and lower bounds.  The 

above setting can be applied to real world problems to find optimal control values and/or 

maximum likelihood estimates as solutions to an identified objective equation or relationship.  

The NLP programming can handle the following problems: i) Non-linear LSQ minimization, ii) 

quadratic programming, iii) constrained optimization (minimization/maximization), iv) 

unconstrained optimization (minimization/maximization), and, v) linear complementarities. 

Optimizing (minimizing or maximizing) the objective function )(xf  with the quadratic (non-

linear) programming can be described as: bxgGxxxf TT ++=
2

1
)(min(max)  subject to 

constraints: ei mixc ,...,10)( == ; where )(xci ’s are linear functions.  In the above example: 

T
nggg ),...( 1= is a vector and b is a scalar of parameters, and G  is a ( nxn ) symmetric matrix.  

 The non-linear LSQ programming with the objective function )(xf to be minimized can 

be described as: { })(...)(
2

1
)(min 22

1 xfxfxf n++=  , {where )(),...(1 xfxf n  are nonlinear 

functions of x }, subject to the following constraints: ei mixc ,...,10)( == ; where the )(xci ’s 

are linear functions.     

In this study the Non-Linear LSQ (NLLSQ) minimization technique was used to find 

solutions to a previously identified objective function, among the dependent and independent 

variables, minimizing the objective variable (TP), subject to non-linear and linear constraints and 

boundary values.  Solution to NLLSQ minimization was obtained using SAS® software using 

the Quasi-Newton optimization algorithm (it is the only optimization algorithm which supports 

the use of non-linear constraints), and the Lagrange Multiplier Method (LMM) of solution.  

Objective function and the constraints were specified algebraically using SAS® programming 

statements.    

Method of least squares 
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The method of least squares (LSQ) is a method of fitting data in regression analysis.  In the 

LSQ method best fit of a model is obtained with the least value of the sum of squared residuals 

(SSR).  Parameters of the model function are adjusted to best fit a data set.  For example, for a 

simple data set consisting of N  data points (data pairs) ( )Niyx ii ,...,1,, = , where ix  is an 

independent variable and iy is a dependent variable (whose value is found by observation), the 

model function has the form: ),( βixf , (where X is a matrix of independent variables and 

M adjustable parameters are held in the vector β ).  The LSQ method is the "best" fit when the 

SSR ∑
=

=
N

i

ir
1

2  is the minimum.  The residual ( ir ), is the difference between the values of the 

dependent ( iy ) variable and the predicted values from the estimated model as: )(
^

βiii xfyr −= .   

Non-linear least squares 

One major problem with the application of LSQ methods is that there is no closed form 

solution with LSQ method to non-linear systems.  Instead, numerical algorithms are used to find 

the value of the parameters ( β ), that minimize the objective function.  Most algorithms involve 

choosing initial values for the parameters. The parameters are refined iteratively, that is, the 

values are obtained by successive approximation as:  

  j
b
j

b
j βββ ∆+=+1         (1) 

In Eq. [1], b  is an iteration number and jβ∆ is the vector of increments known as the shift 

vector.  Many solution algorithms for non-linear LSQ problems require that the Jacobian be 

calculated.  The analytical expressions for the partial derivatives are complicated and impossible 

to obtain, hence the partial derivatives must be calculated by numerical approximation.   

 

OBJECTIVES 

 

1. To develop a non-linear mixed model to closely predict total phosphorus  

concentration as a function of multiple independent variables from several monitoring 

sites in Trucker River in Nevada.   

2. To find solution and parameter estimates for the developed non-linear mixed model 

through non-linear least squares minimization. 

 

LITERATURE REVIEW 

 

  Because of the endangered species present and due to the fact that Lake Tahoe Basin 

comprises the headwaters of the Truckee River, the river has been the focus of several water 

quality investigations, the most detailed starting in the mid-1980s. Under the direction of the 

U.S. Environmental Protection Agency, comprehensive dynamic studies have been undertaken to 

study the impacts of a variety of land use and wastewater management decisions throughout the 

3120 square mile Truckee River Basin and also to provide guidance to other U.S. river basins 

(USEPA, 1991).  Analytes mostly addressed include nitrogen, phosphorus, dissolved oxygen, 

and total dissolved solids.  Impacts upon, the receiving waters of Pyramid Lake has also been 

analyzed (Truckee River Geographic Response Plan, 2005). 
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Nitrogen and phosphorus are the main nutrients that cause excessive algal growth in Truckee 

River (EPA, 2000).  Elevated phosphorus loads have encouraged the proliferation of aquatic 

plants and benthic algae. Respiration by these plants and the decay of their associated detritus 

decreases dissolved oxygen (DO) in the water column, resulting in violations of the DO standard. 

Violations of the in-stream DO standard have continued in spite of recent nutrient removal 

enhancements by the TMWRF (NDEP, 1993).   

However, the use of nutrient concentrations alone are poor predictors of assessing 

Eutrophication impacts (Tetra Tech (2005). Dodds and others, (2002) found by examining data 

from over 600 streams that nutrients concentrations to account for less than half of the variance 

in the benthic algae biomass.  They speculated that other factors, such as flow, light availability, 

channel conditions, and grazing, were responsible for the remaining variability.  In a detailed 

study of Colorado streams, Lewis, Jr. and McCutchan (2005) found even less of a relationship 

between nutrient concentrations and benthic biomass, with dissolved inorganic nitrogen 

accounting for only 15% of the variance.  No statistically significant relationship was found 

between benthic biomass and other nitrogen and phosphorus species.  

According to Biggs (2000) 62 percent of the variance in peak biomass was explained by the 

time since the last flood event.  Increased water temperature can increase biological activity, 

including algae growth (Tetra Tech, 2002).  However, Cladophora algae, has been found to die-

off at temperatures exceeding 23.5 °C (Dodds and Gudder, 1992).  These die-off events can lead 

to low dissolved oxygen levels as the algae decay. On the other hand, lower temperatures can 

lead to lower algal biomass.  Lewis, Jr. and McCutchan, Jr. (2005) identified an inverse 

relationship between periphyton biomass and elevation, therefore a positive relationship between 

biomass and temperature. 

  

METHODS 

 

Data integrity testing 

 

Autocorrelation 
 

The assumption of residual independence when fitting regression models for time series data 

(data collected at discrete time intervals) requires, that the time ordered error terms display no 

autocorrelation.  Whenever the errors corresponding to observations across time periods are not 

independent an autocorrelated error structure occurs.  Such serially correlated errors (known as 

autocorrelation) speak about the linear dependence between observations (Box and Jenkins, 

1976).  Time series data must be corrected for autocorrelated errors before fitting any regression 

model with it (Parks, 1967).  Autocorrelation function (ACF) plots can reveal the presence of 

autocorrelated errors in a series.  ACF plots list the estimated autocorrelation coefficients of the 

series at each time lag.  If the autocorrelation coefficient is statistically significant at a certain 

time lag it indicates the presence of significant autocorrelation at that time lag.  Presence of 

autocorrelation in a series can also be tested using standard tests procedures such as Chi-Square 

tests at specific time lags with a previously specified significance level.  In this study Chi-Square 

tests with 5% level of significance were performed at selected time lags (6, 12, 18, & 24) to test 

the data for the presence of autocorrelation in the series.  An AR(1) covariance structure was 

used to correct the data for autocorreled errors.  The AR(1) process predicts the future as an 

immediate past.   
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Outliers and influential observations 
 

On the balance of probabilities, an observation beyond, 2.0 standard deviations (SD) from 

the mean need to be highlighted for follow-up investigation to identify causes such as 

intervention, and recording errors (Salas and Obeysekera, 1988).  Only the most extreme 

observations (4.0 or more SD from the mean) need to be excluded from the analysis.  In this 

study all time series variables were tested and corrected for the presence of outliers and any 

influential observations.  No observations with values above 4.0 SD from the mean were 

observed in any of the variables in the data.  All observations were included in the analysis.  The 

observations above 2.0 SD from the mean of TP (0.305 mg/L) were recorded as influential and 

the intervention in response (TP) due to these influential observations were computed and 

included in the analysis as a dummy variable (X1).     
 

Data non-stationarity 
 

All time series regression models require that the time series modeled is stationary.  It 

reveals whether the variations in a time series are likely to be permanent or temporary.  A time 

series (Xt, t (time)=0, ±1, ±2,….) is said to be stationary if it has statistical properties similar to 

those of the time-shifted series (Xt+h , t=0, ±1, ±2,….) for each integer h.  Strict stationarity of a 

time series {Xt, t=0, ±1, ±2,….) implies that the series {X1, ….Xn} and the time shifted series 

{X1+h,…Xn+h} having the same joint distributions for all integers h and n > 0.  Usually second 

order stationarity is adequate for modeling water quality time series (Fuller and Tsokas, 1971).  

For a second order stationary process the mean is constant and the auto-covariance function 

depends only on the time lag, which is consistent with a normal process.  In this study the 

original time series variables were found to be non-stationary at 5% level of significance.  The 

formal Dicky and Fuller unit root non-stationarity test (Fuller, 1978) was used to test the data for 

non-stationarity (Appendix: SAS® Code 1).  First differencing of the time series was found 

adequate to correct the data for non-stationarity.  Data was made consistent with a normal 

process through first differencing (constant mean and the auto-covariance dependent only on 

time lags).      
 

Unobserved variation 
 

Unobserved variations in a time series such as seasonal variation, trend, and other long 

and/or short term cyclical and/or non-cyclical variations due to any man-made intervention can 

influence regression analysis.  In this study the unobserved variance components (seasonality, 

cycles, trend) in the original TP time series during the period from January 1995 through 

December 2004 were decomposed and their significance were tested at 5% level of significance 

using standard Chi-square tests (Appendix: SAS® Code 2).  Since variations in TP due to all 

three unobserved components were significant (p<0.05), seasonal variations in TP (Summer, 

Winter), and possible intervention due to influential observations (X1) were computed as shown 

below and included in the analysis as explanatory variables.  A value equal to 1 was recorded for 

the variable if the variable satisfied the following definition and recorded as equal to zero 

otherwise.   

   X1    =  ‘intervention’ 

 Summer  =   ‘summer months’ 

 Winter     =  ‘winter months’ 

        X1    =  TP > 0.305 

 Summer  =  ( 5 < mm < 11 ) * ( year > 1990 );  
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 Winter     =  ( year > 1990 ) - Summer; 
 

Missing values 
 

Time series regression modeling requires data be without missing values.  Missing values 

for any observation in any of the decisions variables can lead to missing values in the objective 

function.  In this study after observing missing values in several of the variables missing values 

in the data were imputed through Marcov Chain Monte Carlo (MCMC) simulation using 

multiple chains (Schafer, 1997; Schafer, 1999) before fitting the non-linear mixed model 

(Appendix: SAS® Code 3).  MCMC simulation involves sampling from probability distributions 

based on constructing a Markov chain that has the desired distribution as its equilibrium 

distribution.  After multiple steps the state of the Marcov chain becomes the sample from the 

desired distribution.  Since initial values for decision variables were used no problem with 

missing values were encountered during least squares minimization of TP.   
 

Correlations and multicollinearity 
 

All regression models including time series regression models require that the independent 

variables are not correlated.  When a regressor is nearly a linear combination of other regressors 

in the model, the affected estimates are unstable and will have high standard errors. This problem 

is called variance inflation or multicollinearity.  Data were tested for multicollenearity among 

independent variables.  Variance inflation factors for the independent variables were obtained 

through fitting a linear multiple regression model for the dependent (TP) and the independent 

variables (Appendix: SAS® Code 4).  A VIF value larger than 5 was taken to indicate the 

presence of multicollinearity in the variable.  Simple Pearson correlation coefficients among the 

independent variables were also obtained along with significant probabilities at 5% level of 

significance.      
 

Displaying the observed data 
 

Histograms were constructed of original and the first differenced time series with a normal 

curve superposed.  A bar chart of means TP levels observed at each site with lines superposed 

with values of overall mean TP and the compliance level for TP was created.  Simple mean plots 

showing annual variations in TP at each site were plotted along with lines showing the 

compliance level for TP and the mean of observed overall TP in Truckee River superposed.  Box 

plots of the distribution of each observed dependent and independent variable by site after 

counting the missing values separately for each variable at each site were developed (Appendix: 

SAS® Code 5).  Scatter plots were constructed to display the observed relationships between the 

dependent and each observed independent variable and for detecting influential and/or outlying 

observations.     
 

Software used in analysis 
 

SAS® software was used to perform all the analyses and to generate all the plots and tables 

presented in this paper except Figure 1 and Figure 2.  Figure 1 is a photograph taken of Truckee 

River in Reno.  Figure 2 was obtained from http://truckeeriverinfo.org/gallery.   
 

Cross sectional regression 
 

A time series cross sectional multiple regression model between the dependent variable (TP) 

and the independent variables were fitted to the data to identify the significance of contribution 

of the individual sites towards overall TP in the Truckee River.  Estimates of parameters with 
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probabilities were obtained as output from the model (Appendix: SAS® Code 6).  Diagnostic 

statistics were tested for model adequacy.     

Fitting non-linear mixed model   
 

The relationship between the dependent and the independent variables were best fit into a 

non-linear mixed (NLMIXED) model.  The NLMIXED model is a multiple regression equation 

that incorporates non-linearity in the dependent variables and/or one or more regression 

parameters (Harville, 1988; Searle, 1988).  As the name implies the mixed model includes and 

solves for both the fixed (overall mean) and the random (site specific) effects in the relationship 

(Searle and others, 1992).  The exact linear or non-linear relationships between dependent 

variable (TP) and the independent variables and the regression parameters were identified during 

model development.  An alpha level of 0.01 (1%) was used for parameter estimation and all 

hypothesis testing during model fitting.  Significant probabilities (Pr>|t|<0.01) of parameter 

estimates (lower the better), and hypothesis testing were used as criteria for selecting the best 

relationship between the dependent and independent variables, and the regression parameters.      

 Appropriate model diagnostic statistics (AIC, AICC, BIC and Log likelihood ratio, Akaike 

(1974); Buse (1973)) were used as criteria for checking for the adequacy of the fitted NLMIXED 

model for the data (Appendix: SAS® Code 7).  Normal distribution was assumed for both fixed 

and random effects in the model.  Estimates of parameters obtained from a best fitted linear 

mixed model to the same data in a previous study (Ragavan, 2008) were used as initial values for 

estimation of parameters of independent variables in the NLMIXED model in this study.  

Missing values generated in the data due to first differencing were automatically removed from 

the analysis during model fitting.  Best parameter estimates, probabilities and the diagnostic 

statistics as well as model residuals from the best fitted NLMIXED model were obtained as 

output.   
 

Least Squares Minimization 
 

The NLMIXED model thus fitted was used as the objective function which was minimized 

with respect to TP through NLLSQ minimization.  Solution to the objective function was 

obtained subject to non-linear and boundary constraints through NLLSQ minimization technique 

(Appendix: SAS® Code 8).  Quasi-Newton optimization algorithm with the method of Lagrange 

Multiplier was used to obtain the NLLSQ minimization solution to the objective function.  

Gradient and the Jacobian of non-linear constraints were computed through Finite Differences. 

Average values of decision (independent) variables were used as initial values.  Appropriate 

boundary and non-linear constraints for all decision variables were specified as algebraic 

program statements.  Estimates of parameters obtained from the fitted NLMIXED model were 

used as initial values for estimation of parameters during NLLSQ minimization.  This way 

minimization solution to the objective function was obtained very fast within few seconds.  

Lagrange multipliers used in the minimization process, gradients and solutions to the objective 

and Lagrange functions, and, parameter estimates after NLLSQ minimization were obtained as 

output from the model.  Solutions to the objective and Lagrange functions for individual sites 

were also obtained.  These values were compared to the overall observed mean TP and the 

compliance level for TP in Truckee River.  Parameter estimates of the objective function from 

NLLSQ minimization were considered as final in the model.      
 

Forecasting and sensitivity analysis 
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The model thus built was used to obtain monthly forecasts for TP for the period from 

January 2005 through December 2007.  Forecasted TP values were plotted along with observed 

TP values.  Diagnostic statistics from the final selected model were analyzed for model adequacy.  

Residual from the model were tested for all assumptions of residuals.       

 

RESULTS AND DISCUSSION 

 

Data integrity   
 

The original TP time series in Truckee River, Nevada was non-linear, and not normal (Figure 

3) and had significant autocorrelation at the tested time lags (6, 12, 18, 24) at 5% significance 

level (p<0.0001) (Table 1).  After applying first differencing, the TP time series became consistent 

with the normal distribution (Figure 4) (constant mean and auto covariance function dependent 

only on time lags).  The first differenced TP series was also devoid of any autocorrelations.  

There were significant positive Pearson correlations between DOC and STP (0.729, 

p<0.0001), DOC and alkalinity (0.593, p<0.0001), and STP and alkalinity (0.749, p<0.0001).  

There were significant negative correlation between DO and Temp (-0.788, p<0.0001).  Pearson 

correlations among all other independent variable pairs were not significant at 5% level.  No 

multicollenearity were detected among any of the independent variables.  Variable STP showed 

the largest variance inflation factor (VIF) equal to 3.47 which is less than the VIF required (= 5) 

for multicollinearity to occur.  All other variables had VIF values less than 3.0 indicating no 

multicollinearity among the independent variables in the data.     

 

Simple statistics     
 

 The mean (standard deviation[SD]), minimum, maximum and the median of the observed 

TP series over all sites were 0.117 mg/L (0.096), and 0.001 mg/L, 0.512 mg/L and 0.127 mg/L.  

The mean TP over all sites was above the compliance level (Figure 5 [SD are shown within 

brackets]).  Mean TP at site SC (0.252[0.093] mg/L) was the largest followed by at NTD 

(0.208[0.092] mg/L).  The mean values were much above the compliance level (0.075mg/L) at 

these two sites.  Site MB showed the lowest mean TP value (0.027[0.088] mg/L).  Mean annual 

variations in TP showed almost the same trend at all sites (Figure 6).  Annual mean TP, were at 

or below the compliance level during the period between 1997 and 2000, increased largely above 

compliance level between the period from 2000 until 2002, and decreased thereafter until 2004 

(Figure 6).  Thirty five out of the 576 original observations (5.6%) had TP values above 2-SD 

from the mean (> 0.305 mg/L).    

Simple statistics of independent variables (mean, SD, minimum, and maximum) taken over 

all sites are shown in Table 2.  Variable SF showed larger SD than the mean indicating the 

presence of influential observations.  Mean SF was high (643.8, [SD= 900.9] cubic feet per 

second [cfs]).  However, SF in Truckee River was less than the overall mean, 72% of the time 

during the study period.  Mean STP was high too (0.1 [SD=0.1] mg/L).  Mean DO was equal to 

10 mg/L (SD =1.8mg/L) which is much above the compliance level for DO (5 mg/L) in Truckee 

River.  DO in Truckee River exceeded the compliance level 99% of the time and exceeded the 

overall mean DO, 54% of the time during the study period.    
 

Location and variance information by sites  
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The location and variance information of dependent and independent variables among sites 

are shown as Box plots (Figures 7a through 7f)).  Mean SF values did not vary significantly 

among sites.  All sites showed very small variable response to SF with 50 percent of the 

observations having values within 500 cfs.  Site SC showed the least variable response to SF with 

50 percent of the observations within 50 to 60 cfs (Figure 7a).   

 

        
  Figure 3: Histogram of the observed TP        Figure 4: Histogram of the first differenced TP 
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    Figure 5: Observed mean TP by sites          Figure 6: Annual variations in observed TP  

    

There were no significant differences among sites in mean DO values.  Mean DO values 

were above 7.5 mg/L at all sites with 50% of the observations showing DO values within 3 mg/L 

(Figure 7b).  Site SC showed the lowest mean DO.  

 

         Table 1: Autocorrelation check for white noise for observed TP series 
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Table 2: Simple statistics of independent variables over all sites 

 

     

There were significant differences in mean DOC and mean STP among sites.  Sites NTD 

and SC showed significantly larger mean DOC and mean STP values than the other sites.  Site 

NTD showed the largest variation in STP and DOC (Figures 7c and 7d respectively).  The mean 

and the variability of STP (Figure 7d) was the same as that of TP (Figure 7g) at all sites. 

 

 

                           
 

             
    Figure 7a: Box plot of observed SF by site      Figure 7b: Box plot of observed DO by site 
 

 

              
   Figure 7c: Box plot of observed DOC by site    Figure 7d: Box plot of observed STP by site 
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Differences in mean pH or mean Temp among sites were not significant (Figures 7e and 7f).  

All sites showed large variability in water temperature (Temp) (Figure 7f).  Site SC showed the 

smallest pH variability but the largest mean pH compared to other sites.  The location and 

variance information of TP by site and by year is shown in Figure 7g, and, Figure 7h 

respectively.  Site NTD showed the largest variation in TP followed by SC.  Variations in TP 

were much smaller in others sites.  Site MB showed the smallest variation in TP.  Annual means 

were almost constant.  Variations in mean TP increased after 2000.   
 

 

            
   Figure 7e: Box plot of observed pH by site      Figure 7f: Box plot of observed Temp by site 
 
 

Cross sectional regression analysis 
 

Contribution of individual sites to overall TP in Truckee River was significant at 5% level of 

significance for all sites (p<0.0001) (Table 3).  All sites contributed positively towards overall 

TP in the Truckee River.  Site SC contributed the largest (0.2517, p<0.0001) followed by site 

NTD (0.2017, p<0.0001).  Site MB although contributed the smallest, was a significant 

contributor (p<0.0001) towards overall TP.  The fitted cross sectional regression model was 

highly significant (p<0.0001) at 5% level of significance.  The sites with smaller variations (DD, 

LW, MB, and WB) in TP could contribute significantly towards overall TP in the river.         
 

 

           
   Figure 7g: Box plot of observed TP by site       Figure 7h: Box plot of observed TP by year 

 

Observed relationships among TP and independent variables 
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The observed relationship of DOC, STP and alkalinity to observed TP were linear and 

positive (Figures 8b, 8c and 8g respectively).  The relationship of observed DO, Temp and SF to 

observed TP were non-linear and negative (Figures 8a, 8e and 8f respectively).  The relationship 

of observed water pH to observed TP could not be predicted from the scatter plot although 

appeared to be positive (Figure 8d).  

  

        
      Figure 8a: Observed TP versus DO            Figure 8b: Observed TP versus DOC 

 

        
     Figure 8c: Observed TP versus STP           Figure 8d: Observed TP versus pH 
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       Figure 8e: Observed TP versus Temp      Figure 8f: Observed TP versus SF  

 

Unobserved variations in original TP time series 
 

The unobserved components (trend, seasonality, cycles) of observed TP were significant at 

5% level of significance (p<0.05).  The trend over time of TP in Truckee River was slowly 

increasing up until 1998 with values below the overall mean TP, increased suddenly between 

January 1999 and January 2000 with values above overall mean TP, and increased thereafter 

with values above the overall mean TP until the end of the study period (December of 2004) 

(Figure 9).  Seasonal variations in TP were periodic with a period equal to 12 months (Figure 

10).  A significant (p<0.05) long term cyclical variation (period ~12 months) existed in the TP 

series which could be due to man-made intervention (Figure 11).  

The above results indicate that TP in Truckee River is significantly subject to seasonal 

variations and man-made activities.  These variations must be included when fitting any models 

to predict TP in Truckee River.    

 

            
  Figure 8g: Observed TP versus Alkalinity         Figure 9: Trend component of observed TP 

 
 

            
    Figure 10: Seasonal component of       Figure 11: Cyclical component of      

                      observed TP          observed TP         

             

Non-linear mixed modeling 
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Table 3: Significance of contribution 

of individual sites to overall TP 

A negative exponential relationship was identified between observed DO and TP which was 

highly significant at 1% level of significance (p<0.0001).  A negative logarithmic relationship 

was identified between observed SF and TP which was significant at 1% level of significance 

(p=0.0046).  An inverse negative relationship was identified between observed Temp and TP, 

which was almost significant at 1% level of significance (p=0.0155) (Table 4).  

The parameter estimates for DOC (p=0.0148) and the non linear temperature variable (1/{1-

Temp}) (p=0.0155) were significant at the 5% level, and almost significant at 1% level, hence 

were not excluded from the final NLMIXED model.  Parameter estimates for seasonal variations 

(Summer) and the man-made intervention (X1) were periodic (period=12 months), positive, and 

highly significant (p<0.0001) at 1% level of significance. 
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               Figure 12: Overall observed TP against  

                                                                                    TP predicted by the NLMIXED model  

      
           Table 4: Parameter estimates and probabilities from the NLMIXED model  
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Water pH, STP and alkalinity showed positive, linear, highly significant parameter estimates 

(p<0.0001) at 1% level of significance (Table 4).   

All the independent variables studied were included in the objective function as decision 

variables.  Significant non-linearity was identified in the parameter of DO (p<0.0001) and SF 

(p<0.0001).  An exponential parameter for DO and a logarithmic parameter for SF fitted the 

model best.  According to the above results variations in TP in Truckee River is influenced 

significantly by non-linearity in its relationship with the independent variables.   

Predicted mean (SD value is shown within brackets), minimum, maximum, and, median TP 

over all sites from the NLMIXED model were 0.113 (0.089) mg/L, 0.017 mg/L, 0.489 mg/L, and 

0.076 mg/L respectively.  Predicted mean and the maximum TP values agreed well with the 

observed mean and maximum TP values respectively.  Predicted minimum TP (slightly larger) 

and the predicted median TP (slightly smaller) were slightly deviant from observed minimum 

and median TP values.  Predicted mean TP values at individual sites along with observed mean 

TP values are shown in Table 4 (SD are shown within brackets).   

The best fitted NLMIXED model explained 96.7 % of the total variation and predicted 

observed TP very closely (R
2
=0.908; n=576 before first differencing) (Figure 12).  The mean TP 

values predicted by the NLMIXED model at individual sites also closely agreed with observed 

mean TP values (Table 5).  However, the predicted TP values were slightly underestimated at 

SC, and were slightly overestimated at NTD and LW by the NLMIXED model (Table 5).  Mean 

TP at sites SC and NTD were significantly larger than that at other sites.  A box plot of the 

model predicted TP by individual sites is shown in Figure 13.  Site NTD showed the largest 

variation in predicted TP, while MB showed the smallest mean predicted TP and the smallest 

variation in predicted TP.  The mean and variation information for predicted TP by year are 

shown in Figure 14.  Mean annual predicted TP is almost constant.  Variations in predicted TP 

are slightly larger than that of observed TP.    
 

Non linear least squares minimization  
 

The objective function used in the NLLSQ minimization is shown in Equation 1.  The 

boundary values and non-linear constraints used in the minimization process are listed following 

the objective function.  Solution to NLLSQ minimization for the objective function was 0.0694 

mg/L which is below the current compliance value for TP set at LW.  This value is also below 

the mean observed TP and the mean predicted TP over all sites.  Solutions for individual sites 

were below the observed mean TP values at the respective sites.  Solution to the respective 

Lagrange function was negative (-0.0684).  Gradients for the objective and the Lagrange 

functions were close to zero for all parameters.  Parameter estimates after NLLSQ minimization 

were same as that obtained from the NLMIXED model for all variables.  Hence the parameter 

estimates and from the NLMIXED model, were accepted as final values.  The solutions to 

objective and Lagrange functions for individual sites are shown in Table 6.  NLLSQ 

minimization solution to objective function at sites SC and NTD were above the overall 

compliance level for TP in Truckee River.  These two sites require better management practices 

towards reducing overall TP loading into the Truckee River.   
 

The Objective function 

 

TP =   beta1  +  beta2 * DOC + (EXP(-beta3*DO)) + ((LOG(beta4
2
) * LOG(SF))  
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          + beta5 * pH  +  beta6 * STP + beta7 * (EXP(Summer-12)) + beta8 *               

        (EXP(X1-12)) -  beat9 * (1/(1-Temp)) + beta10 * Alkalinity             (2) 

 

Boundary values: 

   -3.2E-10 ≤ beta3 ≤ 3.2E-10. 

   0 < beta7 ≤ 1.  

                         0 < beta8 ≤ 1.   

   

Where beta3, beta7 and beta8 are coefficients for DO, seasonality variable (Summer), and, 

the intervention variable (X1).    

 

Non-Linear Constraints: 

         -5 ≤  LOG(SF) ≤  5  

   6.14421E-06 ≤  EXP(Summer-12)  ≤  1.67017E-05. 

          6.14421E-06 ≤  EXP(X1-12)  ≤  1.67017E-05.  

   1 ≤ EXP(DO) ≤  1.586E+15. 

             1 ≤  pH  ≤  14.  

   0 ≤  DOC  ≤  100. 

   0 ≤  STP ≤  5. 

   0 ≤  Alkalinity  ≤  500. 

   (1-Temp) ≠  0 

  
   Table 5: Observed and predicted mean (SD)   

                TP at sites along with overall TP     

             
                             Figure 13: Box plot of predicted TP by site 
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Table 7: Diagnostic statistics of the 

best fitted non-linear mixed model 

Table 6: Solution to objective and 

Lagrange functions at individual 

sites 

       
  Figure 14: Box plot of predicted TP by year             Figure 15: Objective function for TP  

Model validity  
 

Diagnostic statistics obtained from the best fitted NLMIXED model were sufficiently low 

(Table 7).  The Residuals from the best NLMIXED model did not show any significant pattern 

(Figure 16).  The residuals also did not show any particular relationship to the observed and/or to 

the predicted TP (Figure 17).  The residuals were normal.   

 

Forecasting using fitted model 
 

Forecasted TP values from the final NLMIXED model closely agreed with observed TP for 

the forecast period (January 2005 to December 2007, n=36) (Figure 18).  The observed (0.1386 

[SD=0.045] mg/L) and forecasted (0.1373 [SD=0.027], mg/L) mean TP values during the 

forecast period agreed well.  Forecasted TP decreased from January 2005 to May 2005, and 

increased from June 2005 until December 2005.  Forecasted TP also decreased during the period 

between January 2006 and December of 2006, and increased thereafter until December 2007.   

 

   

 

 

 

               
 

 
   

OPTIMIZED MODEL FOR TP IN TRUCKEE RIVER

SF1=LOG(SF)  

Summer1=EXP(Summer-12)

X11=EXP(X1-12)

Temp1=(1/(1-Temp))

TP = -0.3973 + 0.005812*DOC – EXP(-

7.495*DO) - 0.00883*SF1 + 0.03741*pH 

+ 1.2065*STP + 0.1*Summer1+ 

0.03674*X11 -0.01616*Temp1 + 

0.00039*Alkalinity

OPTIMIZED MODEL FOR TP IN TRUCKEE RIVER

SF1=LOG(SF)  

Summer1=EXP(Summer-12)

X11=EXP(X1-12)

Temp1=(1/(1-Temp))

TP = -0.3973 + 0.005812*DOC – EXP(-

7.495*DO) - 0.00883*SF1 + 0.03741*pH 

+ 1.2065*STP + 0.1*Summer1+ 

0.03674*X11 -0.01616*Temp1 + 

0.00039*Alkalinity
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         Figure 16: Pattern of model residuals             Figure 17: Residuals against observed TP   
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                            Figure 18: TP forecasted by the NLMIXED model along   

                            with observed TP (January 2005 through December 2007)  

 

  

CONCLUSIONS 

 

Trend of observed TP in Truckee River is significantly on the increase.  Currently SC is the 

major contributor of TP to Truckee River followed by NTD.  TP loading from these two sites 

require careful monitoring to reduce build up of TP and subsequent Eutrophication in Truckee 

River.  The non-linear objective function built for TP in this study predicted TP closely 

(R
2
=0.908) and forecasted the original TP in Truckee River closely accurately explaining 96.7 

percent of the total variation in TP.  Parameter estimates of all the independent variables studied 

were significant at 1% significance level (p<0.01) except the non-linear variation of water 

Temperature which was significant at 5% and was almost significant at 1% level (p=0.0155).   

Results indicate that TP in Truckee River can be predicted accurately as a function of the 

seven independent variables studied.  Since non-linearity in the relationship of the independent 

variables to TP can be a significant contributor toward prediction, nonlinear mixed modeling is 
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an appropriate way of modeling the relationship of independent variables to TP, which can 

explain both the random and the fixed effects in the relationships. .          

As predicted by the model, the relationships of SF, DO and water temperature to TP are 

non-linear and negative.  TP in Truckee River are also affected by significant seasonal variations, 

and significant cyclical man-made intervention events.  These variations must be taken into 

account when fitting a model to predict and forecast TP values in Truckee River.  Non-linear 

LSQ minimization provided just one solution, reproduced the fitted NLMIXED model exactly 

and gave reasonably accurate solutions for TP at all sites.  Non-linear optimization is an efficient 

approach to predict possible and accurate range of TP values in Truckee River close to their 

target sites. The NLLSQ minimization solution of the objective function (0.069 mg/L) for TP is 

below the current compliance level for TP (0.075 mg/L) at LW which indicates a need for 

revising the existing criteria for phosphorus loading into the river for lowering Eutrophication.        

 

 

REFERENCES 

 

Akaike, H., 1974, A new look at the statistical model identification, IEEE trans.: Autom. Control 

AC-19, p. 716-723.  

Box, G.E.P., and Jenkins, G.M., 1976, Time series analysis forecasting and control, (2
nd 

ed.):  

Holden-Day, San Francisco, Ca.  

Buse, A., 1973, Goodness of fit in generalized least squares estimation, American Statistician, v.  

27, p. 106-108.  

DaSilva, J.G.C., 1975, The analysis of cross-sectional time series data, Ph.D. dissertation,  

Department of Statistics, North Carolina State University.  

Dodds, W.K., Smith, V.H., and Lohman, K., 2002, Nitrogen and phosphorus relationships to  

benthic algal biomass in temperature streams, Can. J. Fish. Aquat. Sci., v. 59, p. 865-874. 

Dodds, W.K., and Gudder, D.A., 1992, The Ecology of Cladophora, Journal of Psychology, v. 28,  

n. 4, p. 415-427. 

Fuller, W., 1978, Introduction to time series, New York: John Wiley & Sons, Inc.  

Harville, D.A., 1988, Mixed-model methodology: Theoretical justifications and future directions,  

Proceedings of the Statistical Computing Section, American Statistical Association,  

New Orleans, p. 41-49.  

Lewis, W.M. Jr., McCutchan, Jr., J.H., December 2005, Environmental thresholds for nutrients  

in streams and rivers of the Colorado Mountains and Foothills Report.   

NDEP, 1994, Truckee River final total maximum daily loads and waste load allocations: Nevada 

Division of Environmental Protection, Carson City, Nevada.  

NDEP, 2007, Nevada’s nutrient assessment protocols for Wadeable streams: Nevada Division of  

Environmental Protection, Carson City, Nevada. 

NDEP, 1993, Truckee river strategy: Nevada Division of Environmental Protection, Carson City,  

Nevada. 

Parks, R.W., 1967, Efficient estimation of a system of regression equations when disturbances  

are both serially and contemporaneously correlated, Journal of the American Statistical  

Association, v. 62, p. 500-509.  

Peternel, K., and Laurel, S., May 15-May 19, 2005, Truckee River Restoration Modeling, World 

Water and Environmental Resources Congress. Anchorage, Alaska, USA.  

Ragavan, A., 2008, Data Mining Application of Non-Linear Mixed Modeling in Water Quality  

688



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010   

 

 23 

Analysis, Proceedings of the Data Mining and Predictive Modeling Section, SAS®  

Global Forum, San Antonio, TX, Paper 140-2008.  

Salas, J.D., and Obeysekera, J.T.B., 1988, ARIMA models Identification of Hydrologic Time  

Series, Water Resources Research, v. 18, no. 4, p. 1011-1021. 

Schafer, J.L., 1999, Multiple Imputation: A Primer, Statistical Methods in Medical Research, v.  

8, p. 3-15.  

Schafer, J.L., 1997, Analysis of Incomplete Multivariate Data, New York: Chapman and Hall.  

Searle, S. R., 1988, Mixed Models and Unbalanced Data: Wherefrom, Whereat, and Whereto?,  

Communications in Statistics - Theory and Methods, v. 17, n. 4, p. 935-968.  

Searle, S.R., Casella, G., and McCulloch, C.E., 1992, Variance Components, New York: John  

Wiley & Sons, Inc.  

Tetra Tech Inc., 2005, Technical Approach to Develop Nutrient Numeric Endpoints for  

California, U.S. EPA Region, IX. 

Truckee Meadows Water Reclamation Facility: www.tmwrf.com 

Truckee River Geographic Response Plan, 2005: 

http://ndep.nv.gov/bca/emergency/truckee_river_plan05.pdf 

USEPA, 1991, Guidance for water quality-based decisions: The TMDL process EPA 440/4-91-

001, U.S.EPA, Office of Water, Washington, DC.  

USEPA, July 2000, Nutrient Criteria Technical Guidance Manual: Rivers and Streams, 

U.S.EPA-822-B-00-002. 

USEPA, March 2007, N-Steps: http://n-steps.tetratechffx.com/NTSCHome.com 

689



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010   

 

 24 

APPENDIX 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAS® CODE  1 
 

PROC ARIMA DATA=Monthly; 

IDENTIFY VAR= TP 

STATIONARITY=(ADF=(1,2,4,6,12));  

RUN; 

 

DATA Monthly; SET Monthly;  

 TP =DIF(TP); 

RUN; 

 

SAS® CODE  4 
 

DATA Monthly; SET Monthly; 

sflog=Log(ABS(SF));doexp=EXP(DO2); 

summer1=exp(summer-12); x11= exp 

(summer-12); Temp1=(1/(1-Temp)); 

RUN;  

PROC REG DATA=Monthly; 

MODEL tp= sflog doexp DOC STP pH 

Alkalinity Temp1 X11 Summer1 /VIF; 

RUN; 

PROC CORR DATA=comp; 

VAR SF DO2 DOC STP Alkalinity pH 

Temp; 

RUN; 

SAS® CODE  5 
 

PROC MEANS DATA=Monthly NOPRINT; 

      VAR TP; 

      BY site; 

OUTPUT OUT=Cancel NMISS=ncancel; 

 

 DATA Comp; 

      MERGE Monthly Cancel; 

      by site; 

RUN;  

    symbol1 v=plus    c=black; 

    symbol2 v=square   c= red; 

    symbol3 v=triangle  

 c=yellow; 

TITLE 'Distribution of Original 

TP Among Sites'; 

 

PROC BOXPLOT DATA=Comp; 

    

PLOT TP *site = ncancel / 

   boxstyle = schematicid 

   cboxes=blue cboxfill = red  

   cframe=vligb nohlabel  

   symbollegend = legend1 

   notches; 

   legend1 label=('Missing    

 Values:') 

 cborder = black cframe=ligr; 

 label TP ='TP (mg/L)'; 

 

RUN; 

SAS® CODE  2 
 

PROC UCM DATA=Monthly PRINTALL; 

 

   ID Date INTERVAL=Month;  

   MODEL TP; 

   IRREGULAR plot=smooth; 

   LEVEL variance=0 noest 

 plot=smooth; 

   SLOPE variance=0 noest 

 plot=smooth; 

   CYCLE rho=1 noest=rho 

 plot=smooth; 

   SEASON length=12 

 plot=smooth;    
RUN; 

SAS® CODE 3 
 

PROC MI DATA=Monthly SEED=21355417 

NOINT NIMPUTE=6 MU0=50 10 180     

   OUT=outmi;   

MCMC CHAIN=multiple DISPLAYINIT  

   INITIAL=em(ITPRINT);    

 VAR TP Alkalinity DO2 DOC STP  

     SF pH Temp; 

 

RUN; 

SAS® CODE 6 
 

PROC TSCSREG Data=Monthly     

 OUTEST=out1 COVOUT CORROUT; 

ID site date; 

MODEL TP=Alkalinity DOC DO2 SF        

    pH STP Summer X1 Temp     

 /NOINT RANTWO DaSilva;   

 

TEST MB =0; TEST WB=0; TEST SC=0;    

TEST LW=0; TEST DD=0; TEST LW=0; 

 

RUN; 
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SAS® CODE 7 
 

PROC NLMIXED DATA=Monthly QPOINTS=10 ALPHA=0.01 TECH=QUANEW;  

UPDATE=DDFP; 

 

PARMS  

   beta1=0.000246 beta2=0.006199 beta3=-0.000000548 beta4= -0.000001     

   beta5=-0.0000002455 beta6=-0.7867 beta7=0.1 beta8=0.03665 beta9=-  

   0.00066 beta10=-0.002 g11=-0.001428 to 0.02 by 0.001 g12=-0.001 to    

   0.01 by 0.001;  

   

 eta = beta1+ beta2*DOC+ exp(-beta3*DO))+ {(log(beta4^2))*(log(abs(SF)))    

    + beta5*pH + beta6*STP + beta7*(EXP(Summer-12)) + beta8*(EXP(X1-12))    

    + beta9*(1/(1-Temp)) + beta10* (Alkalinity) + g12*b1;  

       num = eta; mu= num;   

 MODEL TP ~ NORMAL(mu,g12); 

 RANDOM b1 ~ NORMAL(0,g11) SUBJECT=SITE; 

 PREDICT mu OUT=cdf; 

 

RUN;  

SAS® CODE 8 
 

PROC NLP PALL TECH=quanew CLPARM=BOTH BEST=10 FD=Forward OUTMOD=model;  

  LSQ TP;  

    

   PARMS  

 beta1= -0.3973, beta2= 0.005812, beta3 = -0.000000032, beta4=

 -0.000001, beta5= 0.03741, beta6= 1.2065, beta7= 0.1, beta8= 

 0.03674, beta9=-0.01616, beta10= 0.00039, sf =374.0, Temp=10.94, 

 Summer=1, x1=1, do2=10.04, pH=8.0, doc=3.15, stp=0.076, 

 Alkalinity=101.62;   

    

   BOUNDS    

 -3.2E-10 <= beta3 <= 3.2E-10, 0 < beta7 <= 1, 0 < beta8 <= 1;  

    

   NLINCON  

      nlc1 = Log(SF); nlc2= (1-Temp);  nlc3=Exp(Summer-12);  

      nlc4 = Exp(X1-12); nlc5=Exp(DO); nlc6=pH; nlc7=DOC;  

      nlc8=STP; nlc9=Alkalinity; nlc10=1/nlc2; 

  

     -5 <= nlc1 <= 5, nlc2 ≠ 0, 6.14421E-06 <= nlc3 <= 1.67017E-05, 

      6.14421E-06 <= nlc4 <= 1.67017E-05, 1 <= nlc5 <= 1.586E+15,  

      1 <= nlc6 <= 14, 6.14421E-06, 0<= nlc7 <= 100, 0 <= nlc8 <= 5,  

      0 <= nlc9 <= 500;  

 

   TP = ((beta1 + beta2*nlc7 + exp(-beta3*nlc5) +(log(beta4^2)*nlc1)   

          + beta5*nlc6+ beta6*nlc8 + beta7*nlc3 + beta8*nlc4  

          + beta9*nlc10 + beta10*nlc9));  
 RUN; 
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Abstract. This paper deals with methods for finding the suitable weights in an Artificial
Neural Network (ANN) using Genetic Algorithms (GA). We study the weakness and strength-
ness of the proposed approach in case of a statistical data forecasting. We describe a different
approach when using the input data during optimization phase. Besides GA, we applied sta-
tionary wavelet transform (SWT) as a signal preprocessing, and time-delay neural networks
(TDNN) approach for the system’s inputs. Our results show that this optimization is suitable
only for certain purposes in case of a statistical data prediction.
Keywords: Genetic Algorithms, Artificial Neural Networks, forecasting.

1 Introduction

The optimization of Artificial Neural Networks using Genetic Algorithms ap-
plied in forecasting have been proposed in many papers [1], [5], [6]. In [1] is pre-
sented the way of determining the optimal size of the hidden layer and the number
of connections between layers. In [2] an approach using genetic computing is given,
used for establishment of the optimum number of layers and the number of neurons
on layer, for a given problem. A proposal of an intelligent algorithm to select the
optimal architecture for ANN model in hot rolling process based on GA is shown in
[3]. Venkatesan [4] proves the importance of the accuracy of algorithm-based ANN
model for the turning process in manufacturing industry. The simultaneous opti-
mization of the network architecture and the training of weights is presented in [7].
Most of the papers present the use of optimized ANNs in forecasting only in indus-
trial processes, which are described by well-predefined formulas and the selection
of parameters is required, and do not depend on statistical and human behavior.

In this paper we try to understand the influence of the ANN optimization using
GA in a domain implying statistical data: WiMAX network traffic. We make a com-
parison between prediction accuracy of the optimized and un-optimized ANNs. Our
optimization consists in setting the weights of the neural networks. In comparison
to other researchers, we propose a new approach in selection of the training data.
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Another aspect, is that we use wavelet transform as a signal preprocessing, and the
ANN optimization is done for each of the signal’s decomposition level.

The rest of the paper is organized as follows. The sections 2, 3, and 4 describe
the basic aspects of the GA, ANN, and SWT. The section 5 shows the simplified
forecasting framework used in our analysis. The experiments, results, and the com-
parison between regular ANN training and optimized ANN are given in section 6.
While section 7 contains the main conclusions of the current research.

2 Genetic Algorithms

A GA is a search technique for optimization and machine learning applica-
tions. It is based on natural selection, the process that drives biological evolution. It
consists of a set of individual elements (the population). At each step, the GA se-
lects individuals randomly from the current population to be parents and uses them
to produce the children for the next generation. Over successive generations, the
population "evolves" toward an optimal solution. There are several steps in a GA:

• Encoding technique: gene, chromosome
• Initialization procedure: creation
• Evaluation function: environment
• Selection of parents: reproduction
• Genetic operators: mutation, recombination
• Parameter settings: practice and art

The population members are strings or chromosomes. The GA selects a subset
(usually pairs) of solutions from a population, called parents, and combines them
to produce new solutions called children or offsprings. The rules of combination
to yield children are based on the genetic notion of crossover, which consists of
interchanging solution values of particular variables. There are also occasional op-
erations such as random value changes, which are called mutations. The children
produced by the mating of parents, and that pass a survivability test, are then avail-
able to be chosen as parents for the next generation.

3 Artificial Neural Networks

The ANN is a mathematical model that simulates the structure and functions
of the real biological neural networks. It is composed by interconnected simple
elements, called artificial neurons. An ANN is characterized by three things:

• Its architecture: the pattern of nodes and connections between them
• Its learning algorithm, or training method: the method for determining the

weights of the connections
• Its activation function: the function that produces an output based on the input

values received by a node
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The two most important types of ANNs are feed-forward (FFANN) and recurrent
networks (RANN). A FFANN has its neurons organized in a layered structure. Each
layer consists of units which receive their input from the units situated on a layer
directly below and send their output to the units from a layer directly above. RANN
are characterized by the fact that they contain feedback connections and they take
into consideration the dynamical properties of the network.

In this paper we used feed-forward ANN, and we discuss the setting of weights
of the connections. One way is to set them explicitly, using a priori knowledge.
Another way is to "train" the ANN by feeding it teaching patterns and letting it
change its weights according to some learning rule. While our approach, consists in
applying GA to find the optimal weights between the input and the hidden layer.

4 The wavelet analysis

Multi-resolution analysis (MRA) is a signal processing technique that takes
into account the signal’s representation at multiple time resolutions. Using wavelet
MRA, the collected measurements can be smoothed until the overall long-term trend
is identified. Fluctuations around the obtained trend are further analyzed at multiple
time scales. The level of decomposition depends on the length of the data set (the
number of values). At each temporal resolution two categories of coefficients are
obtained: approximation and detail coefficients. We used the à trous methodology
in MRA implementation, also known as Shensa’s algorithm [9], which corresponds
to the computation of the Stationary Wavelet Transform (SWT).

The à trous wavelet transform decomposes a signal Xt as follows:

Xt = ap,t +
p

∑
j=1

d j,t (1)

where ap,t represents the smooth version of the original signal (the approximation
at the pth level of decomposition), while d1...dp represent the details of Xt at scale
2− j. This equation can be seen as a multiple linear regression model also, where
the original signal is expressed in terms of its coefficients. Among different mother
wavelets (Daubechies, Symlet, Meyer, etc. [8]), we used Daubechies 2 wavelet.

5 Forecasting framework

The simplified forecasting framework of our analysis is presented in Figure 1.It
implies a series of steps as presented below:

1. Use SWT to decompose the data for input and for test
2. Apply an Artificial Neural Network for each level of decomposition obtained

from the input and build the forecasting model. Choose between having or not
the GA Optimization for the ANN

3. Use the decomposed test data and the obtained model in order to predict each
decomposition level of the future forecasted signal

4. Use the Inverse SWT in order to obtain the final predicted signal
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Fig. 1. The main block diagrams of the forecasting framework. Each block represents one of
the steps taken in the construction of our model

6 Experiments and results

6.1 Data analysis

Our WiMAX traffic data used in analysis was obtained by monitoring the traf-
fic from 67 Base Stations (BS) during eight weeks, from March 17th till May 11th,
2008. Each BS has its own data set which is composed of numerical values repre-
senting the total number of packets from the uplink channel. Each value is recorded
every 15 minutes. It results that for a given BS we have the following number of
samples: 96 samples/day, 672 samples/week, and a total number of 5376 samples.

6.2 ANN approach

The goal in our experiments was to make one day ahead forecasting. Taking
into account this information we used for ANN’s architecture only one neuron for
the output, which consists of an array of 96, 32, or 16 samples. 32 and 16 sam-
ples were obtained by making a downsampling of the signal with 3 and 6. These
downsamplings were done because of the existence of observed periodicities in the
WiMAX traffic [13]. Regarding the number of layers, we used one hidden layer
network. In [2] is pointed out the fact that one hidden layer network is able to
approximate most of the nonlinear functions demanded by practice.

For the input layer, we used the approach of TDNN described in [10], [11],
and [7]. The time-delay of the input information was set to 4, 8, 12, and 24 hours
shifting. The data used for the input layer was the wavelet transform obtained from
the weeks 1-6 during training process, and weeks 2-7 during test. Also, we did not
apply all the data at ANN’s inputs, we used only the days corresponding to the same
period of the week as the forecasted day. The number of neurons for the hidden
layer was 2. The training algorithm was the combination between adaptive learning
rate with momentum.
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6.3 Genetically Optimized ANNs

For the optimized neural networks we used an approach permitting us to train
a given ANN using two data sets at the same time. In the first part we used the
information from weeks 1-5 while having as a target the given day from week 6, and
in the second part we used the information from weeks 2-6, while having as a target
the information from week 7. During testing process, we applied at the optimized
ANN’s inputs the wavelet transform from corresponding to the days from weeks 3-
7. An example of this training is given in Figure 2 (because of the space, we present
in the figure a simplified optimization using only 2 days at the input). The final
predicted signal, obtained after applying inverse stationary wavelet transform on all
forecasted sequences, was compared to the original signal from 8th week.

The designing of training the ANN using the Genetic Algorithms is as follows:

• each individual contains a set of weights for all the links between layers
• each gene represents a single weight
• we had a population size of 100 individuals, meaning 100 different possibilities

at each generation for the network
• the number of generations is 100: less generations resulted in not finding an

acceptable solution for our problem, while more generations resulted in a longer
time processing. However, above this value, we didn’t manage to observe better
performance of the final results

• the fitness function is calculated as follows:

F =
1
N

N

∑
i=1

(x f1
i − xo1

i )+
1
N

N

∑
i=1

(x f2
i − xo2

i ),

where N is the number of samples, xo1
i and xo2

i represent certain level decom-
position of the original signal used for inputs, while x f1

i and x f2
i are the output

targeting signals for the two data sets.

6.4 Evaluation criteria

In order to evaluate the prediction performance between ANNs and genetically
optimized ANNs, we used the following well-known evaluation criteria: Symmet-
rical Mean Absolute Percentage Error (SMAPE) and R-Square (RSQ):

• SMAPE: calculates the symmetric absolute error in percent between the actual
X and the forecast F across all observations t of the test set of size n for each
time series s:

SMAPE =
1
n

n

∑
t=1

|Xt −Ft |
(Xt +Ft)/2

(2)

• RSQ: the coefficient of determination R2, in statistics, is the proportion of vari-
ability in a data set that is accounted for by a statistical model. In this definition,
the term variability is defined as the sum of squares:

R2 =
SSR

SST
=

∑t(Xt −Xt)
2

∑t(Ft −Ft)2
(3)
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in which Xt , Ft are the original data values and predicted values respectively,
while Xt and Ft are the means of the observed data and modeled (predicted)
values, respectively. SST is the total sum of squares, SSR is the regression sum
of squares. In the ideal case the value of RSQ is 1, while SMAPE must be 0.

Fig. 2. Example of ANN Optimization. The top diagram represents the computation of the
first part of the fitness function, while the bottom diagram exemplifies the computation of the
second part of the fitness function

6.5 Results

In both ANN and genetically optimized ANNs we made 8232 simulations
from 11256 possible (after extracting the erroneous data). We made a combination
between all the possibilities in choosing the number of BS (from a total of 67),
number of samples per day (16, 32, or 96), time-delay interval for inputs (4, 8,
12, or 24 hours shifting), and the day of the week (from Monday till Sunday). The
results for RSQ and SMAPE values are presented in the tables 1 and 2. They present
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Time Delay Measured Value 96 samples 32 samples 16 samples
4 hours RSQ 1.212 1.249 1.317

SMAPE 0.905 0.927 0.802
8 hours RSQ 1.159 1.120 1.205

SMAPE 0.886 0.858 0.756
12 hours RSQ 1.330 1.219 1.287

SMAPE 0.904 0.924 0.814
24 hours RSQ 1.178 1.201 1.263

SMAPE 0.910 0.946 0.780

Table 1. RSQ and SMAPE values (one day prediction) using ANN. The best values are
represented in bold

the medium value of the results from all 67 BS and days of the week during a given
configuration of samples per day and the number of shifted hours.

By comparing the results, we can see that the SMAPE values in case of GA
optimization are not better then the ones of the usual ANN training. However, the
RSQ value is closer to the ideal 1. This is true for all used configurations of TDNN.

Time Delay Measured Value 96 samples 32 samples 16 samples
4 hours RSQ 1.127 1.200 1.176

SMAPE 1.001 0.913 0.867
8 hours RSQ 1.108 1.129 1.099

SMAPE 0.983 0.924 0.820
12 hours RSQ 1.211 1.155 1.168

SMAPE 1.008 0.951 0.851
24 hours RSQ 1.087 1.189 1.215

SMAPE 1.067 0.950 0.872

Table 2. RSQ and SMAPE values (one day prediction) using Genetically Optimized ANN.
The best values are represented in bold

7 Conclusions

In this paper we presented a comparison between neural networks and opti-
mized neural networks used in statistical data forecasting. We proposed a com-
bination between wavelet transform, time delay neural networks, and a different
approach of using the input data when applying GA for our ANN training.

Our results show that in case of the optimization the SMAPE value increased
with about 2-7% in comparison to the regular ANN training, while the RSQ value
decreased with about 2-10%. It means that the optimized ANN is able to express
better the variability of the statistical data. This is because it takes into consideration
a longer time interval in optimization, as we managed to use two data sets at the
same time during training process. However, the value of SMAPE is not better. The
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reason for these differences might be as follows: according to the RSQ formula, we
make a ratio between the variabilities according to the medium values of predicted
and real signal; while SMAPE presents the differences between predicted and real
samples of the signal. This means that in case of optimized networks we have a more
shifted medium value from the medium of the original signal in comparison to the
regular ANNs, because it keeps the behavior of the data from twice longer time then
in case of the other approach. While regular ANN, expresses the behavior closer to
the data we want to predict, and it does not necessarily make a generalization of the
earlier time intervals.

One of our future task is to test our approach on other non-statistical data sets.
We will try also to integrate the obtained model of calculating more precisely the
data variability in other methods of prediction. Also, we will use it especially in
data classification, because we have obtained an approach that uses multiple data
sets during network training, while in case of regular network training we would
need a more complex architecture for the ANN in order to obtain the desired results.
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Abstract: Over recent years data mining has been establishing itself as one of the major 

disciplines in computer science with growing industrial impact. Data sets usually carry 

information about objects in the form of features sets encoded as vectors. These are now a 

day as a rule high-dimensional, so there is even necessary to reduce its dimension in 

advance. Here we study problem of searching groups of similar variables which are of 

ordinal type. As an example we analyzed the data from the survey on “Active lifestyle of 

university students“. Variables expressing a satisfaction concerning different points of view 

of the students’ life were included into analysis. Here we suggest application of non-metric 

multidimensional scaling and categorical principal component analysis followed by the 

obtained results interpretation using fuzzy cluster analysis. The soft version of CSPA 

(cluster-based similarity partitioning algorithm) is applied for ensembles of fuzzy clustering 

results obtained on the basis of different techniques. 

Keywords: Dimensionality reduction, Ordinal variables, Multidimensional scaling, 

Categorical principal component analysis, Fuzzy cluster analysis, Silhouette plot 

 

1  Introduction 
 

Modern automated methods for measurement, collection, and analysis of data in all 

fields of science, industry, and economy are providing more and more data with 

drastically increasing complexity of its structure. These data carry objects features 

encoded as high-dimensional vectors, so there is as a rule necessity to reduce its 

dimension before an analysis. It is worth to mention some examples of such data: a 

textual document characterized its vocabulary; a web page characterized by 

graphical user interface patterns; or a respondent characterized by its opinions. In 

the last case, objects are described by variables of ordinal type. 

In this study we suggest the procedure for dimensionality reduction which consists 

of application of two methods followed by the obtained results interpretation using 

fuzzy cluster analysis. We apply non-metric multidimensional scaling on the basis 

of Kendall’s tau-b for creation the similarity matrix and categorical principal 

component analysis. In fuzzy cluster analysis we determine the optimal number of 
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clusters by using average silhouette widths. The soft version of CSPA (cluster-

based similarity partitioning algorithm) is applied for ensembles of fuzzy clustering 

results obtained on the basis of different techniques. The final assignment of 

variables to the groups is graphically presented by a silhouette plot. 

2  Similarity Measures for Ordinal Variables 
 

In the process of searching groups of similar variables, coefficients of dependency 

are usually applied as similarity measures, see Rezankova (2009). Dependency of 

the ordinal variables is denoted as a rank correlation and their intensity is 

expressed by correlation coefficients. The best known among them is Spearman’s 

correlation coefficient. Let us have the n x p data matrix X with the elements xij 

where n is a number of objects and p is a number of variables. If investigated 

ordinal variables Xg and Xh express the unambiguous rank, the following formula 

can be used for Spearman’s correlation coefficient: 
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If this assumption is not satisfied, the process described e.g. in Rezankova (2010) 

must be applied. 

Other measures investigate pairs of objects. If, in a pair of objects, the values of 

both investigated variables are greater (less) for one of these objects, this pair is 

denoted as concordant. If for one variable the value is greater and for the second 

one it is less, then the pair is denoted as discordant. In other cases (the same values 

for both objects exist for at least one variable), the pairs are tied. For the sake of 

simplification, we will use the following symbols: 

Γ – a number of concordant pairs, 

∆ – a number of discordant pairs, 

Ψg – a number of pairs with the same values of variable Xg but distinct values of 

variable Xh, 

Ψh – a number of pairs with the same values of variable Xh but distinct values of 

variable Xg. 

On these numbers of pairs, Kendall’s tau-b (Kendall’s coefficient of the rank 

correlation) is based, for example. It is expressed as 

 

))((
b

hg Ψ+∆+ΓΨ+∆+Γ

∆−Γ
=τ . 

 

It is a symmetric measure, as well as Spearman’s correlation coefficient. 
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Some other measures and their features are described in Rezankova (2009) and 

Rezankova (2010). 

 

3  Methods for Searching Groups of Similar Variables 
 

There are several types of techniques which are assigned to dimensionality 

reduction methods. Some of them are based of the projection of a high-dimensional 

space into a low-dimensional space. Usually, an object characterized by the vector 

of values of variables is plotted as a point in two-dimensional space where two of  

the found dimensions are used. Similarly, values of components or new dimensions 

can be calculated for variables which can then be plotted in two-dimensional space 

by means of a dot graph. If groups of variables exist, it can be seen in this graph. 

Multidimensional scaling and categorical principal component analysis are 

examples of such techniques. 

Multidimensional scaling, see Torgerson (1952), Cox and Cox (2001), is based on 

the proximity matrix. Nonmetric multidimensional scaling, see Kruskal (1964) is 

used for the further analysis. It both finds a non-parametric monotonic relationship 

between the dissimilarities in the proximity matrix and the Euclidean distance 

between variables, and the location of each variable in the low-dimensional space. 

The user must pre-specify number of dimensions. 

Categorical principal component analysis, see De Leeuw et al. (1976), quantifies 

categorical variables using optimal scaling, resulting in optimal principal 

components for the transformed variables. The variables can be given mixed 

optimal scaling levels and no distributional assumptions about the variables are 

made. This type of analysis can easily deal with nonlinear relationships between 

the variables to be analyzed. 

 

4  Algorithms for Fuzzy Clustering and Visualization Results 
 

Fuzzy clustering is studied very intensively in last decades. A lot of papers in 

journals and proceedings from conferences and also some monographs have been 

published, e.g. Abonyi and Feil (2007) and Hoppner et al. (2000). There are some 

various techniques for fuzzy (soft) cluster analysis. One of them is the fuzzy  

k-means algorithm, see e.g. Kruse et al. (2007). It is a generalization of the 

classical (hard) k-means (also HCM – hard c-means). 

Let xi be a vector of feature values, which characterizes the ith object. Then the 

distance between the ith and jth objects can be calculated as Euclidean distance 

between vectors xi and xj for example (in the following text we will consider an 

object and a representing vector as synonyms), i.e. 
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here m is a number of variables. 

We suppose that the data set consisting of n objects, i.e. X = {x1, …, xn}, should be 

partitioned into k clusters C1, …, Ck. In some algorithms, the representative of each 

cluster is determined. This can be either one object from a cluster (so called 

medoid) or a new vector characterizing the center of a cluster (centroid). 

In the latter case, the centroid is usually created by average values of individual 

variables. Further on, the centroid of the hth cluster will be denoted as hx . Then 

the distance between the ith object and the corresponding centroid can be 

expressed as 

hiihhi dd xxxx −==),(E . 

The fuzzy k-means (frequently FCM – fuzzy c-means) algorithm minimizes the 

objective function 
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where k is a number of clusters, the elements uih ∈[0, 1] are membership degrese, 

dih is the distance between the j-th object and the center of the h-th cluster, and the 

parameter q (q > 1) is called the fuzzifier or weighting exponent (usually q = 2 is 

chosen). Further, the following conditions have to be satisfied: 
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In some cases, the proximity matrix is only known instead of original vectors of 

feature values. In this matrix, each pair of objects is numerically described by a 

real-valued relation. Cluster analysis based on the proximity matrix is sometimes 

called relation clustering, see Runkler (2007). 

One algorithm is relation fuzzy k-means (RFCM – relation fuzzy c-means). For 

q = 2 it is called FANNY, see Kaufman and Rousseeuw (2005), and it is 

implemented in the statistical software system S-PLUS. In this algorithm, the 

objective function 
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is minimized. In this function, dij is the known distance between the ith and jth 

objects, and uih and ujh are unknown. 

Behind of some special graphical techniques, see Wiswedel et al. (2007), 

traditional graphs for disjunctive clustering can be also used for a representation of 

memberships. One of them is a silhouette plot, see Kaufman and Rousseeuw 

(2005), which is implemented in the S-PLUS system. The width and the direction 

of the rectangles for the ith object is determined by the value 
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and ng is a number of objects in the gth cluster. It is supposed that the object is 

assigned only to one cluster (Cg) according to the highest value of a membership 

degree. It means that uig = maxh(uih). 

For the cluster number determination, we can use the average silhouette width ψ . 

The higher value represents better partitioning objects to clusters. 

 

5  Ensembles of Fuzzy Clustering 
 

Sometimes, the user has results of clustering (assignments of individual objects to 

the certain number of clusters) obtained by different way and he has not any access 

the original features of the objects. For example in marketing research customers 

are segmented in multiple ways based on different criteria (need-based, 

demographics, etc.). The user can be interested in obtaining a single, unified 

segmentation. 

Combining clustering is more difficult than combining the results of multiple 

classifiers. Before combining the clustering one has to identify which clusters from 

different clusterings correspond to each other. Moreover, the number of clusters in 

individual solutions might vary, see Punera and Ghosh (2007). 

For results of hard clustering, graph-theoretic approaches have been proposed in 

the literature. They are based on the hypergraph representation of clustering, see 

Table 1. In this table )(q

hC denotes the hth cluster in the qth clustering and )(q

ihu  

represents the membership degree of the ith object to the hth cluster in the qth 

clustering. In the case of hard clustering )(q

ihu ∈{0, 1}. 

 

Table 1. Hypergraph representation of clustering 
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Cluster-based similarity partitioning algorithm (CSPA) is an example of the 

graph-theoretic approach. In the CSPA technique a similarity matrix is computed 

as W = (1/r)UU
T
 where r is a number of clusterings. Then a clustering algorithm 

based on a proximity matrix can be used. 

In soft version of CSPA (sCSPA), one can use either the UU
T
 matrix or the 

similarity matrix created on the basis of Euclidean distance. In the latter, the 

distance between objects xi and xj is calculated as 
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On the basis of the proximity matrix the objects can be clustered into k clusters. 

 

 

6  Applications to Real Data File 
 

In this section, the analysis of one real data file will be described. The file is the 

result of the research “Active lifestyle of university students“ which was realized at 

the Faculty of Electrical Engineering of the Czech Technical University in Prague 

by dr. Z. Valjent from the Institute of Physical Education and Sports of this 

university in 2008, see Valjent (2009) and Valjent and Flemr (2009). This file 

contains answers from 1 453 respondents. 

For the purpose of investigation of relationships between variables, 15 variables 

expressing a satisfaction concerning different points of view of the students’ life 

were analyzed. Respondents evaluated their satisfaction on the scale from 1 (no 

satisfaction) to 7 (very satisfied). 

First, the similarity matrix based on Kendall’s tau-b was created in the SPSS 

system. This matrix was transformed to the dissimilarity matrix by subtraction of 

the values from 1 in Microsoft Excel. The transformed matrix was analyzed by 

non-metric multidimensional scaling (MDS) in the STATISTICA system. Further, 

principal component analysis (PCA) for the categorical data (the CATPCA 

procedure) in the SPSS system was applied. In both cases, three dimensions were 

considered (on the basis plot interpretation advisability). Both dimension values 
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obtained by non-metric MDS and component loadings obtained by the CATPCA 

procedure were analyzed by the FANNY method in the S-PLUS system. 

The suitable number of clusters was searching on the basis of average silhouette 

widths. In both cases, four clusters were identified as optimal, see Table 2. 

The membership degrees matrices for four clusters for both cases were joined into 

one matrix as in Tables 1 is shown. However, instead of objects, the variables in 

the rows were characterized. The data from this matrix were further clustering with 

use of the FANNY algorithm. The resulting clustering is displayed in Fig. 1. 

We obtained the following view on the relationships between variables. The best 

cluster is formed by variables V17 and V18 (satisfaction with partner in life and 

sex life). The fourth cluster is formed by the pair of variables V19 and V20 (study 

generally and studying results) and the variable V21 (financial situation), which 

differs a little. The second cluster is represented by the close variables V15 and 

V16 (family life and friends), variables V14 and V26 (success and 

acknowledgments from others and total quality of life), and variable V22 

(housing). In the first cluster there are variables V25 (fitness), V24 (health state) 

and V13 (body weight), and also the variables V12 (visage) and V23 (leisure time). 

Table 2. Average silhouette widths characterizing results obtained by algorithm 

FANNY (for dimension values obtained by non-metric MDS and for 

component loadings obtained by the CATPCA procedure) 

Number of clusters 
Methods 

2 3 4 5 6 

MDS 0.22 0.22 0.39 0.36 0.31 

PCA 0.30 0.41 0.56 0.49 0.48 
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Fig. 1. Silhouette plot for four clusters of variables (FANNY algorithm for the 

combination of clustering results) 

7  Conclusions 
 

For dimensionality reduction is useful to discover groups of similar variables. This 

can be achieved using different clustering methods. In the complex task presented 

here we solved the problem of interpretation of dimension values obtained by non-

metric MDS and component loadings obtained by the CATPCA procedure. For 

this, we used fuzzy cluster analysis, including cluster number identification, 

following by ensembles of obtained fuzzy clustering and graphical presentation of 

the results by the silhouette plot. 

When we used fuzzy cluster analysis, rows of the input matrix were considered as 

the variables and the columns as the dimensions (components). Using both, the 

fuzzy cluster analysis and the silhouettes plot one can identify as more similar as 

less similar variables in the clusters. In the former it is possible by membership 

coefficients and in the latter by silhouette widths.  

Using CATPCA we obtained the higher values of membership degrees. The 

average silhouette widths used for cluster number determination are also higher in 

the case of CATPCA. This means that by categorical principal components 

analysis we obtained better clusters than by multidimensional scaling based on 

Kendall's tau-b. 
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Abstract: This paper investigates the no-arbitrage condition of financial markets by 

comparing two stock markets: the New York Stock Exchange (NYSE) and the German 

Exchange Electronic Trading System (XETRA). We analyze German stocks that are traded 

simultaneously at both exchanges using high frequency data for XETRA, the NYSE, and the 

foreign exchange rates. Converting Euro-prices into Dollar-prices and vice versa reveals 

possibilities to discuss the efficiency of these two stock markets and arbitrage opportunities. 

One measure of efficiency is stock price clustering and we obtain the result that XETRA is 

more efficient if the exchange rate is taken into account. The observed difference in the 

clustering effect would not be observable, if the no-arbitrage condition held. We propose a 

trading strategy that exploits these differences. Furthermore, we compare our empirical 

findings with the results we obtain by simulating financial markets using a Random Walk as 

a model for the price movement.  

Keywords: financial markets; simulation; no-arbitrage condition; stochastic processes 

1 Introduction  

When comparing different stock markets the following questions arise 

immediately: which stock market is more liquid or more efficient and are there 

arbitrage opportunities? According to the Efficient Market Hypothesis, financial 

markets are “informational efficient” and there are no arbitrage possibilities 

(Grossman 1976). In this paper, we analyze the intraday trades of selected German 

stocks (Daimler and Deutsche Bank) that are traded simultaneously at the New 

York Stock Exchange (NYSE) and at the German Exchange Electronic Trading 

System (XETRA). The conversion of the XETRA Euro stock prices into US-Dollar 

stock prices by the foreign exchange rates and vice versa enables us to discuss the 

question which stock market is more efficient: XETRA or the NYSE?  To 

investigate this question we use the phenomenon of stock price clustering as a 

possible indication about the degree of the efficiency of a stock market. Stock price 

clustering describes the tendency of prices to deviate from a uniform distribution, 

tending instead to cluster at certain prices and avoiding others. This anomaly can 

be observed for different stock markets with different market structures and has 

been widely discussed in the literature (see for example Osborne, 1962, 

Niederhoffer, 1965, 1966, Ball et al., 1985, Harris, 1991, Christie et al., 1994, 

Kahn et al., 1999, Vogt et al., 2001, Huang and Stoll, 2001, Sopranzetti and Datar, 

2002, Sonnemans, 2006). 
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The phenomenon of price clustering contradicts any strict definition of the 

Efficient Market Hypothesis and can be used for measuring the efficiency of stock 

markets (Ikenberry and Weston, 2008). Stock markets with a higher degree of 

stock price clustering are considered as less efficient stock markets. Our data yield 

the result of different extents of stock price clustering for stocks that are traded 

simultaneously at XETRA and the NYSE. We use different approaches to decide 

whether XETRA or the NYSE is the more efficient stock market which results in 

different answers. The first approach directly compares the stock prices on the two 

exchanges while for the second approach the foreign exchange rate is taken into 

account. To be more precise, the latter approach indicates that XETRA is the more 

efficient stock market when comparing converted XETRA-prices and actually 

observed NYSE-prices. But according to both approaches we observe a difference 

in the clustering structure between XETRA and the NYSE. The observed 

difference indicates a violation of the Efficient Market Hypothesis and therefore 

inefficiency between both analyzed stock markets. Furthermore, it puts some 

question on the no-arbitrage condition of financial markets. The no-arbitrage 

condition of financial markets implies that the Dollar-prices at the NYSE should be 

obtained by converting the Euro-prices at XETRA and vice versa (for companies 

that are traded simultaneously at both stock markets). We propose a trading 

strategy that exploits the differences in the observed clustering structure between 

converted and actually observed stock market prices (quasi-arbitrage 

opportunities). As these results apply to empirical intraday data of selected German 

stocks, we want to check whether we obtain the same results by simulating the 

stock markets. For this purpose, we use the Random Walk as a model for the price 

movement. The simulated data is in line with the Efficient Market Hypothesis and 

the no-arbitrage condition as well. Although the assumptions of applying a 

Random Walk as a model describing our empirical data are fulfilled, we observe 

substantial differences in the clustering structure. These results reinforce our 

empirical findings.  

2 Empirical Approach 

2.1 Data Description 

We use high frequency data (all intraday trades) of German stocks (Daimler and 

Deutsche Bank) that are traded simultaneously at XETRA and the NYSE in 

November and December 2004 (15
th

 of November through 29
th

 of December). The 

data is obtained from the Trade and Quote (TAQ) database of the NYSE and the 

XETRA stock market. In addition, we use high frequency data of the foreign 

exchange rate Euro vs. US-Dollar. This data was recorded by using a computer 

program. In 2004, stock prices at XETRA were listed in Euros with a tick size 

(smallest trading unit or minimum price variation) of 1 Euro-cent while at the 

NYSE prices were listed in Dollar with a tick size of 1 Dollar-cent. To be more 

precise, we analyzed all intraday trades of 30 trading days and a time period 

between 3:30 pm and 5:30 pm for XETRA and 9:30 am to 11:30 am for the NYSE.  

 

712



2.2 Empirical Results 

One approach to answer the question whether XETRA or the NYSE is more 

efficient is analyzing the last digits of the stock prices of Daimler and Deutsche 

Bank at both stock markets. We obtain the following frequency distributions. 
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Fig. 1. Frequency distribution of the last digits of the stock prices of Daimler and 

Deutsche Bank at XETRA (dashed bar) and at the NYSE (solid black bar). 

As can be seen from Figure 1, clustering exists and seems to be more pronounced 

at XETRA. This first impression of different extents of price clustering can more 

formally be tested by applying a measure D of clustering that is used in Ikenberry 

and Weston (2008). Under standard regularity conditions, the statistic D is Chi-

squared distributed where large values of D imply a significant deviation from the 

expected distribution (uniform distribution). The test statistic D can be calculated 

for both XETRA (
XETRAD ) and the NYSE (

NYSED ). However, this test does not 

address whether XETRA is more or less clustered compared to the NYSE. For this 

purpose, in a second step Ikenberry and Weston (2008) suggest comparing 
XETRAD  

and 
NYSED  by examining the ratio D

~
between both (it is assumed that the 

numerator has to be greater (or equal) than the denominator, otherwise the inverse 

has to be calculated). The statistic D
~

 is F-distributed and enables us to test 

whether the degree of stock price clustering is the same for XETRA and the 

NYSE. Large values of D
~

 imply that price clustering at XETRA is greater 

compared to the NYSE. Table 1 presents the numerical values of 
XETRAD  and 

NYSED  for Daimler and Deutsche Bank and the corresponding ratio D
~

. The latter 

indicates that XETRA is more clustered compared to the NYSE (F-test, 1% level 

of significance) and therefore the NYSE is the more efficient stock market 

according to this analysis. In addition, the numerical values of 
XETRAD  and 

NYSED  

imply that the last digits of the stock prices of Daimler and Deutsche Bank are not 

uniformly distributed (Chi-squared goodness of fit test, 1% level of significance).  
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XETRAD  NYSED  D

~
 

Daimler 1243* 38.82* 32.02* 

Deutsche Bank 4314* 119.18* 36.2* 

Table 1: Chi-squared test statistics and F test statistics,                                          
* denotes significance at the 1% level. 

Considering the no-arbitrage condition of financial markets, stock prices at the 

NYSE should be obtained by multiplying the stock prices observed at XETRA 

with the corresponding exchange rate (that is valid for the observed time point) and 

maybe rounding these converted prices to the next possible Dollar-price (and vice 

versa).To be more precise, we do not expect any difference in the clustering 

structure between actually observed Dollar-prices and Dollar-prices that result 

from converting the Euro prices (and vice versa). The resulting frequency 

distributions of the last digits of those converted stock prices and of the last digits 

of the actually observed stock prices are presented in Figure 2 for the German 

company Deutsche Bank
1
. Analyzing the last digits of the transactions data of 

Deutsche Bank, we observe substantial differences between the clustering of 

converted and actually observed stock prices. In addition, the converted Euro-

prices and the converted Dollar-prices seem to be uniformly distributed. We used a 

Chi-squared „goodness of fit‟ test to check whether the observed distribution of the 

last digits differs from the expected distribution (that results from converting the 

stock prices). The numerical values of the test statistic are presented in Table 2, 

indicating statistical significance (at the 1% level) that the actually observed 

distribution of the last digits differs from the distribution we would expect after 

converting stock prices.  
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Fig. 2. Frequency distributions of the last digits of the stock prices of converted 

Deutsche Bank-prices (solid white bars) and of actually observed stock prices of 

Deutsche Bank at the NYSE (solid black bar) and at XETRA (dashed bar). 

 

                                                           

1 Analyzing the stock prices of Daimler we obtain similar results. The corresponding plots can be made 

available by the corresponding author on request.   
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Converted in US-Dollar vs.actually 

observed US-Dollar 

D 

Converted in Euro vs. actually 

observed Euro 

D   

Daimler 67.12 191.96 

Deutsche Bank 149.42 4891.10 

Table 2: Chi-squared test statistics, * denotes significance at the 1% level 

Iit is obvious that the actually observed Dollar-prices at the NYSE reveal a 

clustering pattern, while there is only a low degree of stock price clustering for the 

last digits of into US-Dollar converted Euro-prices (Figure 2). Furthermore, the 

latter seem to be uniformly distributed. But the degree of stock price clustering of 

Dollar-prices that result from converting the Euro-prices at XETRA corresponds to 

the degree of stock price clustering we observe at XETRA for these are the same 

prices, only in different currencies. This leads to the result that the NYSE reveals 

an additional stock price clustering and therefore we can conclude that the NYSE 

has a higher degree of stock price clustering compared to XETRA and also that 

XETRA is a more efficient stock market. That means, comparing converted 

XETRA-prices and actually observed NYSE-prices yields that XETRA is more 

efficient.  

Summarizing our empirical findings concerning the phenomenon of stock price 

clustering, we observe different extents of price clustering for the same stocks 

traded simultaneously on two stock markets. This implies inefficiency between 

both analyzed stock markets XETRA and the NYSE (for the stock prices of 

Daimler and Deutsche Bank). But the different approaches how to compare the 

degree of stock price clustering (with and without using the exchange rate) yield 

that we cannot strictly respond to our question whether XETRA or the NYSE is the 

more efficient stock market. If the exchange rate is taken into account we obtain 

the result that XETRA is more efficient when comparing converted Euro-prices 

and actually observed Dollar-prices. Nevertheless, we do not expect this observed 

inefficiency between both stock markets if the no-arbitrage condition of financial 

markets held.  

In the following, we want to provide a trading strategy how to benefit from this 

observed inefficiency and we calculate a proxy of possible profits. For the purpose 

of investigating possible arbitrage opportunities (or quasi-arbitrage opportunities to 

be more precise) it is necessary to know for example the bid price for a specific 

stock at XETRA, the ask price at NYSE and the corresponding exchange rate at a 

point in time. As these prices are in most cases not available, we use transaction 

prices as proxies for this procedure. Analyzing those trades provides a strong 

indication about the existence or non-existence of (quasi-)arbitrage opportunities. 

That means we are noting a stock price at XETRA at one point in time and we are 

converting this Euro-price into a Dollar-price by using the exchange rate that is 

valid at the time (and vice versa). In a next step we compare the difference between 

this converted price and the next possible transaction that occurs at the NYSE (and 

vice versa). If the no-arbitrage condition is fulfilled this difference is zero. Our data 

and analysis provide empirical evidence that the differences are not zero in most 

715



cases. Table 3 presents the proportions of zero differences and non-zero differences 

between converted and actually observed stock prices for Daimler and Deutsche 

Bank. The proportion of non-zero differences exceeds 80% (the results are 

significant at the 1% level, binomial test).  

 

  Converted in US-Dollar vs. 

actually observed US-Dollar 

Converted in Euro vs. actually 

observed Euro   

  Difference<>0 Difference=0 Difference<>0  Difference=0 

Daimler 83.77% 16.23% 81.15% 18.85% 

Deutsche Bank 92.11% 7.89% 91.10% 8.90% 

Table 3: Proportions of zero differences between Dollar-prices that result from     

converting the Euro-prices and actually observed Dollar-prices (and between Euro-prices 

that result from converting the Dollar-prices and actually observed Euro-prices, 

respectively).  

As the proportion of non-zero differences clearly indicates possible (quasi-) 

arbitrage opportunities, we want to provide a trading strategy that takes advantage 

of the observed inefficiency between the two analyzed stock markets and of the 

observed non-zero differences.  

As a signal to buy or sell shares (in this context, a sale also can be a short sale) we 

consider the most recent observable difference (between converted XETRA-prices 

and actually observed NYSE-prices or converted NYSE-prices and actually 

observed XETRA-prices, respectively). If this difference exceeds 0.05 US-Dollar 

or Euro, we buy the stock on the observed market and sell the same on the other 

market. We propose a short sale of shares on the main market and a buy (or buy to 

cover) on the other market, if the observed difference is less than -0.05 US-Dollar 

or Euro. The following Table 4 presents the average profits of this strategy for the 

period of investigation and one traded share. 

 

  Converted in US-Dollar vs. 

actually observed US-Dollar 

Converted in Euro vs. 

actually observed Euro   

  

Mean profit per 

one share per 

trade in US-

Dollar 

Number of 

trades                                   

Mean profit per 

one share per 

trade in Euro 

Number of 

trades    

Daimler 0.01295 227 0.01917 73 

Deutsche Bank 0.03432 1172 0.03352 565 

    Table 4: Mean profit and number of trades for the suggested trading strategy.  

It can be argued that the proposed strategy yields not enough profit to achieve a 

considerable net profit when taking transaction costs into account. But considering 

the fee structure of the U.S. broker TradeStation Securities, Inc., a complete 

transaction can for example be traded for less than 0.00699 US-Dollar per share by 
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using a so called flat fee
2
. For this case, the calculated average profit per trade 

seems to be quite lucrative. We can conclude that the suggested trading strategy 

yields a positive profit when considering transaction costs.  

 

3 Simulation Approach 

As the results in Section 2 apply to empirical transactions data of selected German 

stocks we want to verify, whether we obtain similar results by simulating financial 

markets. The observed extent of stock price clustering in the empirical data already 

puts some question on the Efficient Market Hypothesis and the no-arbitrage 

condition as well. In this Section, we want to check more formally, whether a well 

known stochastic process emphasizes or contradicts our empirical findings (Fama, 

1969). For this purpose, we use the Random Walk as a model for the price 

movement (which is in line with the Efficient Market Hypothesis) for both stock 

markets XETRA and the NYSE (Cootner, 1962). According to the Random Walk 

Hypothesis differences of successive stock prices are normally distributed with 

expectation zero and variance 2 3
. The following Figure 3 presents the frequency 

distributions of the price differences of the stock prices of Deutsche Bank
4
 (for 

XETRA and the NYSE), and Figure 4 presents the frequency distribution of the 

price differences of the simulated stock prices
5
. According to these plots, the 

assumption of a Random Walk as a model for the price movement seems to be 

suitable and in the next Subsection, we want to have a detailed look at the last 

digits of simulated stock prices.   
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Fig. 3. Frequency distributions of the price differences of the stock prices of 

Deutsche Bank.  

                                                           

2
 TradeStation Securities, Inc Flat fee 6.99$ per trade max 5000 shares per trade, minimum 30 Trades 

per month on account. The example is calculated with 2000 shares per trade. 
3 Our data reveal an expected value of zero for the price differences. For the purpose of simulation, the 
variance has to be estimated using the mean squares error.     
4 The stock prices of Daimler reveal a similar pattern and all Figures can be shown on request by the 

corresponding author.  
5 The frequency distributions of price differences of converted stock prices and of converted simulated 

stock prices reveal the same pattern.  
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Fig. 4. Frequency distributions of the price differences of the simulated stock 

prices of Deutsche Bank.  
 

3.1 Stock Price Clustering of Simulated Data 

As in Subsection 2.2, the last digits of the simulated stock market prices of 

Deutsche Bank imply the frequency distributions presented in Figures 5. The stock 

prices of Daimler reveal the same results. The usage of converted simulated stock 

prices or converted stock prices shows the same results concerning the stock price 

clustering phenomenon.  
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Fig. 5. Frequency distributions of the last digits of simulated stock prices at 

XETRA (dashed bar) and the NYSE (solid black bar).   
 

Figure 5 implies a uniform distribution of the last digits of simulated stock prices 

(the same argument holds for the last digits of converted stock prices and 

converted simulated stock prices) and the degree of stock price clustering does not 

differ between the two exchanges (Chi-squared goodness of fit test, 1% level of 

significance). This is a result that contradicts our empirical findings. Although the 

price differences seem to be normally distributed, the stock price clustering reveals 

substantial differences between empirical and simulated data. We would expect the 

results of the simulated data for our empirical data if the Efficient Market 
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Hypothesis, and the no-arbitrage condition of financial markets as well, held. 

Therefore, our analysis reinforce the efficiency differences between XETRA and 

the NYSE and that trading German stocks simultaneously at both stock markets 

reveals (quasi-)arbitrage opportunities from the Behavioral Finance point of view.  

4 Conclusion 

This paper investigates the question which stock market is more efficient: XETRA 

or the NYSE? We examine this question by analyzing high frequency data of 

selected German stocks (Daimler and Deutsche Bank) that are traded 

simultaneously at both stock markets. If we take the exchange rate into account we 

show that German stocks are traded more efficiently at the German stock exchange 

XETRA. This result also hints at arbitrage possibilities. Furthermore, we analyzed 

quasi-arbitrage opportunities by suggesting a trading strategy. We have shown that 

simultaneous trading on both stock markets leads to lucrative profits after 

subtracting transaction costs. Even if this can only serve as a proxy, it provides a 

clear indication of arbitrage. As these results apply to empirical intraday data, we 

want to check whether we obtain similar results by simulating the stock markets. 

The simulation results reveal that the stock price clustering and the differences 

between the two exchanges cannot be explained by two Random Walks or two 

processes which are the same on both stock exchanges.  
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Abstract: The Generalizability Theory (GT) was developed by Cronbach et al. (1972). Only 

a small number of applications - in educational testing, marketing, etc. - have appeared (e.g., 

Brennan et al., 1995; Bruckner, et al., 2006; Finn, 2004). GT Analysis was restricted to 

balanced and non-missing data. Brennan (2001a) has provided extensions of GT models 

which are better adapted to real situation measurements in psychological and educational 

practice (unbalanced, missing data, etc). Software is also now available (Brennan, 2001b). 

This paper shows an application of a GT model for unbalanced data, with a design oip ×• , 

being p  (subjects) crossed with the fixed facet (scales) and i  (items) nested in each fixed 

facet. The data are answers given by 778 females to the questionnaire, Eating Attitudes Test 

(EAT-26; Garner, Olmsted, Bohr & Garfinkel, 1982). Generalizability Coefficients obtained 

in Generalizability (G) and Decision (D) Studies are described and interpreted. From these 

results a composite score across scales is also given.   

Keywords: Generalizability, Unbalanced design, Composite Score  

  

1. Introduction 
Within the frame of Test Theory, the Generalizability Theory (GT) provides 

models which analyse the error from which an observed score of a subject can be 

generalised to its universe score.  

For each of the designs which can be planned to collect data, there is a GT model. 

Each GT model provides Generalizability coefficients for absolute or relative (to a 

reference group) decisions/measures. Both types of coefficients can assume values 

between 0 and 1.  A value close to 1 shows that the essential source of variation to 

account for the observed scores is the variance of universe scores of the measured 

object (generally subjects). A value close to 0 indicates that other important 

sources of variation, due to particular conditions of measure (items, occasions, 

situations, etc.), are also present (Martinez-Arias, 1995, p. 219). Brennan (2001a) 

and Shavelson & Webb (1991) present the characteristics of the different GT 

models for balanced data, and completely crossed or nested designs. Balanced data 

are analysed using ANOVA statistic models. 

Brennan (2001a) also presents some extensions of GT models. In particular, he 

shows several unbalanced G study designs and the statistical procedure Analogous-

ANOVA for the estimation of G study variance components. He also points out that 

general procedures applicable to any unbalanced D study design are unknown.  

However, he shows estimators of error variances and coefficients for several 

frequently encountered unbalanced D study designs (Brennan, 2001a, pp: 215-

721



 

 

216). This author solves the problem of unbalanced mixed effects designs. In 

practice balanced designs, or unbalanced designs with respect to nesting, can be 

fitted by free computer programs provided by Brennan (2001b). Recently, 

Cardinet, Johnson & Pini (2010) have also provided the EduG program. 

From real data and an unbalanced mixed effects design, this paper presents the 

results and interpretation of G and D study coefficients obtained with the 

mGENOVA program.  

 

2. Method 
Instrument 

The Eating Attitudes Test (EAT-26; Garner et al., 1982) is a 26-item self-report 

questionnaire. Items are presented in a 6-point forced-choice Likert scale ranging 

from 1 (never) to 6 (always). The total score is obtained by recoding scores as 

follows: scores from 1 to 3 are recoded 0, 4 is recoded 1, 5 as 2, and 6 is recoded 3. 

The only exception is item 25 whose answers score as follows: 1 as 3, 2 as 2, 3 as 

1, and 4 to 6 as 0. The EAT-26 total score ranges from 0 to 78.  

Garner et al., (1982) determined three factors or scales, that were labelled Dieting 

(D), Bulimia and Food Preoccupation (B) and Oral Control (OC). Item numbers in 

each scale being 13, 6 and 7, respectively.  

 
Data 

778 women (aged 12-21) answered all the items of the questionnaire EAT-26. 

They were randomly sampled from different High Schools in Malaga Province 

(Spain).  

 

Unbalanced 
oip ×•  Design. Composite model 

A mixed model and an unbalanced design have been considered. The term ( )•p  

indicates that p  (participant) is crossed with the fixed facet (scales) and the term 

( )oi  denotes that i  is nested in a fixed facet (following the notation in Brennan, 

2001b, p.38). Facet i  (items) is nested in the levels of fixed facet j  (scales), being 

p  (participants: 778), i  (items: 13,6,7), j (scales: 3) . The three levels in the 

scales are D, B and OC. 

Scores in the Composite model are given as: 

( ) ( )

( )3210

32103210

3210

32103210

iiiiOC

iiiiBiiiiDC

OCOCOCOCw

BBBBwDDDDwX

++++

++++++++=  

being 

ikD   item i of Dieting scale scored  in category k   13,...,1:i  3,..,0:k  

ikB   item i of Bulimia scale scored  in category k   6,...,1:i  3,..,0:k  

ikOC  item i of Oral Control scale scored in category k 7,...,1:i  3,..,0:k  
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OCBD www ,,  weights for each scale are defined as the ratio of the number of 

scale items to the total number of EAT-26 items. In the first D Study, these weights 

are 2613=Dw , 266=Bw , 267=OCw .  

cX  gives a participant’s score in EAT-26.  

A participant scoring the maximum value (3) in all the items obtains a maximum 

score of 3 in EAT-26 from this Composite model. A participant scoring the 

minimum value (0) in all the items obtains a minimum score of 0 in EAT-26.  

 

Results 

The fitting of GT model is carried out using the mGENOVA program (Brennan, 

2001b). Results of Generalizability Study (G Study) and four Decision Studies (D 
Study) are shown in Table 1. 
G Study 

(a) Variance components for each scale (Columns 4 - 6).  

 

D Study (1) is obtained from levels of scales used in G Study.  

Other D Studies (2 - 4) are obtained by successively increasing the number of 

items in the different scales: 

(b) Number of scale items in each Study (Column 2) and weights for the composite 

model 

(c) Error variance for relative and absolute measures in different scales (Columns 

7- 8) 

(d) Generalizability coefficients for relative and absolute measures in different 

scales (Columns 9 - 10) 

(e) Contributions to variances %ˆ 2 pσ , %ˆ 2δσ , %ˆ 2
∆σ  in the composite model 

(Columns 11- 13). 

Taking the D Study (1) as reference (with the real number of items in the scales), 

in the successive D studies (2) – (4), the greater the number of items, the higher the 

value of the G coefficient. In each study, there is hardly any difference between the 

G coefficients for absolute and relative measures.  Figure 1 shows a summary of 

Generalizability coefficients - for relative and absolute measures - obtained in the 

different scales used in the four D studies. 

In the fourth D Study, if the number of items in the Bulimia and Oral Control 

scales is increased to 13, the G coefficients will be 849.0ˆ 2 =Dρ ; 793.0ˆ 2 =Bρ ; 

712.0ˆ 2 =OCρ  for relative measures, and 833.0ˆ =ΦD
; 782.0ˆ =ΦB

; 707.0ˆ =ΦOC
 for 

absolute measures.  

The composite model gives G coefficients close to 0.9, for both relative and 

absolute measures. These coefficients increase very slowly across the different D 

studies (Col 9-10, Table 1, Figure 1). However, the contributions to 2ˆ
pσ , 2ˆ

δσ , 2ˆ
∆σ  

vary meaningfully in each scale across the different D studies. Taking each 

previous study D as reference, the contributions to variances (a) decrease in each 

scale in which the number of items is fixed, and (b) increase in the scales in which 

the number of items is increased. 
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In the fourth D Study, the composite model for the three scales is given as 

( ) ( ) ( )OCBDX c 261326132613 ++= . 

When the
cX total score is considered: a high degree of generalizability 900.0ˆ 2 =ρ  

is obtained for relative measures, and 893.0ˆ =Φ  for absolute measures.  

 

3. Discussion 
The GT model with this design has been used to show an application with 

unbalanced data, which can be very useful to validate questionnaires in Clinical 

Psychology. This design is also of special interest in the validation of Criterion 

Referenced Tests, e.g. in educational measurement, (Rivas, González & Delgado, 

in press). 

Traditionally, few applications using balanced or unbalanced designs have 

appeared in psychometric literature.  

In GT, the balanced designs application to assign scores to different objects - in 

psychological and educational measurement - has theoretical limitations such as (a) 

samples must be randomly drawn from the population, and (b) the assumptions of 

linearity, homoscedasticity, and normality in ANOVA models. In addition, on 

occasion in practice, the balanced designs can be very restrictive. This restriction 

diminishes using an unbalanced design (e.g. the unbalanced design in regard to 

nesting, as in the above example).  

From the ANOVA statistical model it is relatively easy to define variance 

component estimations for any balanced G or D study. However, it is not easy to 

generalise how to obtain variance component estimations for any unbalanced 

design. Brennan (2001a) presents in detail some estimators for unbalanced G and D 

studies. This author also discusses different statistical questions arising from 

variance component estimation for unbalanced designs. 

In practice, for some unbalanced designs it is possible that there may be no 

statistical procedure for the estimation of variance components. If there were, there 

could be more than one solution, thus complicating the choice of the solution. 

Therefore, the design and appropriate statistical analysis procedure require careful 

planning. Also, estimators of variance components and coefficients of G or D 

studies require careful interpretation.   
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Abstract: An efficiency index is defined to show the utility of a classifier when two cut-off 

points and three categories are considered. 

Given two cut-off points, a scoring classifier x
r

 is determined by the point (x1, x2, x3, x4, x5, 

x6) which represents the possible six types of errors. A graphical representation of x
r

 in 3D 

is given as (Fa_R, Fb_R, Fc_R),  Fi_R being the proportion of cases whose real state is i (i = 

a, b, c) although they have been classified into categories other than i.  

Given any classifier x
r

 in the unit cube, with x
r

 lying on the plane 

2___ =++ RFcRFbRFa , the Index based on the Tetrahedron Volume (ITV) is defined 

as  

2

___
1

RFcRFbRFa
ITV

++
−=     being    2___0 ≤++≤ RFcRFbRFa  

The procedure to obtain ITV is shown and its properties are described. An example is also 

given. 

Keywords: Measurement, Multiple Cut-offs, Three-Category Classification, Efficiency 

Assessment  

1. Introduction 

Traditional ROC Analysis (Receiver Operating Curve) assumes that diagnostic 

tests distinguish between two mutually exclusive classes, generally, with or 

without disorder. In many situations of measurement, a more precise classification 

could be obtained by considering three diagnostic categories (e.g. asymptomatic, 

symptomatic and with disorder). Considering 3 diagnostic categories (instead of 2) 

produces notable differences in a 3 x 3 classification table in relation to a 2x2 table. 

This is because, in a 3x3 table, the errors cannot be defined in the same way as 

negative and positive falses given in 2x2 tables (See Table 1).  
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ROC indices that summarise the results of classification are necessary when there 

are three diagnostic categories, as also in the case of two categories. 

 

Some authors define different goodness of fit measures to assess the precision of a 

trichotomic classification (e.g. Ferri, Hernández Orallo & Salido, 2003a, 2003b). 

For such generalizations of ROC analysis to the multidimensional case, different 

authors have defined precision and utility measures of classifications. Hand & Till 

(2001) present a generalization of AUC (Area Under the ROC Curve) measure for 

classifiers who assign a different score or probability to each prediction. They 

define an M measure from the AUC index associated with each pair of categories. 

Ferri, Hernández-Orallo & Salido (2003) present an extension of AUC in the form 

of VUS (Volume Under the ROC Surface). They also give a set of measures or 

indices of efficiency (performance) for a classifier in three categories (e.g. the 

extension AUC for a point, AUC-1PT3, and different variants of the Hand & Till 

measure). Based on Ferri, Hernández-Orallo & Salido (2003), Caballero & Rivas 

(2009) consider the problem of convex polygon – formed in a two-class ROC 

analysis - and extend it to the problem of determining the convex surface which is 

obtained when a three-category analysis is considered. From these concepts, they 

define the Index based on the Tetrahedron Volume (ITV) : 

Given any classifier ( )RFcRFbRFax _,_,_=
r

 from a unit cube,  

2

___
1

RFcRFbRFa
ITV

++
−=     being    2___0 ≤++≤ RFcRFbRFa  

The possible values of ITV are found in the interval [0, 1] and high values indicate 

a better efficiency of classifier 

From cut-off scores ( )xX =  obtained with real data, Rivas & Caballero (2009) 

compare ITV with indices defined by other authors, such as  AUC-1PT3 and 

extensions (HT1, HT3) of Hand-Till’s M measure. 

From a 3x3 classification Table, this paper gives the procedure to calculate the ITV 

index. A 3x3 Table contains classifications established by a categorical dependent 

(actual or real categories) and a predictor variable (e.g. test)  on which two cut-off  

scores (classifiers) have been established. These cut-offs give the predicted 

categories (classification intervals).  

 

2. Procedure 

In a trichotomic classification, let the three categories of study be A, B,C.  

In accordance with a criterion (e.g. diagnosis), the sample which comprises the 

study is classified in one of three real states, labelled AR, BR , CR.  

In accordance with a predictor variable or instrument of measure (e.g. test), let [t0, 

t3] be the range of scores obtained on the test by subjects of the sample. 
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From some procedures (e.g., ROC curves, Multinomial Logistic Regression model, 

etc.), two cut-off scores [ ]3121 , tttt ∈ ,  are obtained on the total score of subjects. 

These cut-off scores establish the following classification intervals on total scores 

[t0, t1), [t1, t2), [t2, t3]. Sample subjects fall into one of these intervals or predicted 

categories, which can be labelled Ap, Bp, Cp, respectively.  

These two cut-off scores also establish a classifier ( )654321 xxxxxxx ,,,,,=
r

. The 

efficiency of this error classifier is assessed. 

Table 1 shows the number of subjects classified according to the real state 

(diagnostic criterion) and the classification established by the instrument of 

measure used. Table 2 gives the proportions associated with the frequencies given 

in Table 1. 

Table 1. Absolute frequencies associated with three categories 

 

  Real Category 

  
RA  RB  RC  Total 

pA  
pRAAn  

pRABn  
pRACn  
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Table 2. Proportions associated with three categories 
 

 Real Category 

 
RA  RB  RC  Total 

pA  
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R
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4x  
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pC  5x  6x  

R

pR

C

CC

n

n
 

pC
n  

Total 1 1 1  

To facilitate notation, in Table 2, ix , i = 1, 2, …, 6, is noted as the proportion of 

subjects predicted wrongly in each real category. 
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n

n
x

===

===

654

321

                    

                      

A graphical representation of classifier ( )654321 xxxxxxx ,,,,,=
r

 could be made 

in a 6D space, but this has graphical limitations. A graphical representation in 3D, 

where the classifier x
r
 is determined by the point, is proposed.  

( )426153 xxxxxxRFcRFbRFa +++= ,,)_,_,_( , 

 RFi−  being the proportion of subjects whose real state is i but, according to the 

established cut off points, they have been classified into a different category to i (i 

= a, b, c).  

Ignoring all decision rules, the trivial classifiers for three categories are those that 

classify all subjects into category a, b or c. These three trivial classifiers, in 6D 

notation, are represented by (1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1) and 

in 3D notation by (0, 1, 1), (1, 0, 1), (1, 1, 0), respectively. The general equation of 

plane, in which the trivial classifiers lie, is 2=++ RFcRFbRFa ___ . 

Given that any of these classifiers would be less efficient than a trivial classifier, 

those lying above this plane can, therefore, be discarded (Caballero & Rivas, 

2009).  

Let ( )RFcRFbRFax _,_,_=
r

 be a classifier given by a point that satisfies the 

condition 20 ≤++≤ RFcRFbRFa ___ . The tetrahedron whose vertices are 

this point and the three trivial classifiers are considered. If the tetrahedron volume 

is multiplied by 3, an index which assumes values between 0 and 1 is defined. This 

Index based on Tetrahedron Volume, labelled ITV, is defined as 

2

___
1

RFcRFbRFa
ITV

++
−=  

ITV is defined exclusively for ( )RFcRFbRFax _,_,_=
r

, such that 

20 ≤++≤ RFcRFbRFa ___ . 

The tetrahedron whose vertices are the point (0, 0, 0) – or ideal classifier - and the 

points that represent the trivial classifiers, in 3D notation, is the tetrahedron of 
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greater volume (Figure 1). Thus, this tetrahedron is that which presents a greater 

ITV. In particular, ITV is equal to 1 for the ideal classifier, and ITV is equal to 0 

for trivial classifiers.  

 

 

Figure 1.  Tetrahedron defined by ideal and trivial classifiers 

ITV is not defined for classifiers lying above the plane of trivial classifiers. The 

classifiers lying above this plane (in 3D notation, ( )RFcRFbRFa _,_,_  

satisfying 2___ ≥++ RFcRFbRFa ) are less efficient than the 

classifiers ( )RFcRFbRFa _,_,_  lying on the same plane as trivial classifiers. 

(They are also less efficient than the classifiers lying below this plane). This is 

because the sum of proportions of different error types is greater in the first than in 

the second case. The classifiers in the first case can be discarded, because they 

show less utility or efficiency than that of a trivial classifier. This  trivial classifier 

is a random classifier that does not involve any decision rule or its associated cost. 

3. Application 

The Eating Attitudes Test (EAT–26; Garner, Olmstead, Bohr & Garfinkel, 1982) is 

a self-report questionnaire with 26 items. It is the abbreviated version of the EAT–

40 (Garner & Garfinkel, 1979). EAT-26 has frequently been used in 

epidemiological studies to detect possible cases with an eating disorder (ED) in 

subject samples drawn from the community. Each item is scored on a Likert type 

scale from 1 (never) to 6 (always). EAT–26 total score ranges 0 – 78. 

The Spanish version of the Questionnaire for Eating Disorder Diagnoses (Q-EDD; 

Mintz, O’Halloran, Mulholland, & Schneider, 1997) was developed by Rivas, 

Bersabé & Castro (2001). The Q-EDD is a self-report questionnaire with 50 items 

which operationalizes the DSM-IV diagnostic criteria for ED (American 

Psychiatric Association, 1994). Q – EDD establishes the classification of subjects 

into several diagnostic categories of ED.  
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This paper uses scores in the EAT-26 questionnaire and categories (asymptomatic, 

symptomatic and with ED) according to Q-EDD diagnostic criteria assessed in a 

subject sample (778 females).  

Two cut-off scores or classifiers obtained in the EAT-26 scores have been used to 

predict the three categories of classification given by the Q-EDD. 

Different pairs of cut-off scores have been obtained by two procedures:  

(a) Multinomial Logistic Regression Model: Bersabé & Rivas (2010), obtain cut-

off scores 20 and 56. These provide score intervals: 0 – 20 (Asymptomatic), 21 – 

56 (Symptomatic) and 57 – 78 (ED). The classifier obtained is labelled C1 (Table 

3). 

Table 3. Classification for C1 

   Real Category 

(Q-EDD) 

 

   ED Symptomatic Asymptomatic Total 

ED [57,78] 0 3  0  3 

 

Symptomatic [21,56] 18 43 22  83 
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Asymptomatic [0, 20] 18 171 503 692 

  Total 36 217 525 778 

These cut-off scores are associated with classifier 
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ITV value is 

078,0
2
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++
−=

RFcRFbRFa
ITV  

(b) Two-category ROC analysis for pairs of groups: Rivas, Bersabé, Jiménez & 

Berrocal (in press) obtain a cut-off score of 18 on EAT-26 to differentiate between 

categories Asymptomatic – Symptomatic. For this, the sample proportion of 

symptomatic subjects has been considered. A cut-off score of 43 to separate the 

categories Symptomatic – ED has also been obtained. In this case, the sample 

proportion of subjects with ED has also been considered. These cut-offs provide 

the score intervals on EAT-26 scores: 0 – 18 (Asymptomatic), 19 – 43 

(Symptomatic) and 44 – 78 (ED). The classifier is labelled C2 (shown in Table 4). 

Table 4. Classification for C2 

   Real Category 

(Q-EDD) 

 

   ED Symptomatic Asymptomtic Total 

734



 

 

ED [44,78] 9 7  2  18 

 

Symptomatic [19,43] 11 49 26  86 
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Asymptomatic [0, 18] 16 161 497 674 

  Total 36 217 525 778 

 

These cut-off scores, obtained by both two-category ROC Analyses, define the 

classifier  
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From the cut-off scores obtained in (a) and (b) above, ITV shows that the 

classification given in (a) is less efficient than that given in (b).  

4. Discussion 

In a Three-Category classification, measures are necessary to determine the utility 

of a particular classifier. To this end, ITV quantifies the efficiency of the 

classification obtained from a particular classifier. It is defined from the 

tetrahedron whose vertices are the points (3D) associated with the possible better 

classifier and the three random classifiers which have ignored any decision 

procedure.  As it is unnecessary to consider classifiers less efficient than a trivial 

classifier, this ITV has been defined exclusively for classifiers located on the same 

plane or below the plane where the points associated with the trivial classifiers lie.  

The range of possible ITV values is 0-1, a greater value being an index of a greater 

efficiency or performance of a particular classifier. The better classifier (called 

here the ‘ideal classifier’) is that which classifies all the subjects into the correct 

category. It is associated with an ITV value of 1. Each one of the trivial classifiers, 

and the classifiers located on the plane defined by them, has an ITV value of 0. The 

object of this index is to discriminate between different classifiers associated with a 

particular diagnostic test, and to establish which of the possible classifiers shows 

greater efficiency. In the above application, the classifier obtained by procedure (b) 

is more efficient than that obtained by procedure (a) 

In conclusion, the errors ( )654321 ,,,,, xxxxxx in a 3x3 Table could be seen in a 

similar way to positive and negative false proportions in a 2x2 Table . While Fa_R, 

Fb_R and Fc_R could be seen as measures of error associated with each category 

A, B, C, in a 3x3 Table, they cannot be seen as extensions of positive and negative 

false proportions associated with each category in a 2x2 Table.  

Extensions of ITV can be made using different weights – in function of the error 

cost - for each type of error in a 3x3 Table.  In addition, the measure of global 
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precision (AUC) in a two-category ROC analysis could be extended for three-

category ROC analysis.  
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Abstract. Factor models have been fully developed and dealt with in the case
where observations are assumed to be normally distributed. Here, we consider the
less restrictive framework in which the distribution of the observations is assumed
to belong to the exponential family. Thus, we introduce a new class of factor models
allowing to analyze and predict discrete data (binomial, Poisson...), but also non-
normal continuous data (gamma, for instance). These Generalized Linear Factor
Models (GLFM) are built up combining standard Factor Models with Generalized
Linear Models (GLM). A new parameter estimation method is presented for the
GLFM. It is based on Fisher’s Score algorithm for non-standard GLM, combined
with an Expectation-Maximization (EM) type iterative algorithm for latent factors.
Extensive Monte Carlo simulations show promising results.
Keywords: Factor Models, Generalized Linear Models, EM Algorithm, Scores
Algorithm, Simulations..

1 Introduction

Latent variable models are widely used in social sciences for studying the
interrelationships among observed variables. More specifically, latent variable
models are used for reducing the dimensionality of multivariate data, for
assigning scores to sample members on the latent dimensions identified by
the model, and for constructing measurement scales (e.g., in psychometrics).
[6,7] proposed a generalized linear latent variable model framework for any
type of observed data (metric or categorical) in the exponential family. They
extended the work of [5] and [11] for mixed binary and metric variables
(the latter with covariate effects as well) and [2] for categorical variables. A
similar framework was also discussed by [12] that includes multilevel models
(random-effects models) as a special case.

In this paper we develop a general approach to factor analysis that involves
observed variables that are assumed to be distributed in the exponential
family. It accommodates a great variety of data, including rating, ordering,
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choice, frequency, and timing data and entails a number of special cases of
factor analysis not considered previously.

The framework is that of factor models (FM): a set of q observed random
variables (RV) {y1,y2, ...,yq} is assumed to be produced by fewer (k < q) un-
observed (latent) ones, {f1, f2, ..., fk}, called factors. The factors are supposed
to account for the dependencies among the response variables in the sense
that if the factors are held fixed, then the observed variables are indepen-
dent. This is known as the assumption of conditional or local independence.
So far, most developments on FM’s were limited by the assumption that
{y1,y2, ...,yq} are normally distributed, and used this specific distribution
to carry out their estimation, through the EM algorithm.

Here, we want to extend FM’s to any type of distribution belonging to
the exponential family: binomial, gamma, Poisson, etc. Therefore, we must
also deal with the framework of generalized linear models (GLM), which only
take observed variables as predictors, and are estimated using these observed
values. So far, FM’s and GLM’s have been developed independently.

In this work, we propose a class of models - Generalized Linear Factor
Models (GLFM) - in which, conditional to the factors {f1, f2, ..., fk}, each yi

is modeled with a GLM taking these factors as predictors. For identifica-
tion purposes, the factors are taken uncorrelated and normally distributed
with 0 mean and unit variance. The independence assumption for the latent
variables can be relaxed. Moreover, [1] showed that the choice of the latent
variable distribution has a negligible effect on the interpretation of the re-
sults. He suggested using the normal distribution because it has rotational
advantages when it comes to more than one latent variable.

In this paper we intend to estimate the model by maximizing the likeli-
hood function. In the estimation we consider the unobserved factor scores,
{f1, f2, ..., fk}, as missing data. Then, we use the EM algorithm to learn pa-
rameters from the incomplete data. The problem here is that the the EM
algorithm - using explicit expression of the expected completed log-likelihood
of parameters conditional to observations - does not directly extend to non-
normal distributions. To circle this difficulty, we consider the GLM’s estima-
tion algorithm that iteratively linearizes the model and performs Generalized
Least Squares on it, and we propose to apply the EM procedure ”locally” to
this linearized GLM.

2 General structure of the GLFM

2.1 Model of the dependent variable Y conditional to factors

We consider n observation units {1, ..., t, ...n}. Let yt = (yit)i=1,q and ft =
(fjt)j=1,k

respectively be the vector of observed variables {y1,y2, ...,yq} and

latent factors {f1, f2, ..., fk} for unit t.
Conditional to factors ft, (yit)i=1,q are independently distributed accord-

ing to a model having an exponential structure [8]:
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ℓi(yit|δit, φ) = exp

{
(yitδit − bi(δit))

ait(φ)
+ ci(yit, φ)

}

Let us recall classical results for this structure:

µit = E(yit) = b′i(δit); V ar(yit) = ait(φ)b′′i (δit) = ait(φ)b′′i
[
b′−1
i (µit)

]

Let νi = b′′i
[
b′−1
i (µit)

]
. Independence of (yit)i=1,q conditional to ft implies

that they have conditional variance matrix:

V ar(yi) = diag {ait(φ)vi(µit)}t=1,...,n

2.2 Linear predictors

Stacking vectors ft, we get the (n, k) factor matrix F = [f1, ..., ft, ..., fn]
′
.

We assume that, underlying variables {y1,y2, ...,yq}, are predictors η =
{η1, η2, ..., ηq} that are linear combinations of the factors. Let θ = (θ1, ..., θq)

′

be the vector of fixed effects. Most generally, these effects may depend on
covariates, but in order to simplify our developments, we here take them
constant.

For all i, let θ̃i = θi1n. Then, the linear predictor of yi conditional to F
may be written as a vector in R

n: ηi = θ̃i + Fai, where ai is a k -coefficient
vector. Let A = (a1, ..., aq)

′
be the (q, k) coefficient matrix. In matrix form,

we have:

η = θ1′
n + AF ′

Column t corresponds to unit t:

ηt = θ + Aft

The distribution assumption of factors is such that:

∀t, ft ∼ N (0, Ik)

2.3 Link function

The linear predictor and the expectation of the dependent variable yi are
linked through a link function gi:

∀i, t : ηit = gi(µit)

Amongst all link functions, that which allows to equate the linear pre-
dictor and the canonical parameter is called canonical link function. We
have:

µit = b′i (δit) ⇒ ηit = gi (b′i (δit))

So, the canonical link function is: gi = b′−1
i
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3 Estimation of the GLFM

As, conditional to the factors, the GLFM boils down to a GLM, we first recall
the overall structure of the GLM estimation algorithm, which also allows to
introduce our notations. Then, we give back their latent random variable
status to the factors, and adapt the estimation procedure to this situation
by including an EM step in its current iteration.

3.1 Estimation of a GLM

Consider the GLM of some variable y, with µ = E(y). Let X = (x1, ..., xt, ..., xn)′

be the (n, k) observed predictor matrix. Let g be the link function, and η the
linear predictor:

η = Xβ, β ∈ R
k

For each unit t, we have:

ηt = g(µt) ⇒ x′
tβ = g (b′(δt))

The problem is to estimate β. The log-likelihood of the model is:

L(δ; y) =

n∑

t=1

Lt(δt; yt) =

n∑

t=1

[
ytδt − b(δt)

at(φ)
+ c(yt, φ)

]

Derivation with respect to β yields:

∂Lt

∂βj

=
∂ηt

∂βj

∂µt

∂ηt

∂δt

∂µt

∂Lt

∂δt

= xtj

1

g′(µt)

1

b′′(δt)

yt − µt

at(φ)

⇒
∂L

∂βj

=
n∑

t=1

xtj

1

g′(µt)2var(yt)
g′(µt)(yt − µt)

Let:

Wβ = diag
[
g′(µt)

2V (yt)
]
t=1,n

= diag
[
g′(µt)

2at(φ)v(µt)
]
t=1,n

and

∂η

∂µ
= diag

(
∂ηt

∂µt

)

t=1,n

= diag (g′(µt))t=1,n

Then, likelihood equations can be written:
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X ′W−1
β

∂η

∂µ
(y − µ) = 0 (1)

This equation system not being linear in β, it is solved using an iterative
process, known as Fisher’s scores algorithm. If m[e] denotes the value of
element m after iteration e:

β[e+1] = β[e] −

(
E

[{
∂2L

∂β∂β′

}][e])−1
∂L[e]

∂β

= β[e] +
(
X ′W−1

β[e]X
)−1

X ′W−1
β[e]

∂η[e]

∂µ

(
y − µ[e]

)

=
(
X ′W−1

β[e]X
)−1

X ′W−1
β[e]z

[e] (2)

where:

zβ = η +
∂η

∂µ
(y − µ) = Xβ +

∂η

∂µ
(y − µ) (3)

Then, (1) becomes:

X ′W−1
β (zβ − Xβ) = 0 (4)

Equations (4) with given zβ may be interpreted as GLS normal equations
in the linear model:

M : zβ = Xβ + ζ , where : E(ζ) = 0 ; V (ζ) = Wβ

(indeed: V (ζt) = V (zβ,t) = g′(µt)
2V ar(yt))

So, current iteration e of the estimation algorithm consists in solving
X ′W−1

β[e](zβ[e] − Xβ) = 0 with respect to β, and updating β in Wβ and zβ

with the solution.
We shall refer to M[e] : zβ[e] = Xβ+ζ [e]; E(ζ [e]) = 0; V (ζ [e]) = Wβ[e] as

the (current) linearized model. One important point is that GLS estimation
of this model is nothing but a Quasi-Likelihood Estimation (QLE). This
estimation by maximum of QL mimics MLE on each step, under a normality
and independence assumption of the zβ,t’s with a fixed covariance structure.

Note: as the 1st order development of g at point µ yields:

g(y) ≈ g(µ) + g′(µ)(y − µ) = z

we may perform OLSR of g(y) on X , in order to get an initial value β[0].
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3.2 Estimation of a GLFM

In the case of a classical FM [10], estimation is handily carried out using
the EM algorithm [4], which then requires that all variables be normally
distributed, and maximizes the expectation of the completed log-likelihood
conditional to observations, integrated with respect to the factors. According
to the previous section, this normality assumption may be formally used with
the linearized GLM within current step e, since GLS mimics normal MLE
[3].

In the case of a GLFM, the estimation principle we propose is then infor-
mally straightforward. We consider the model alternately as:

- a GLM model conditional to F = (f1, ..., ft, ..., fn)
′

- a FM within the current estimation step of this GLM, as this step uses
a linearized version of the GLM.

To be more precise, conditional to the current values of θ, A, F , and
following (3), we introduce the pseudo-dependent working variable z, which
is then known:

zi,F = θ̃i + Fai +
∂ηi,F

∂µi,F
(yi − µi,F ) = θ̃i + Fai + g′(µi,F )(yi − µi,F )

let ζi,F = g′(µi,F )εi,F with εi,F = yi − µi,F

This intermediate z variable is used in the following estimation algorithm.
Let ∀ t zt = (z1t, ..., zqt)

′
, and Z = (z1, ..., zt, ..., zn)

′
:

(i) Given Z and V (ζ), the model - called linearized marginal model - is:

∀ t = 1, n zt = θ + Aft + ζt

It is viewed as a non-standard FM, and estimated through an EM step,
yielding F . Since ft ∼ N (0, Ik), we have:

V (zt) = Σ = AA′ + Ψ

with

Ψ = E(Ψt) = E
(
diag(g′(µi,ft)

2var(εit|ft))
)
i=1,q

If g is the canonical link function, we have:

Ψ = E(Ψt) = E (diag(ait(φ)g′(µi,ft)))i=1,q

Matrix Σ is the variance matrix used through the EM algorithm. It is
analytically calculated for all classical canonical link functions.

(ii) Given F , the model - called linearized conditional model - is viewed as
a GLM, and parameters θ and A are updated through Fisher’s scores
algorithm. This algorithm uses the variance matrix of ζ conditional to
F :

V (zt|ft) = V (ζt) = Ψt

(ii) Variance matrix V (ζ) and z are then updated.
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4 Experimental results

We present simulations carried out on a GLFM with two common factors,
based on the Poisson distribution (g = log). The simulated data vector has
size q = 40 with k = 2 and n = 400. The convergence threshold

N = max
i∈{1,...,k}

{
n∑

t=1

(
f

[e+1]
it − f

[e]
it

)2
}

was taken equal to 10−5.1 Initial parameter values for the EM algorithm were
obtained through random perturbation of the real parameter values. As EM
also requires an initial value for z, we used the following approximation:

∀ i = 1, q ; t = 1, n z
[0]
it = log [αyit + (1 − α)yi] , with α = 0.5

The rationale behind the use of α < 1 is to circle difficulties due to zero-
values in data.

Our tests showed a good behaviour of the algorithm both at parameter
and factor estimation. The sample means are very close to the true ones, and
the standard deviations are small. Furthermore, the convergence threshold
was reached after 7 iterations.

1 2 3 4 5 6 7
0

0.5

1  

1.5

Regression of the first simulated factor
on the two estimated ones

1 2 3 4 5 6 7

0
0.2
0.4
0.6
0.8
1  

Regression of the second simulated factor
on the two estimated ones

1 2 3 4 5 6 7
0.8

0.85

0.9

0.95

1

Correlations between the first simulated
factor and the first estimated one

1 2 3 4 5 6 7
0.8

0.85

0.9

0.95

1

Correlations between the second simulated
factor and the second estimated one

Coefficient of the first factor
Coefficient of the second factor

Fig. 1. Correlations between simulated factors and their estimation.

Results from the regression of the simulated factors ft on the estimated
factors f̃t (e.g., f1t = β1f̃1t + γ1f̃2t + νt and f2t = β2f̃1t + γ2f̃2t + νt) given
in figure 2 show that the regression coefficients β1 and γ2 converge to one,

1 [e] is the iteration number
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while β2 and γ1 are close to zero. The correlations between simulated factors
and their estimation was very close to 1 (r

f1,f̃1
> 95%, r

f1,f̃2
≈ r

f2,f̃1
≈ 0

and r
f2,f̃2

> 95%) which reconfirm again this result (Figure 1).

Finally, using the empirical Kullback-Leibler K̃n divergence (see [9]) in

order to measure the distance of estimators Θ̃ from the true parameters Θ0

we have concluded a general decrease in average and spread of the distances
with increasing n. Given that small values of K̃n imply similarity between
Θ0 and Θ̃n, the results of this experiment suggest an increasing accuracy and
stability of the estimators as n increases.

We are currently performing tests on a variety of situations involving
variables yi modeled through distinct GLM’s conditional on the same factors.
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Abstract. The Monte-Carlo Markov Chain (MCMC) method for estimation of the skew t-
distribution is presented. The skew t-distribution is represented by a multivariate skew - 
normal distribution with the covariance matrix depending on the parameter, distributed 
according to the inverse - gamma distribution (Azzalini and Genton, 2008). Thus, the 
density of the skew t-distribution is expressed through a multivariate integral. Next, the 
MCMC procedure is constructed for recurrent estimation of the skew t–distribution by 
maximum likelihood, where the Monte-Carlo sample size is regulated so that to ensure the 
convergence and to decrease the total amount of Monte-Carlo trials needed for estimation. 
The confidence intervals of Monte-Carlo estimators are introduced because of the 
asymptotic Gaussian distribution of Monte-Carlo estimators and the termination rule is 
implemented testing statistical hypotheses on an insignificant change of estimates in two 
contiguous chains of the procedure (Sakalauskas, 2000). 
Keywords: Statistical simulation, Monte-Carlo method, Maximum likelihood, Gaussian 
approximation, EM - algorithm 
 
1  Introduction 
 

In recent time, there has been a growing interest in the analysis of parametric 
classes of distributions that exhibit various shapes of skewness and kurtosis. To 
model departures of such a distribution from normality, a well-known approach 
consists in modifying the probability density function of a random vector in a 
multiplicative fashion (Azzalini and Genton, 2008). A multivariate skew t–
distribution, which is often applied to model non–Gaussian errors, is constructed in 
this way, too. In general, the skew t-distribution is represented by a multivariate 
skew - normal distribution with the covariance matrix depending on the parameter, 
distributed according to the inverse-gamma distribution. According to this 
representation, the density of the skew t–distribution as well as the likelihood 
function are expressed through multivariate integrals that are convenient to 
estimate numerically by Monte-Carlo simulation (Cabral et all, 2008). In this 
paper, the maximum likelihood method for estimating the parameters of the 
multivariate skew t-distribution is developed using the adaptive Monte-Carlo 
Markov chain approach. 
 
2  The Maximum Likelihood Estimation of Multivariate Skew t-
Distribution 
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Denote the skew t–variable by ),,( ΘΣµST . In general, a multivariate skew t–
distribution defines a random vector X, that is distributed as a multivariate 
Gaussian vector:  

)()(2
12

1

)/(),,,( axaxt
d

T

ettaxf −⋅Σ⋅−⋅− −
−

⋅Σ⋅=Σ π ,                   (1) 
where the vector of mean a, in it’s turn, is distributed as a multivariate Gaussian 
( )tN 2/,Θµ  in the half–plane 0)(1 ≥−⋅⋅ − µω aq , where ( ),diag Σ=ω  

0,0 ≥Θ≥Σ  are the full rank dd ×  matrices, d is the dimension, and the random 
variable t  follows from the Gamma distribution: 
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Assume, for simplicity, the parameter b to be fixed. By definition, the d–
dimensional skew t–distributed variable X has the density: 
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Let a matrix of observations be given ⎟
⎠
⎞⎜

⎝
⎛= KXXXX ,...,2,1 , where Xi are  

independent vectors, distributed as ),,( ΘΣµST . We will examine the estimation of 
parameters ΘΣ,,µ   by the maximum likelihood method. Thus, the log–likelihood 
function is as follows:  

( )( ) ( )( )∑∑
==

Σ−=ΘΣ−=ΘΣ
K

i

i
K

i

i taXEfXpL
11

,,,ln,,,ln),,( µµ ,           (4) 

where the expectation is taken with respect to a and t, distributed as described 
above. The estimates ΘΣ ˆ,ˆ,µ̂  of parameters of multivariate skew t–distribution (3) 
are found by taking and setting equal to zero the first derivatives, and then solving 
the equations obtained by this way subject to 0,0 ≥Θ≥Σ .  
Derivatives of the likelihood function are expressed through derivatives of the 
density function:   

∑
= ΘΣ

⋅
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Differentiation of the density function of skew t-distribution (3) provides us: 

,)(

),,,(),,,()(),,,(

1

0 0)(

1

1

dadttf

taftaxfaxtxp

aq

×

×Θ⋅Σ⋅−⋅Σ⋅=
∂

ΘΣ∂
∫ ∫
∞

≥−⋅⋅

−

− µω

µ
µ
µ

 

( )

,)(),,,(),,,(

)()(),,,(

1

0 0)(

111

1

dadttftaftaxf

axaxtxp

aq

T

⋅Θ⋅Σ×

×Σ⋅−⋅−⋅Σ⋅+Σ−=
Σ∂

ΘΣ∂
∫ ∫
∞

≥−⋅⋅

−−−

−

µ

µ

µω
 

( )

.)(),,,(),,,(

)()(),,,(

1

0 0)(

111

1

dadttftaftaxf

aatxp

aq

T

⋅Θ⋅Σ×

×Θ⋅−⋅−⋅Θ⋅+Θ−=
Θ∂

ΘΣ∂
∫ ∫
∞

≥−⋅⋅

−−−

−

µ

µµµ

µω
 

Denote the conditional density: 
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Using this definition, the derivatives of the likelihood function can be written in the 
following form: 
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Let 0ˆ,0ˆ,ˆ >Θ>Σµ  be the maximum likelihood estimates of parameters of 
),,( ΘΣµST . It is easy to see that now these estimates satisfy the equations: 
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where the conditional expectation is taken for ΘΣ ˆ,ˆ,µ̂ .  
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3  Monte–Carlo Markov Chain  
 

Now it is convenient to calculate the estimates of parameters by an iterative 
method, starting from the initial values. Let us consider the EM – algorithm to 
solve equations (5)-(7). The recurrent EM relationships are as follows: 
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where conditional expectations are computed for kkk ΘΣ ,,µ , and 000 ,, ΘΣµ  
are some initial approximations, k=0,1,2,.... The process is terminated, if the 
estimates during two current iterations differ insignificantly. 
Since the integrals in the expressions obtained can be calculated analytically only 
in very simple cases, it is reasonable to apply the Monte-Carlo method. Say, 
random variables and vectors are generated:  
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where j=0,1,2,...,Nk, Nk is the Monte–Carlo simple size at the kth step. Then  
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where the Monte–Carlo estimators are as follows: 
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The Monte-Carlo estimate of the log-likelihood function (4) is obtained using 
estimate (14): 
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The statistical modelling error of the log-likelihood function can be evaluated for a 
large sample size kN  in the following way:   
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By virtue of (19) the variance of estimate (18) can be evaluated as: 
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Hence, the 95% confidence interval of the estimate of the log-likelihood function 
can be also estimated by the Monte-Carlo method: 
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Note that there is no reason to generate large samples starting the estimation since 
it suffices only to approximately evaluate the direction leading to the solution of 
equations (5)-(7). Thus, large samples should be taken only at the moment of the 
decision on termination of the Monte–Carlo Markov chain. To this end, the next 
rule of sample size regulation is implemented:  
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where pZ ,β  is the quantile of Fisher distribution, β  is the significance level. In 

the general case, α  may be coincident with β . As follows from (Sakalauskas, 
2000), such a rule guarantees the convergence of procedure (11-13) to the solution 
of equations (5)-(7). The Monte–Carlo chain can be terminated at the kth step if 

 kkkkkk Θ≈ΘΣ≈Σ≈ +++ 111 ,,µµ ,                              (22) 
and Monte-Carlo estimates are presented with an admissible confidence interval. 
Since estimators (14)-(17) are averages of a large number of identically distributed 
random variables, their distribution is approximated by CLT. Hence, the statistical  
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criteria about the equality of sampling mean and covariance matrices to the given 
vector or matrices can be used for testing termination condition (22). Thus, the 
hypothesis on the termination condition is rejected, if 
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where pZ ,α  is the quantile of Fisher distribution with ( )3+⋅= ddp  degrees of 
freedom, α  is the significance level.  
Thus, using the adaptive Monte-Carlo Markov chain approach developed, the 
Monte-Carlo estimators (11)-(18) are calculated changing the Monte-Carlo sample 
size according to (21) and terminating the chain when the confidence interval (20) 
becomes shorter than the prescribed admissible value and criteria (23) don’t reject 
the hypothesis on condition (22). 
 
4  Computer Simulation 
 

Let us consider the numerical example with the following model data:  

d=2, b=5, ( )21=µ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

9.227.0
27.061.1 , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Θ

55.286.0
86.067.3 . 

The random ),,( ΘΣµST  sample with K=500 has been simulated to explore the 
approach developed. The maximum likelihood estimates (5)-(7), obtained from this 
sample by means of the subroutine Minimize() of MathCad, are as follows: 

( )17.204.1ˆ =µ , 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

631.3189.0
189.0503.1ˆ , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Θ

912.1096.0
096.0081.4ˆ . 

The Monte-Carlo Markov chain of 100 estimators (11)-(18) has been computed 
with initial data: µµ ⋅= 5.10 , Σ⋅=Σ 5.10 , Θ⋅=Θ 5.10 .  

  
Fig. 1. Log-likelihood function            Fig. 2. Termination test 
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Fig. 3. Sample size kN                         Fig. 4. Confidence interval 

The changes of the log-likelihood function estimate (18), termination statistics 
(23), sample size (21) and the length of the confidence interval (20) are depicted in 
Fig’s. 1-4. As we see in Fig. 1, the log-likelihood function is decreasing as long as 
the zone of possible solution is achieved. Correspondingly, the termination criteria 
in Fig. 2 are decreasing, too, until the critical value of termination is achieved. The 
sample size in Fig. 3 is changed so that it was small starting the chain and increase 
in the zone of possible solution. To avoid very small or very large sample sizes, the 
bounds were applied: 5000500 ≤≤ kN . The length of the confidence interval in 
Fig. 4 and the error of estimates decreased as well. The termination conditions 
started to be valid at k=46. Thus, the following MCMC estimates have been 
obtained: 

( )20.213.146 =µ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=Σ

88.311.0
11.066.2

46
, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Θ

53.115.0
15.061.2

46
. 

 
5  Conclusions 
 

The Monte-Carlo Markov Chain (MCMC) method for estimation of the skew t-
distribution has been developed in the paper. It distinguishes by adaptive regulation 
of Monte-Carlo sample size and treatment of the simulation error in the statistical 
manner. The computer counterexample has illustrated that numerical properties of 
the method correspond to the theoretical model.   
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Abstract. We discuss the problem of obtaining mortality profiles from some an-
imal bones remains found in archaeological sites. The method takes account of
different types of bones that can be related to different sets of possible ages of the
animals. As a first preliminary step we obtain the likelihood function and derive
the equations for the point of maximum likelihood.

Keywords: Mortality profile, Likelihood analysis, Archaeozoology.

1 Mortality profiles from bones data

The field of archaeozoolology deals with the study of animal remains in ar-
chaeological deposits as a result of human activity with the goal of recon-
structing the relationship between man and animals. (see [3], [5], [6], [11],
[12], [13], [15]). Among many factors widely used in archaeological investiga-
tion, the estimated age of death and the subsequent processing of the curves
of mortality of animal populations are considered to be those of highest in-
terest in order to identify the cultural implications in relation to farming
systems. The analysis of animal bone remains helps archaeologists also to
rebuild the cultural traditions of ancient peoples. helping to define the econ-
omy of subsistence of human settlements. The materials we are interested
in come from the analysis of animal bones collected from levels VIII (Late
Chalcolithic, 4300-4000 BC) and VID (Early Bronze Age III, 2500-2000 BC)
of Arslantepe. After recovery of the remains on the excavation and examina-
tion of the feature concerning the archaeological context, and identification of
taxonomic, anatomical of the fragments, the elements of diagnosis are consid-
ered, where and when its possible to ascertain, on the knitting of epiphyses,
the fusion of sutures, the progress of the dentition, development and tooth
abrasion, etc. .. These characters differ widely from individual to individual
and this subject is a frequently discussed topic, as evidenced by the numerous
studies to verify the presumed age of death. The age can only be determined
? the complete version appears in Methodology and Computing in Applied

Probability (MCAP), Springer, 2009. DOI 10.1007/s11009-009-9145-3,
http://www.springerlink.com/content/e86662j38168r247/
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with some approximation, because it is almost impossible to state precisely
at what age the bone development was interrupted.

The assessment of the age of death from the bones of animals collected
during the archaeological excavations, is obtained from comparative studies
with wild animals hunted, from whose anatomical and morphological evidence
can be traced with some accuracy the age, or with animals slaughtered at a
domestic note, of osteology collections. The variability of the stages of bone
growth, both in the same individual and between different individuals of the
same species, does not always allow a precise correlation between the periods
of the development of various skeletal parts and the real age. In fact if we
analyze the bones of an individual dead at known age and attribute an age
to them according to the the state of skeletal development, we could easily
obtain different results.

It is not easy to define exactly the age of death, as happens, for example,
by observing the distal fused epiphysis of tibia of an animal, from which its
possible to infer that this animal could certainly have more than two years,
but it is impossible to say in the lack of other evidence, if it had three years
or more. For this reason, despite the data on the fusion of the epiphysis and
the eruption of teeth are reported in numerous osteological publications on
the calculation of age of death, several questions still remain unanswered.

Normally one needs a large sample of bones to come up with a significant
mortality curve, but it’s not uncommon to find only a small number of sam-
ples. Discuss and interpret the data that may be few in number is sometimes
hazardous, and their reliability is low. Whereas these data are only a frac-
tion of the total and are not used together, a representation of populations
of belonging may not be very representative.

In the determination of each researcher tries to identify with greater ex-
pertise as possible other factors, less obvious, but important in determining
as far as possible the range of likely ages. Also one must take into account
the historical contexts and on the biogeographic population of animals that
judges consider most plausible. Inherent in the calculation of age of death of
the animals based on the skeletal development there is a kind of uncertainty
principle in its evaluation, which leads us to interpret and thus represent the
strategies of hunting and breeding in an approximate way.

A method for taking account of all information contained in data is like-
lihood analysis based on Bayes formula (see f. e. [4], [7], [8], [9], [10] ).
The major advantage of this method is that it allows to take account at the
same time of all the available data. We have started this analysis by writing
the likelihood function and the equation for the point of maximum likelihood.
Further work is required in order to devise and implement an efficient method
to apply this kind of analysis to our data.
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2 Likelihood analysis

We introduce a statistical model in order to obtain from the data information
abot the death age distribution of the animals. Let the index l = 0, 1, . . . , N
denote the possible values of the death age of the animals. Let fl be the
percentage of the animals at age l. Each animal has r types of ”bones”. The
j-th type can be in one of sj states. Let p(i,m|l) be the probability for animal
dead at age l that its bone of type j be in state m. The likelihood function
for obtaining k(j)

m of bones of the j-th type in the m-th state is therefore

r∏
j=1

sj∏
m=1

(
N∑

l=0

p(i,m|l)fl)k(j)
m . (1)

The log-likelihood is

r∑
j=1

sj∑
m=1

k(j)
m log(

N∑
l=0

p(i,m|l)fl). (2)

The equations for the point of maximal likelihood are

r∑
j=1

sj∑
m=1

k(j)
m

p(i,m|l)∑N
l=0 p(i,m|l)fl

= λ (3)

for l = 0, 1, . . . , N and

N∑
l=0

fl = 1. (4)

We plan to perform various methods of Bayes likelihood analysis including
Monte Carlo Markov Chain simulation ([1], [10]) for obtaining reasonable
mortality curves from our available data.
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Abstract. In this paper, a hybrid genetic algorithm for solving the Uncapacitated
Multiple Allocation Hub Location Problem is proposed. This NP-hard problem has
significant application in designing modern transportation and telecommunication
networks, such as road and railway systems, postal systems, systems of fast deliv-
ery, etc. In order to improve the efficiency, genetic algorithm is combined with the
local search heuristic. The proposed hybrid method shows to be very successful in
solving problems of large dimensions with up to n = 120 nodes. It is also tested
on instances with n = 130 and n = 200 nodes for which no optimal solution is pre-
sented in the literature so far. Although the optimal solutions are not known, we
believe that the proposed hybrid method provides high quality solutions on these
problem instances unsolved to optimality before.
Keywords: Genetic Algorithms, Hub Location Problems, Combinatorial Opti-
mization, Metaheuristics, Transportation and Telecommunication Networks.

1 Introduction

Hub location problems have become an important research field in location
theory. They are frequently used as models in numerous applications includ-
ing airline design, postal delivery, computer networks and various transporta-
tion and telecommunications networks

Hub nodes serve as concentration and consolidation points in the network
by collecting traffic from one or more origins and distributing it to the desti-
nations. Instead of serving each origin-destination pair directly, hub facilities
consolidate flows in order to take advantage of economies of scale. Since there
is an increase in the traffic between hub nodes, smaller transportation costs
can be obtained, due to a discount factor for transport between the hubs.

According to the particular characteristics of the hub network, there are
many variants of hub location problems. The number of hubs may or may
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not be fixed in advance, there may be constraints on the capacities on the
nodes or arcs in the network, fixed costs for establishing hub network may
be assumed. In the hub network, each non-hub node is allocated to exactly
one hub (single allocation scheme) or to several hubs (multiple allocation
scheme). A general review of the different hub location problems can be
found in the classical paper [5] or in more recent survey [2].

2 The Uncapacitated Multiple Allocation Hub
Location Problem

Let I = 1, ..., n be the set of nodes in the network exchanging some traffic.
The distance between nodes i and j is Cij , satisfying the triangle inequality
[5]. The number of units of traffic to be sent from node i to j is denoted as
Wij . It is assumed that the hubs are fully interconnected and every non-hub
node can send traffic to different hubs (multiple allocation scheme). The
traffic between a pair of nodes i and j has to be routed through either one
or two established hubs and it consists of three components: collection of
flow from origin i at hub k, transfer between hubs k and m and distribution
from hub k to destination j. If k = m, the traffic is routed just via one hub.
Establishing a hub at potential location k causes fixed costs fk. The decision
variables are:

• yk = 1, if node k is established as a hub, 0 otherwise,
• xijkm is the fraction of traffic from origin i to destination j that is routed

via hubs k and m.

Parameters χ and δ denote the unit transportation cost for collection and
distribution respectively, while factor α represents the reduced costs per unit
between hubs due to increased traffic on the hub arcs.

Using the above notation, the UMAHLP can be modeled as a Mixed-
Integer Linear Program MILP, as in [6]:

min
∑

i,j,k,m

Wij · (χ · Cik + α · Ckm + δ · Cmj) · xijkm +
∑
k

fk · yk (1)

subject to: ∑
k,m

xijkm = 1 for every i, j (2)

∑
m

xijkm +
∑

m,m 6=k

xijmk ≤ yk for every i, j, k (3)

yk ∈ {0, 1} for every k (4)
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xijkm ≥ 0 for every i, j, k,m. (5)

The objective in (1) is to minimize the total cost, which is the sum of the
transportation cost and the fixed cost. Constraints (2) guarantee that the
total traffic for any origin-destination pair (i, j) is routed via some pair of
hubs (k,m). Constraints (3) assure that traffic is routed only via opened hub
locations. Variables yk and xijkm are assumed to be binary and non-negative
by (4) and (5) respectively.

The UMAHLP is NP-complete, with exception of some special cases that
can be solved in poynomial time (e.g. when flow matrix is sparse). If the set
of hubs is pre-determined, the Shorthest path Algorithm can provide solution
for the UMAHLP in O(n3) computational time [9].

Several approaches for solving the UMAHLP are proposed in the litera-
ture. The dual-ascent technique within a branch-and-bound scheme in [12]
was tested on ORLIB hub data set [3] with n ≤ 25 nodes. Mayer and Wagner
[14] developed a new branch-and-bound method that provides solutions for
ORLIB instances with n ≤ 40. Boland et al. in [4] developped preprocess-
ing procedures and tightening constraints for the UMAHLP formuation and
presentedl results on ORLIB data set with n ≤ 50.

Canovás et al. proposed a heuristic based on a dual-ascent technique that
was later implemented within a branch-and-bound algorithm in [7]. Through
computational analysis using ORLIB CAB and AP data sets they were able
to solve instances up to 120 nodes. These are the best computational results
for the UMAHLP from the literature up to now.

3 Hybrid Genetic Algorithm for the UMAHLP

It is well known that classical genetic algorithms are usually less efficient in
fine-tuning solutions in complex search-spaces [15]. For many hard combi-
natorial optimization problems combinations of genetic algorithms and local
improvement techniques have been applied with success: [1], [16] ,[18], [8] and
[17]. In the hybrid genetic algorithm (HGA), proposed in this paper, we have
implemented local search heuristic within the GA framework. Local search is
applied on the best individual in every generation of the genetic algorithm, if
it has been changed comparing to the previous generation. The heuristic tries
to interchange one opened and one closed facility location. The interchange
process is performed when the first improvement is obtained. This step is
repeated on the new, improved individual until it remains unchanged in two
successive steps. The heuristic is applied before the selection, crossover and
mutation operators. The basic scheme of the HGA implementation can be
represented as:

Input_Data();

Population_Init();
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while not Finish() do

for i:=1 to Npop do

obj[i] := Objective_Function(i);

Improving_Heuristic (obj[i]);

endfor

Fitness_Function();

Selection();

Crossover();

Mutation();

endwhile

Output_Data();

/* Npop denotes the number of individuals in a population and obj[i] is
objective value of i-th individual */

3.1 Encoding and Objective Function

Individuals in the HGA implementations for the UMAHMP encoded as bi-
nary strings of length n. One in the genetic code denotes that the current
node is chosen as hub, zero if not. For example, from the genetic code
000100110111 for n = 12 we understand that hubs are located at nodes 3, 6,
7, 9, 10 and 11 (numbering is from 0 to n− 1).

The indices of established hubs are obtained from the genetic code. When
the set of hubs is fixed, the problems of allocating non-hub nodes to hubs
reduce to solving n2 shortest paths problems, which can be done in O(n2p)
time, where p is the number of located hubs. We use a modification of Floyd-
Warshall algorithm, described in [9], to find a shortest path for each pair of
nodes in the network. After assigning non-hub nodes to hubs, the objective
value is then simply evaluated by summing distances origin-hub, hub-hub
and hub-destination multiplied with corresponding flows and parameters χ,
α and δ respectively and adding fixed costs for establishing hubs.

3.2 Genetic Operators and Other Aspects of the GA

As a selection method, we implemented the Fine Grained Tournament Selec-
tion (FGTS). Instead of having an integer parameter Ntour, which represents
the tournament size in the classic tournament selection, the new operator’s
input is a real parameter Ftour representing an average tournament size [11].
The size of each of the tournaments is chosen so that this value is on average
as close as possible to Ftour.

To recombine two individuals, we apply standard one-point crossover with
the probability pcross. A bit position i is randomly chosen in the genetic code
(crossover point). Whole genes are exchanged after the chosen crossover
point.
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Mutating a randomly selected gene (0 to 1, 1 to 0) with certain mutation
rate pmut may be unnecessarily low, since usually few genes mutate, while
the majority of them remains the same. After certain number of generations,
it may happen that all individuals have the same bit value in a certain posi-
tion in a gene (frozen bits), which may increase the possibility of premature
convergence significantly. Therefore, frozen bits are mutated with 2.5 times
higher rate comparing to basic mutation rate pmut

We used traditional generational GA (containing Npop individuals) with
overlapping populations: Nelite is the number of elitist individuals that sur-
vive to the next generation. Since the evaluation of the objective value is a
time-consuming operation, we store a certain amount of already calculated
values in a cache table of size Ncache. Before the objective value for a cer-
tain individual is calculated, the table is checked. The Least Recently Used
caching strategy, which is simple but effective, is used for that purpose [13].

In order to avoid premature convergence, multiple individuals are dis-
carded from the population. If the individual with the same genetic code
appears again in the population, its objective value is set to zero and the
selection operator disables it to enter the next generation. The appearance
of individuals with the same objective value, but different genetic codes is
limited to a constant Nrv. This strategy helps in preserving the diversity of
genetic material and in keeping the algorithm away from a local optima trap

4 Computational Results

The proposed hybrid genetic algorithm is tested on an AMD K7/1.33 GHz
processor with 256 MB RAM memory. The code is written using C under
Linux operation system. Computational experiments are carried out on the
standard ORLIB AP data set, which is derived from a study of postal delivery
system in Australia. The largest AP instance corresponds to 200 real-world
postcode districts from the Australian Post and smaller problems are derived
from it by aggregating the data. Fixed costs (loose -L- and tight -T) are
included, according to [10]. The transportation cost parameters χ, α and δ
take the same values: χ = δ = 1 and α = 0.1, 0.5, 0.75, 0.9, as in [7].

The following setup of GA parameters was used for the HGA, as it proved
to be robust in computational experiments: population size Npop = 150,
number of elitist individuals Nelite = 100; size of the cache Ncache = 5000;
average group size for the fine grained tournament selection Ftour = 5.4,
crossover probability pcross = 0.85 and mutation parameter pmut = 0.1. On
each instance the proposed HGA was run 20 times. Each run was terminated
after 1000 iterations or after the best individual was repeated 500 times. On
all the instances we considered, this criterion allowed the HGA to converge
so that only minor or no improvements in the quality of final solutions can
be expected when prolonging the runs.
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inst Opt.sol Best.sol. t(s) ttot (s) gen agap(%) σ(%) eval cache(%)

10L 221 032.734 opt 0.003 0.113 503 0.000 0.000 664 97.4

10T 257 558.086 opt 0.001 0.114 501 0.000 0.000 709 97.2

20L 230 385.454 opt 0.007 0.206 504 0.000 0.000 2547 89.9

20T 266 877.485 opt 0.010 0.204 506 0.000 0.000 2585 89.8

25L 232 406.746 opt 0.015 0.313 505 0.000 0.000 3401 86.6

25T 292 032.080 opt 0.014 0.295 506 0.000 0.000 3483 86.3

40L 237 114.749 opt 0.065 0.833 517 0.000 0.000 5302 79.6

40T 293 164.836 opt 0.017 0.792 501 0.000 0.000 5217 79.3

50L 233 905.303 opt 0.072 1.434 510 0.000 0.000 6650 74.1

50T 296 024.896 opt 0.072 1.339 512 0.000 0.000 6626 74.3

60L 225 042.310 opt 0.075 2.149 506 0.000 0.000 7248 71.5

60T 243 416.450 opt 0.130 2.417 516 0.000 0.000 7568 70.8

70L 229 874.500 opt 0.309 3.691 531 0.000 0.000 8980 66.3

70T 249 602.845 opt 0.152 3.629 513 0.000 0.000 8100 68.6

80L 225 166. opt 0.809 5.119 565 0.000 0.000 9613 66.1

80T 268 209.406 opt 0.515 4.992 539 0.000 0.000 9488 65.0

90L 226 857.465 opt 0.368 6.693 518 0.000 0.000 10266 60.5

90T 277 417.972 opt 0.424 6.619 522 0.000 0.000 10017 61.9

100L 235 097.228 opt 1.205 8.381 561 0.000 0.000 10930 61.2

100T 305 097.949 opt 0.155 7.946 505 0.000 0.000 9746 61.6

110L 218 661.965 opt 0.557 9.695 517 0.000 0.000 10022 61.5

110T 223 891.822 opt 1.103 10.731 539 0.000 0.000 10877 59.8

120L 222 238.922 opt 0.885 12.609 524 0.000 0.000 10443 60.4

120T 229 581.755 opt 2.343 15.077 564 0.000 0.000 12188 57.0

130L - 223 814.109 3.117 21.566 563 0.000 0.000 12198 56.9

130T - 230 865.451 2.789 22.765 552 0.000 0.000 12651 54.4

200L - 230 204.343 25.202 81.456 667 0.696 1.239 16374 51.2

200T - 268 787.633 28.688 93.926 701 0.000 0.000 18778 46.5

Table 1. HGA results on AP instances with χ = 3, δ = 2 and α = 0.75

A detailed report of computational experiments for HGA on AP problem
instances is too large for this presentation. Therefore, in this paper in Ta-
ble1 we present only computational results on AP instances with n ≤ 200
nodes and parameter values χ = 3, δ = 2 and α = 0.75. The exhaustive
computational study on AP data set can be found on the website http :
//www.matf.bg.ac.yu/p/files/1269571675− 10− results.pdf .

In the first column of Table1 instance’s dimension is given, with mark
”T” or ”L”, denoting ”tight” or ”loose” fixed costs respectively. The next
column contains the optimal solution of the current instance Opt.sol, if it is
previously known. If it is not, a dash ”-” is written. The best value of HGA
is given in the following column Best.sol with mark opt in cases where HGA
reached the optimal solution known in advance. The average time needed to
detect the best value is given in t column, while ttot represents the total time
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(in seconds) needed for finishing HGA. On average, HGA has finished after
gen generations. The solution quality in all 20 executions (i = 1, 2, ..., 20) is
evaluated as a percentage agap and standard deviation of the average gap σ.
The average number of evaluations is given in the eval coloumn, while cache
displays savings (in percent) achieved by using caching technique.

Comprehensive computational experiments on AP problem instances demon-
strate the robustness of the proposed HGA with respect to the solution qual-
ity and running times. Implemented local search successfully leads the algo-
rithm to the promising regions of the search space. Local search technique
is employed only when it is necessary, so the running time of the HGA is
relatively short.

From the presented results it can be seen that for all AP instances with
up to 120 nodes the HGA reaches optimal solutions known in advance. The
CPU time the HGA needed to detect the best (optimal) solution for the first
time is less than 3.5 seconds. Total running time, until a finishing criterion
is satisfied, is 12.866 seconds maximum.

Computational results on considered large scale AP instances show the
appropriateness of applying proposed hybrid algorithm components. On four
AP instances with 130 and 200 nodes, unsolved to optimality so far, the
HGA also provides solutions in relatively short CPU time: t ≤ 28.688 and
ttot ≤ 93.926 seconds. Although the optimality can not be proved, we believe
that the obtained solutions are of high-quality.

5 Conclusions

In this paper, we present a robust hybrid heuristics, named HGA, based
on a genetic search framework for solving the UMAHLP. Binary representa-
tion of individuals, FGTS selection and one-point crossover are used in the
HGA. Mutation with frozen genes increases the diversibility of genetic mate-
rial and keeps the algorithm away from a local optima trap. Solution quality
is improved by local search heuristic that is efficiently implemented in HGA.
Caching technique additionally improves performance of the algorithm. Com-
prehensive computational experiments on ORLIB AP hub instances clearly
demonstrate the robustness of the proposed HGA with respect to the solu-
tion quality and running times. Computational results show that the HGA
outperforms other existing algorithms for this problem and also provides so-
lutions for large-scale AP instances for which no optimal solution is presented
in the literature up to now.
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Abstract. The paper proposes a wavelet-based forecasting method for time series.
We used the multi-resolution decomposition of the signal implemented using trous
wavelet transform. We combined the Stationary Wavelet Transform (SWT) with
four prediction methodologies: Artificial Neural Networks, ARIMA, Linear regres-
sion and Random walk. These techniques were applied to two types of real data
series: WiMAX network traffic and financial. We proved that the best results are
obtained using ANN combined with the wavelet transform. Also, we compared the
results using various types of mother wavelets. It is shown that Haar and Reverse
biorthogonal 1 give the best results.
Keywords: time series, Stationary Wavelet Transform, forecasting.

1 Introduction

Forecasting, or prediction, is the process of estimation in unknown sit-
uations, based on the analysis of some factors that are believed to influence
the future values, or based on the study of the past data behavior over time,
in order to take decisions. Time-series forecasting is an important area of
forecasting where the historical values are collected and analyzed in order to
develop a model describing the behavior of the series. When the time series
is non-stationary, it is very difficult to identify a proper global model, [3]. To
overcome this problem, an efficient way is to use the wavelet decomposition
technique in the preprocessing step. The Wavelet transform (WT) provides
a useful decomposition of time series, in terms of both time and frequency,
permitting us to effectively diagnose the main frequency component and to
extract abstract local information from the time series.

WT has been frequently used for time series analysis and forecasting in
the recent years, [1,2]. Models that accurately catch the statistical charac-
teristics of the actual traffic play a significant role in studying the network,
in understanding its dynamics, in designing and controlling the network. For
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financial time series prediction, sales forecasts are very useful in the eco-
nomic domain because they are used to optimize inventory levels. Several
models have been proposed for time-series forecasting such as pure statistical
or based on Artificial Neural Networks (ANN). Traditional linear time se-
ries models including ARIMA (Auto Regressive Integrated Moving Average)
model proved to be good at capturing the behavior of the time series. To
deal with the non-linear nature of time-series, the ANN model is probably
the most popular method. It can capture any kind of relationship between
the output and the input theoretically.

In this paper, we analyze the influence of different mother wavelets on
the performance of forecasting. We compared the results trying to find out
which is the best of the mother wavelets to be applied and, using this wavelet,
which method gives the best forecasts. The rest of the paper is organized
as follows: in Section 2 we present some theoretical considerations regarding
WT and multi-resolution analysis. In Section 3 we describe the forecasting
framework. The experimental results are presented in the fourth Section and
finally, Section 5 is dedicated to the conclusions.

2 The wavelet analysis

As stated before one of our goals is to compare the forecasting accuracy
by using the wavelet transform in the preprocessing step. The transform of
a signal is just another form of representing it, which does not change the
information content present in the signal. A linear time-frequency transform
correlates the signal with a family of waveforms that are well concentrated in
time and in frequency. Multi-resolution analysis (MRA) is a signal process-
ing technique that takes into account the signal’s representation at multiple
time resolutions. Using wavelet MRA, the collected measurements can be
smoothed until the overall long-term trend is identified. Fluctuations around
the obtained trend are further analyzed at multiple time scales. The level
of decomposition depends on the length of the data set (the number of val-
ues). At each temporal resolution two categories of coefficients are obtained:
approximation coefficients and detail coefficients. Generally, the MRA is
implemented based on Mallat’s algorithm [7], which corresponds to the com-
putation of the Discrete Wavelet Transform (DWT). The disadvantage of
Mallat’s algorithm is the decreasing of the length of the coefficient sequences
with the increasing of the iteration index due to the utilization of the decima-
tors. Another way to implement a MRA is the use of the trous methodology,
also known as Shensa’s algorithm [6], which corresponds to the computation
of the Stationary Wavelet Transform (SWT). In this case the utilization of
decimators is avoided, but at each iteration different low-pass and high-pass
filters are used. There is a variety of mother wavelets [7] such as Daubechies,
Symlet, Meyer, Morlet, etc., and the choice of the mother wavelets depends on
the characteristics of data. The Daubechies wavelet transforms have been in-
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creasingly adopted by signal processing researchers. Haar wavelet transform,
which is also the simples Daubechies wavelet is a good choice to detect time
localized information. In this work we propose to use some mother wavelets
belonging to Daubechies family, but also other orthogonal wavelet families
such as Symmlets, also known as the Daubechies least asymmetric mother
wavelets, and Coiflets also designed by Ingrid Daubechies to be more sym-
metrical than the Daubechies mother wavelet, and biorthogonal respective
reverse biorthogonal wavelets. Biorthogonal wavelets exhibit the property
of linear phase, which is needed for signal reconstruction. If, instead of a
single wavelet, two wavelets are used (one for decomposition and the other
for reconstruction), interesting properties are derived, [7]. Different types of
mother wavelets will be used in the data preprocessing step of our forecasting
framework presented in the next Section.

3 Forecasting framework

The main idea of the prediction method using wavelets is to decompose
the original signal into a range of frequency scales and then to apply the
forecasting methods to these individual components. Our forecasting frame-
work, which belongs to the supervised paradigm, is presented in Figure 1 and
implies the following steps:

1. Preprocessing step which includes data clearing, such as identification of
the potential errors in data sets, handling missing values, and removal of
noises or other unexpected results that could appear during the acqui-
sition process. At this stage the input data is also analyzed in order to
find if it contains large spikes and valleys indicating periodicities.

2. Use the SWT to decompose the data separately for the training set and
the test set. Each component represents the real data in a frequency
range that is easier to predict than the original series. A good predictor
should be able to identify the separate scale-related components of the
series, in order to produce models that give accurate forecasts. So, our
approach is to decompose the original time series into scale or frequency
related components and model each component separately, in order to
obtain more accurate models.

3. After obtaining the wavelet decomposition, we select the information
from each level of decomposition for building the model.

4. In the training phase we design predictive models for each of the decom-
posed components of the original series. In the test phase the developed
forecasting models are used to predict future values for each component.
The Inverse SWT is used in the testing phase in order to obtain the
forecasted signal from the predictions of the components.

The four models used in this work are presented below:
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Fig. 1. The forecasting framework.

1. ANN models [5] represent a wide class of flexible nonlinear models which
have been very used recently in the area of forecasting. The main advan-
tage of an ANN that makes it suitable for various applications is that it
learns from the past experiences. So, the basic idea is to train the ANN
with past data and then use it to predict future values. Although many
types of architectures have been proposed, the most popular one for time
series forecasting is the feed-forward neural network [9]. In this work we
used a Time-delayed neural networks(TDNN), detailed in [4].

2. ARIMA processes [8,10], are the natural generalizations of standard ARMA
processes. This class of models is based on Box-Jenkins methodology [10]
which is used to build the time series model in a sequence of steps which
are repeated until the optimum model is achieved. More details about
this method and how it was applied in our case are presented in [11].

3. Linear regression (LR) [8] is a simple statistical tool for modeling the
output as a linear combination of inputs. The model’s parameters are
usually estimated using the least-squares method.

4. Random walk (RW) method [8] is based on the hypothesis that from one
period to the next, the original time series takes a random ”step” away
from its last recorded position. The prediction of the future values is
based on the previous values plus a constant that represents the average
change between the two periods.

4 Experiments

4.1 Data sets

In this work we used historical data obtained by monitoring the traffic
from 67 Base Stations (BS) composing a WiMAX network. The period of
collection is of eight weeks, from March 17th till May 11th, 2008. Each BS
has its own data set which is composed of numerical values representing the
total number of packets from the uplink channel. Each value is recorded
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every 15 minutes. It can be easily deduced that for a given BS we have the
following number of samples: 96 samples/day, 672 samples/week, and a total
number of 5376 samples. So, the WiMAX data base can be seen as formed by
67 matrices (one for every BS) that have eight columns (the number of weeks)
and 672 lines (the moments of time when the number of packets are recorded
in a week).We also used one time series of financial data representing the total
number of EUR-USD currency exchanges (the volume of data is similar to the
number of packets from WiMAX. The period of collection is of fifteen weeks
and the values are recorded every 15 minutes. We will have 96 samples/day,
672 samples/week and a total number of 10080 samples. In this case only one
matrix will correspond to each of the two sets and it will be formed by fifteen
columns (the number of weeks) and 672 lines. The objective of our work is to
compare the influence of different mother wavelets used in the preprocessing
step on the prediction accuracy. Also, using the best mother wavelets, we
propose to evaluate some prediction models, such as pure statistical or based
on neural networks.

4.2 Evaluation criteria

In order to evaluate the performance of prediction using different types
of wavelets, we considered the most used statistical measures of error: the
Mean absolute error (MAE), the Mean Square Error (MSE), the analysis of
variance (ANOVA), the Symmetric Mean Absolute Percent Error (SMAPE),
and the Root Mean Square Error (RMSE). We have also calculated SMAPE
L, MAPE L and MAE L, between the mean of the original signal and the
mean of the forecasted signal, because ARIMA and LR cannot be used to
obtain forecasts for every moment of time as ANN and RW can. For linear
models the trajectory of the forecasts is represented through sloping line
which represents the weekly increase.

4.3 Results and discussions

Regarding the WT, we propose various types of mother wavelets such
as Daubechies (db), Coiflet (coif), Symlet (sym), Biorthogonal (bior), and
Reverse Biorthogonal (rbio). In Table 1 and Table 2, for each type of mother
wavelets and every type of error, excepting SMAPE L, MAPE L and MAE
L, we present the average value corresponding to the three types of ANN
and RW. SMAPE L, MAPE L and MAE L correspond to all the proposed
methods. We do not take into consideration the results given by using the
linear regression because the wavelet transform does not have any influence
on the predictions. In this case the mean value of the details is zero, and the
prediction obtained for the details will be also zero. In the case of WiMAX
traffic (Table 1), the results are represented as the average value for all 67
BS. According to Table 1, the wavelet of Haar (db1), which is the simplest of
the Daubechies family and rbio1.1 give the best prediction performance. The
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results also indicate that with the increase of the filters’ length (support of
the mother wavelets), the performance of the wavelet transform deteriorates.
The results represent the mean values for all the forecasting methods and all
the 67 BSs with the observation that in the case of ARIMA only SMAPE L,
MAPE L and MAE L could be calculated.

Wavelet RSQ SMAPE MAPE MSE RMSE MAE SMAPE L MAPE L MAE L

coif 1 1.445 1.09 0.2113 11.72 2.80 1.0304 0.890 0.0020 0.9599

coif 2 1.493 1.22 0.2285 12.95 2.83 0.8748 0.837 0.0019 0.7191

db 1 1.168 1.08 0.2367 8.06 2.43 0.7685 0.812 0.0016 0.7327

db 2 1.364 1.15 0.2451 10.52 2.69 0.8408 0.855 0.0019 0.7768

db 3 1.358 1.12 0.2117 9.76 2.64 0.8193 0.857 0.0018 0.7678

db 4 1.490 1.11 0.2159 10.61 2.58 0.7985 0.834 0.0018 0.7563

db 5 1.435 1.11 0.2190 12.56 2.75 0.8339 0.823 0.0019 0.7730

bior 3.1 0.695 1.13 0.3152 9.86 2.52 84020 0.860 0.0018 0.7071

rbio 1.1 1.200 1.08 0.2215 10.00 2.61 0.7948 0.820 0.0017 0.8947

rbio 2.2 1.482 1.19 0.3202 10.29 2.71 0.8747 0.891 0.0018 0.7690

rbio 3.3 1.952 1.21 0.2623 10.33 2.88 0.9509 0.907 0.0022 1.0690

sym 2 1.365 1.26 0.2146 13.20 2.89 0.8854 0.895 0.0019 0.7412

Table 1. Comparison between wavelets, WiMAX traffic.

In the case of financial data, for the set containing the EUR-USD ex-
change currency, the results are shown in Table 2. We can observe that the
best forecasting performance is obtained using the mother wavelets coif2 and
sym2.

For the purpose of forecasting methods comparison, we propose the
following variants: three types of methods based on ANN (ANN No Sliding,
ANN Known Sliding, and ANN UnKnown Sliding), ARIMA, LR, and RW
model for two weeks prediction. The first method using ANNs, ANN No
Sliding, is the simplest one: we train the ANN once for each decomposition
level. For inputs, we have the first (n-2k) weeks, where n is the total number
of weeks, and k is the number of weeks we want to forecast. The target

Wavelet RSQ SMAPE MAPE MSE RMSE MAE SMAPE L MAPE L MAE L

coif 1 0.688 0.556 0.1152 1.627 1.220 0.3586 0.516 0.0821 0.4240

coif 2 0.455 0.522 0.0793 1.089 1.038 0.2967 0.453 0.0732 0.3799

db 1 0.625 0.520 0.0839 1.356 1.126 0.3175 0.454 0.0713 0.3690

db 2 0.715 0.578 0.1088 1.610 1.219 0.3550 0.497 0.0812 0.4199

db 3 0.586 0.585 0.1156 1.499 1.188 0.3618 0.531 0.0864 0.4461

db 4 0.871 0.600 0.1114 1.604 1.239 0.3745 0.527 0.0863 0.4459

db 5 0.808 0.587 0.1121 1.557 1.225 0.3700 0.546 0.0912 0.4710

bior 3.1 0.628 0.534 0.1137 1.552 1.173 0.3390 0.433 0.0712 0.3681

rbio 1.1 0.615 0.519 0.0958 1.286 1.096 0.3208 0.457 0.0716 0.3704

rbio 2.2 0.541 0.555 0.1087 1.440 1.149 0.3406 0.491 0.0790 0.4081

rbio 3.3 0.772 0.595 0.0993 1.418 1.167 0.3480 0.455 0.0716 0.3705

sym 2 0.476 0.499 0.0890 1.117 1.037 0.2962 0.453 0.0736 0.3813

Table 2. Comparison between wavelets, EUR-USD currency exchanges.
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consists of the data taken from the weeks (n-2k+1) to (n-k). The data used
for ANN’s inputs during the testing phase is the information from the weeks
(k+1) to (n-k). The output signal is compared to the real data of the last k
weeks. The next method (ANN Known Sliding) uses sliding, retraining the
network with the real information. The entire signal is divided into smaller
parts. Each of these sequences will predict a small part of the final forecasted
signal. The information for ANNs retraining is always taken from the real
data. The last method, ANN UnKnown Sliding, proposes a forecasting using
sliding with unknown data. The only difference consists in the fact that the
information used for the next simulation and retraining is taken not from the
original signal, but from the previously predicted one. For more details see
[4]. The use of ARIMA is detailed in [11].

In the case of WiMAX traffic, the comparison was made using db1 mother
wavelets. The results presented in Table 3 prove that ANN performs better
than the other prediction techniques. Also the linear regression model gives
very good forecasting results.

Forecasting Model SMAPE L MAPE L MAE L

ANN No Sliding 0.472 0.0011 0.4428

ANN Known Sliding 0.509 0.0009 0.4241

ANN UnKnown Sliding 0.722 0.0017 0.6681

ARIMA 0.772 0.0027 0.9990

Linear Regression 0.523 0.0031 0.3868

Random Walk using Wavelets 4.440 0.0030 1.3633

Table 3. Forecasting techniques comparison for WiMAX traffic.

For the financial data base, we used the coif2 mother wavelets. The results
are presented in Table 4. We found that the suitable model is as well the one
using ANNs.

Forecasting Model SMAPE L MAPE L MAE L

ANN No Sliding 0.169 0.020 0.1079

ANN Known Sliding 0.153 0.0178 0.957

ANN UnKnown Sliding 0.267 0.0344 0.1812

ARIMA 1.135 0.3245 1.7054

Linear Regression 0.191 0.0243 0.1109

Random Walk using Wavelets 0.940 0.2670 1.4173

Table 4. Forecasting techniques comparison for financial data.

773



8 C. Stolojescu et al.

5 Conclusion

Regarding the Wavelet transform, our results show that Haar, which is
the simplest of Daubechies family, and Reverse biorthogonal 1 improve the
performance of the prediction technique.

An important conclusion is that as much the support of the mother
wavelets increases, the performance of the wavelet transform deteriorates.
In addition, using the best mother wavelets in data preprocessing step, we
proved that ANN outperforms the other forecasting methods. Also, our re-
sults confirms the results in [Papagiannaki, et al, 2005] and point out that
if we are interested in tendency prediction, for more than one month ahead,
than linear models are suitable for this type of forecasting. We should also
point out that we have applied our algorithm on two different data sets which
are not comparable. The financial data (the EUR-USD currency exchanges)
exhibit an almost constant tendency, while WiMAX traffic presents a strong
variability and its tendency (long term trend) represents a sloping line. How-
ever, our algorithm is applicable to both types of data and the obtained pre-
dictions are accurate. As a future work we propose to apply our algorithm on
other time series, for example transportation data, including highway traffic,
aircraft flights, traffic data of cars in tunnels, traffic at automatic payment
systems on highways, traffic of individuals on subway systems, etc.
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FUZZY MARKOV SYSTEMS FOR THE DESCRIPTION OF 

OCCUPATIONAL CHOICES IN GREECE 
 

M. A. Symeonaki1 and R. N. Filopoulou2,  
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136 Syggrou Av., 176 71, Athens, Greece. 

 

Abstract 

In this paper the theory of fuzzy non homogeneous Markov systems is applied for the 

first time to the study of occupational choices in Greece. This is an effort to deal with 

the uncertainty introduced in the estimation of the transition probabilities and the 

difficulty of estimating their real values. In the case of studying the occupational 

choices of children, the traditional methods for estimating the probabilities can not be 

used due to lack of data. The introduction of fuzzy logic into Markov systems 

provides us with a powerful tool, taking advantage of the heuristic knowledge that the 

experts of the system posses. The proposed model uses the symbolic knowledge of 

the occupational choices of children and focuses on the important factors which 

derive from the family environment and affect those choices. The aim is to develop a 

fuzzy expert system which best simulates the real conditions affecting the process of 

occupational choices in Greece. 

Keywords: occupational choices, family factors, Markov systems, Fuzzy logic, Fuzzy 

Inference System 

 

1. Introduction 

 

The present paper is concerned with constructing a model that reflects the 

occupational choices of children in Greece using fuzzy Markov systems and symbolic 

knowledge. The purpose of the paper is to take into account the theoretical discussion 

and the empirical facts that exist about occupational choices and create a fuzzy expert 

system which provides essential information about this social process. 
                                                 
1 msimeon@panteion.gr 
2 celestfilopoulou@msn.com  
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The occupational choices people make has been a rather challenging area for 

scientists over the past years (Parsons [1909], Ginsberg [1951], Super [1951], 

Hoppock [1976], Holland [1976], Parsons [1909], Ginsberg [1951], Super [1951], 

Hoppock [1976], Holland [1976]). Occupation has gradually attracted scientific 

interest as a measure which can provide useful information about people concerning 

their social, economical and cultural state. Additionally, the use of occupation as a 

means of categorizing people with similar characteristics avoids the theoretical and 

ideological friction that such classifications bring about when they are based merely 

on the concept of class (Kasimati [2004]). 

Most scientists agree that people conclude to a certain occupation through a process 

of decision-making that starts from the early years of their life and ends when their 

professional development is completed. Furthermore, this process appears to be 

influenced by different factors coming from individual characteristics, as well as from 

the broader environmental surroundings of the individual. In the first case special 

attention is given to the personality, the interests, the preferences and the abilities of 

people which lead them to express their orientation to a certain occupation or a group 

of similar occupations (Parsons [1909], Ginsberg [1951], Super [1951], Hoppock 

[1976], Holland [1976]). Apart from these basically psychological theories a number 

of theories concerning non-individual factors were also developed. These theories 

focused on the interaction between the existing social, economical and cultural 

environment and the individual (Lipset [1962], Blau et al [1967]). We could argue 

that the occupational choices are mainly a sum of both individual and non-individual 

factors as, on the one hand, they directly or indirectly affect one’s decisions and on 

the other hand the influence cannot always be strictly separated as they coexist and 

shape each other. 

The family arises as a significantly important factor which influences the occupational 

choices people make. Firstly, the family plays an active role in the development of the 

personal characteristics of the children. Moreover, it is the family that sets the starting 

point of a person into society, through its social, economical and cultural state. 

Especially in Greece, where the family continues to be an important element of the 

social structure, it appears that factors such as the education level of parents, their 

occupation, their socio-economical status, the overall family environment and the 

family aspirations affect the children’s capabilities and achievements at school, their 

entry into higher education, their occupational orientation, their opportunities and 
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personal goals and aspirations (Lampiri-Dimaki [1974], Fragoudaki [1985], Kintis 

[1980], Kontogiannopoulou [1995, 1996], Kasimati [1998, 2001], Viki and Papanis 

[2007]). 

In this paper a new technique of studying occupational choices is proposed for the 

first time. More specifically, Fuzzy Markov Systems, firstly introduced in Symeonaki 

et al [2000, 2002], are used in order to deal with common problems arising in the 

study and the analysis of population systems, especially when they refer to the 

measurement and the estimation of social phenomena. 

The theory of Markov systems (Bartholomew [1982], McClean [1976, 1978, 1980], 

Bartholomew, Forbes and McClean [1991], Vassiliou [1982]) is very important for 

the description of population systems. Different applied probability population 

models can be adapted in this general framework since Markov systems provide one 

of the most significant tools for describing them. Therefore, Markov systems are 

applied in a numerous of different domains such as Operation Research, Ecology, 

Social Policy, etc. One of the basic problems in the theory of Non-Homogenous 

Markov Systems (NHMS) and one of the main reasons for their impracticability is the 

uncertainty that is inherent in the estimation of the transition probabilities. The 

uncertainty due to lack of data and measurement errors is overcome with the use of 

fuzzy reasoning in the population system which allows us to take into account the 

symbolic, heuristic knowledge of the experts. In this way it is possible to adopt all the 

linguistic elements which are essential to the estimation of the transition probabilities. 

Thus, a Fuzzy Inference System is proposed, which will take advantage of the 

complex but also rich and important information that exists about occupational 

choices. 

The paper is organized as follows: in Section 2 the need for the use of Fuzzy Logic 

and Fuzzy Reasoning in the Markov Systems is described and the basic elements of 

the fuzzy Markov Systems are introduced. In Section 3 a Fuzzy Inference System 

concerning the occupational choices of the children in Greece is developed, based on 

the empirical knowledge of the experts of the subject. Finally, in Section 4 the 

conclusions resulting from this paper are given and the potential future work 

regarding Fuzzy Markov Systems and the occupational choices are discussed. 
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2. Fuzzy Markov Systems 

 

It is well known that in the Aristotelian theory something is true or not, i.e. an element 

belongs to a set or not ( x ∈A , or  x ∉A ). The theory of Fuzzy Logic was introduced 

by L. A. Zadeh [1965] as an antipode to Aristotelian Logic. Zadeh introduced the 

concept of fuzzy sets, where the participation to a set is expressed by the membership 

function of the fuzzy set. Therefore, what really matters is not whether an element 

belongs to a set or not, but its degree of membership to the set (for example, one 

could be POOR with a membership grade equal to 0.3 and simultaneously be 

AVERAGE with a grade equal to 0.7). There are different kinds of membership 

functions depending on the fuzzy sets being studied and the specific problem that they 

are applied to, e.g. triangular, trapezoidal, sigmoidal, etc (Symeonaki, et al [2002]). 

As previously mentioned, the contribution of Markov systems to the study of 

population systems is determinant. However, the estimation of the transition 

probabilities from one state of the system to another implies the uncertainty of a 

precise estimation, due to lack of data and measurement errors (Symeonaki [2006]). 

Therefore, there is a strong need to develop a different method in order to estimate 

these probabilities more accurately. 

Here, we introduce the theory of Fuzzy Logic to the theory of Markov Systems. A 

fuzzy expert system is developed which contributes to the estimation of the transition 

probabilities and deals with the uncertainty that they imply. In this way, with the use 

of Fuzzy Logic and the symbolic knowledge that the experts posses, the gradual 

transitions realized in the system can be estimated. 

A basic feature of the proposed fuzzy system is that it concerns a methodology based 

on knowledge. Existing knowledge on a given topic is therefore central to the 

development of such an expert system. This knowledge is reflected by a set of 

empirical, linguistic rules. Finally, the conclusions are drawn based on these rules and 

the existing data. 

More specifically, there is a number of population parameters (Symeonaki et al 

[2002]) that are used to estimate the transition probabilities. Thus, each transition 

probability is a function of the population parameters of the system: 
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pij t( ) = fij pp1, pp2 ,..., ppl( )        (1) 

where l the number of the population parameters. 

For each value of the parameters it is true that: 

 
  

fij
j∈S
∑ pp1, pp2 ,..., ppl( ) = 1                                                           (2) 

Furthermore, each population parameter depends on a number of parameters, which 

are called basic parameters of the system (Symeonaki et al [2002]). 

 

We will use a Fuzzy Inference System (FIS) in order to find the population 

parameters of the system based on the basic parameters of the system. The structure 

of the FIS is given in Figure 1. 

 

 
*Symeonaki M. A., Stamou G. B., Tzafestas S. G., Fuzzy Non-Homogenous Markov Systems, Applied 

Intelligence, 17(2), 2002, 203-214. 

Figure 1 The structure of the Fuzzy Markov System 

 

Then we define the fuzzy partitions  and  for the basic parameters and the 

population parameters respectively. These fuzzy partitions have linguistic substance, 

thus they include linguistic elements, such as “LOW”, “MEDIUM”, “HIGH” etc. The 

possible fuzzy partitions for the basic parameters  and the population parameters 

 appear below (FIGURE 2, FIGURE 3). 
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Figure 2 A possible fuzzy partition of the basic parameters  

 

 

 

 
Figure 3 A possible fuzzy partition of the population parameters  

 

As the elements of  and  have a linguistic form, empirical, verbal rules can be 

used in order to describe the association that exists between them. Based on the 

heuristic knowledge that the experts posses around the occupational choices linguistic 

rules that describe the relations in the system are created. 

 

3. Description of the Fuzzy Inference System for the occupational choices in 

Greece 

 

Based on the theory of Fuzzy Markov Systems and the knowledge that exists 

concerning the occupational choices of children in Greece, a Fuzzy Inference System 
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is created, that indicates all the social processes which are essential to the decisions 

made. 

The present paper is focused on the factors deriving from the family. Thus, it is 

assumed that the factors (i.e. population parameters) that influence the occupational 

choices of the children are the following: 

: family environment, 

: social state of the parents, 

: father’s occupation (income), 

: mother’s occupation (income). 

More specifically, the concept “family environment” refers to the environment in 

which the individual evolves and acts. The family environment can be a rather 

determinant factor to the choices made. The educational and cultural experiences, the 

sense of stability and safety, the level of motivation and the stimulation for personal 

growth can have a serious impact on this decision-making process. 

The “social state of the parents” represents the position they occupy in the society. 

This position introduces a number of components, such as the educational level, the 

financial and social status, the social networks and the lifestyle of the parents. It is 

clear that these factors which are related with the social state of the parents can be 

inherited to the children and can play a powerful role in their future occupational 

choices. 

The profession exercised by the parents, in terms of income, is indicative of the 

potential that an individual has. Moreover, children develop economic needs and 

professional standards similar to those of their parents. Thus, it is common that the 

occupation of the parents leads the children towards certain types of occupations that 

can provide the desirable financial earnings. 

It is assumed that the above population parameters depend on the basic parameters of 

the system which are the following: 

: father’s education (in years of education), 

: mother’s education (in years of education) and 

: parents’ aspirations. 

Parents’ educational level (PL) influences family in different ways. It appears that PL 

is relevant to all population parameters. However, the third basic parameter (related 
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with the desires, the demands and the plans that parents have for their children) 

appears to influence only the existing family environment. 

Moreover, the fuzzy partitions , ,  in the domain of the three basic 

parameters are defined respectively. For simplicity reasons, it is assumed that the 

system under study has the following categories: 

1. High demand occupations (Engineering Schools, Medical and Law Schools, 

etc), 

2. Intermediate demand occupations (Earth Sciences, Schools of Mathematics or 

Physics, Schools of Political or Social Sciences, Primary Education Schools, 

etc), 

3. Non-privileged occupations. 

Thus, the following transition probability matrix must be estimated: 

   

P =

p11 p12 p13

p21 p22 p23

p31 p32 p33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Moreover, the fuzzy partitions   B( i) , where  in the domain of 

  p11, p12 , p13, p21, p22 , p23, p31, p32 , p33  are defined. 

As the elements of and are linguistic we can use empirical verbal rules in 

order to describe the input and output relation of the system. For example, the 

empirical knowledge informs us that: 

• When the “family environment” is “positive”, then the transition probability 

from the high demand occupations to the non-privileged sectors ( ) is 

“small”. 

• When the “social state of the parents” is “high”, then the transition probability 

from the intermediate demand occupations to the high demand occupations is 

“medium”. 

In this way, heuristic expert knowledge is concentrated in rules with the above form. 

Finally,  di  represents the class of the fuzzy partition   A( i) , which concerns the 

cardinality of each partition. Simplifying, we would say that the class  di  of   A( i)  is the 

number of the fuzzy subsets which we define in order to partition the domain of   A( i)  

(Klir and Yuan [1995], Stamou and Tzafestas [1999]). Thus, we conclude that 
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  d1 = d2 = d3 = 3 . The number of all different rules in the system is denoted by  and 

it is obvious that   k = d1 ⋅ d2 ⋅ d3 = 27 . 

For each population parameter of the system (  pp1, pp2 , pp3, pp4 ) a Fuzzy Inference 

System is established and the linguistic rules governing the system are formulated. 

This way, it is possible to estimate the transition probabilities from one state to 

another based on the heuristic knowledge of the experts. For example, the regulations 

of the system for the population parameter are given in FIGURE 4. 

We denote by  the degree in which the rule  fires. Each rule corresponds to a 

transition matrix  and it can easily be proved by induction that if we use as t-norm 

the product, then: 

  
wi = 1

i=1

27

∑ . 

Therefore: 

   
P = wiPi

i=1

27

∑  

with: 

  Pi ⋅ ′1 = ′1  

where: 

  ′
1 = 1,1,...,1⎡⎣ ⎤⎦

′ . 

If we also assume that the matrices  are irreducible, regular, stochastic matrices, 

then the asymptotic behaviour of the system could be studied. If 
  
lim
t→∞

T (t) = T , then: 

   
lim
t→∞

N t( ) = N ∞( ) = Tp*  

where  is the row vector of the matrix:  

   
P* = lim

t→∞
Pt = lim

t→∞
wiPi

i=1

27

∑⎛⎝⎜
⎞
⎠⎟

t

. 
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Figure 4 Regulations of the system for the population parameter . 
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4. Conclusions – Future Work 

 

In this paper, Fuzzy Markov Systems are proposed as a new technique in order to 

study the occupational choices that people make. In response to the weakness that 

traditional methods face concerning the need of a precise estimation of the transition 

probabilities, we propose the use of Fuzzy Logic and Fuzzy Reasoning in the theory 

of Markov Systems. Thus, we take into account the theoretical and empirical 

knowledge existing about the occupational choices and we create a fuzzy expert 

system (Fuzzy Inference System) consisting of linguistic rules. Especially in a topic 

such as occupational choices, the heuristic knowledge of the experts could be a 

powerful tool, providing us with essential information about the system. 

More specifically, as the family generally appears to be a significant factor 

influencing the occupational choices of the children, we focus on factors deriving 

from the family that seem to be important in Greece. This is a first attempt to take 

advantage of all the linguistic elements that contribute to the understanding of this 

issue and moreover an effort to incorporate the real social conditions. We, thus, 

envisage the development of a realistic and useful tool. 

Future work is needed in order to provide a better inside to the system by considering 

the time as non homogeneous. It is more realistic to observe the system at time 

 and to consider the state of the system as a function of time t, i.e. 

. The sequence of the transition matrices will be 

represented by 
    

P(t){ }
t=0

∞
= p

ij
t( ){ }

i, j∈S
, where 

 
p

ij
t( )  denotes the transition 

probability from state i to state j in the time interval 
   
t − 1, t( ⎤⎦ .  

Implementing the system to cohort data is also a next step towards the improvement 

of the system proposed. 
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Abstract. For homogeneous Markov chains satisfying the uniform recurrence con-
dition Bahadur-Rao’s expansions are established.
Keywords: large deviation, Markov chains.

1 Introduction and results

Let {ξk}k∈N be a homogeneous Markov chain with a regular transition prob-
ability P (x,A) (cf. [2]) and an initial distribution µ(A) = P [ξ0 ∈ A], where
A is a Borel set, x ∈ R. In the case where {ξk} is an independent iden-
tically distributed sequence of random variables Bahadur and Rao (cf. [1])
derived the full asymptotic expansion for deviations of the sample mean. For
Markov chains the investigation of this problem was continued in [4], however
the corresponding expansions were not carried out. This note aims to fill this
gap.

Let L∞(µ) denote a Banach algebra of complex valued Borel functions
with the essential supremum norm

 ·
. Define the following uniform re-

currence (cf. [4]) condition (Ψ)

0 < a = inf
{A |µ(A)>0}

ess inf
x

P (x, A)
µ(A)

≤ sup
{A |µ(A)>0}

ess sup
x

P (x,A)
µ(A)

= b < ∞.

Under the above condition the Perron-Frobenius theorem holds (cf. [9],
Proposition 1) so that {ξk} is uniformly ergodic, i.e. there exist C > 0,
γ, 0 ≤ |γ| < 1 and stationary probability π such thatsup

A
|Pn(x,A)− π(A)|

≤ C|γ|n.

Define the class C(µ) of Borel functions such that for any f ∈ C(µ) there
exist, depending on f , non-empty interval S = (s−, s+) such that for any
s ∈ S we have ∫

esf(y)µ(dy) < ∞. (1)

For s ∈ S and f ∈ C(µ) define a linear operator

Lsh =
∫

esf(y)h(y)P ( · , dy).

789



2 Z. S. Szewczak

Let ρ(s) be the spectral radius, us be the density of the eigenmeasure with
respect to µ (eigendensity) and vs be the eigenfunction of Ls, respectively.
We choose them normalized so that

∫
vs(y)us(y)µ(dy) = 1. In view of (Ψ) we

have ess infx vs(x) > 0, so we may define the regular conjugate conditional
distribution Ps(x, y) by

Ps(x, dy)
P (x, dy)

=
esf(y)vs(y)
ρ(s)vs(x)

·

For any f ∈ C(µ) we have uniformy ergodic chains {ξs
k} defined on the same

phase space as {ξk} and governed by the conjugate transition probabilities
Ps(x,A) (cf. [9], Proposition 1). The stationary distribution πs for Ps(x, dy)
is defined by πs(A) =

∫
IA(x)vs(x)us(x)µ(dx). Let Xs

k = f(ξs
k) and Ss

n =∑n
k=1 Xs

k, while Xk = X0
k and Sn = S0

n. We say that L(X0) satisfies Cramér’s
condition (C) if:

lim sup
|θ|→∞

|E[eiθX0 ]| < 1. (2)

Put, for short, f̄(·) = f(·) − Eπs
[f ]. Assuming (Ψ) to hold we have (cf. [9],

Lemma 3)

σ2
s = Eπs

[f̄2(ξs
0)] + 2

∞∑
n=1

Eπs
[f̄(ξs

0)f̄(ξs
n)] > 0

for f ∈ C(µ) and s ∈ S. Let f− = ess infx f(x), f+ = ess supx f(x). The
following theorems generalize results in [1],[5], [4] and [9] (see also [7]).

Theorem 1. Assume (Ψ). Suppose (2) holds for some f ∈ C(µ), Eπ[f ] = 0.
Then σ2

s > 0 for any s ∈ S and for 0 ≤ h ∈ L∞(µ) we have:
1) if f+ > F+ > ε > 0, then for k ≥ 0

sup
ε≤t≤F+


E[I[Sn≥nt]h(ξn) | ξ0 = · ]

vs

σs

√
2πns

(
ρ(s)
est

)n ∑k
ν=0

1
nν Cνs( h

vs
)
− 1

 = O(
1

nk+1
)

2) if f− < F− < −ε < 0, then for k ≥ 0

sup
F−≤t≤−ε


E[I[Sn<nt]h(ξn) | ξ0 = · ]

vs

σs

√
2πns

(
ρ(s)
est

)n ∑k
ν=0

1
nν Cνs( h

vs
)
− 1

 = O(
1

nk+1
)

where Cνs are bounded linear operators.

Theorem 2. Assume (Ψ). Suppose L(X0) is on a lattice {νd}, ν ∈ Z, for
f ∈ C(µ), Eπ[f ] = 0. Then σ2

s > 0 for any s ∈ S and for 0 ≤ h ∈ L∞(µ) we
have:
1) if nt takes values of the form νd then, for f+ > F+ > ε > 0, k ≥ 0

sup
ε≤t≤F+


E[I[Sn≥nt]h(ξn) | ξ0 = · ]

vs

σs

√
2πn

(
ρ(s)
est

)n ∑k
ν=0

1
nν Cνs( h

vs
)
− d

1− e−sd

 = O(
1

nk+1
)

790



On deviations of the sample mean for Markov chains 3

2) if nt takes values of the form νd then, for f− < F− < −ε < 0, k ≥ 0

sup
F−≤t≤−ε


E[I[Sn<nt]h(ξn) | ξ0 = · ]

vs

σs

√
2πn

(
ρ(s)
est

)n ∑k
ν=0

1
nν Cνs( h

vs
)
− d

1− e−sd

 = O(
1

nk+1
)

where Cνs are bounded linear operators.

The operator coefficients Cνs are given explicitly (cf. [8]).

2 Proofs

2.1 Proof of Theorem 1

Write
Hns(y) = Es[I[Ss

n−nt<y]hs(ξn) | ξ0 = · ],

where hs = h
vs
· Denote by Q1s,Q2s,Q2s, . . . ,Qks the linear operators in

the asymptotic expansions for the conjugate transition operator. Then, by
Theorem 1 and 2 in [8], we obtain

Hns(yσs

√
n)= N(y)Πshs+n(y)

(
Q1s(y)hs

n
1
2

+ · · ·+ Qks(y)hs

n
k−2
2

)
+o(

1

n
k−2
2

)(3)

where Πsh = Eπs [h]. Replacing k by 2k + 5 and y by y√
nsσs

in (3) we can
decompose uniformly in y

Hns(
y

s
) = G

(k)
hs

(
y√

nsσs
) + O(

1
nk+ 3

2
) (4)

where

G
(k)
hs

(
y√

nsσs
) = N(

y√
nsσs

)Πshs + n(
y√

nsσs
)

2k+2∑
m=1

Qms( y√
nsσs

)hs

n
m
2

·

The Fourier-Stieltjes transform of the above is

Ĝ
(k)
hs

(θ) = e−
θ2
2

(2k+2∑
m=0

1
(
√

n)m

m∑
j=0

1
j!

( iθ

σs

)j
Pm−j(iθ)P̂

(j)
1s hs

)
(5)

where

Pν(ζ) =
∑

(k1,k2,...,kν )
ki≥0,

∑ν
i=1 iki=ν

ν+2∏
m=3

1
km−2!

(
γmsζ

m

m!σm
s

)km−2
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and P0(ζ) = 1 for ζ ∈ C. Here γms = 1
im

∂m

∂θm log λs(θ)|θ=0 and λs(θ) is the
principal eigenvalue of characteristic operator

P̂s(θ)(g)(x) =
∫ ∞

−∞
eiθ(f(y)−Eπs [f ])g(y)Ps(x, dy)

g ∈ L∞(µ). Linear operators P̂(j)
1s in (5) are derivatives at zero of the pro-

jections P̂1s(θ) on the eigenspace corresponding to λs(θ) (cf. [9]). Note that∫ ∞

0

e−syHns(dy) = s

∫ ∞

0

e−sy(Hns(y)−Hns(0))dy.

Taking into account this and (4) we get∫ ∞

0

e−syHns(dy) =
∫ ∞

0

e−y(Hns(
y

s
)−Hns(0))dy

=
∫ ∞

0

e−y(G(k)
hs

(
y√

nsσs
)−G

(k)
hs

(0))dy + O(
1

nk+ 3
2
)·

Hence, integrating by parts∫ ∞

0

e−syHns(dy) =
∫ ∞

0

e−yG
(k)
hs

(
dy√
nsσs

) + O(
1

nk+ 3
2
)

=
∫ ∞

0

e−y ∂

∂y
G

(k)
hs

(
y√

nsσs
)dy + O(

1
nk+ 3

2
)·

Now, using Parseval’s formula∫ ∞

0

e−syHns(dy) =
∫ ∞

−∞
e−yI(0,∞)(y)

∂

∂y
G

(k)
hs

(
y√

nsσs
)dy + O(

1
nk+ 3

2
)

=
1
2π

∫ ∞

−∞
Ĝ

(k)
hs

(θ
√

nsσs)
(

1
1− iθ

)
dθ + O(

1
nk+ 3

2
)·

Thus, writing out the truncated MacLaurin expansion∫ ∞

0

e−syHns(dy) =
1

2π
√

nsσs

2k+1∑
l=0

∫ ∞

−∞

(
−iθ√
nsσs

)l

Ĝ
(k)
hs

(θ)dθ + O(
1

nk+ 3
2
)·

In view of this and (5)∫ ∞

0

e−syHns(dy) =
1√

2πnsσs

2k+1∑
l=0

2k+1−l∑
m=0

m∑
j=0

P̂(j)
1s hs

×
∫ ∞

−∞

(
−iθ√
nsσs

)l 1
(
√

n)m

1
j!

( iθ

σ

)j
Pm−j(iθ)N(dθ) + O(

1
nk+ 3

2
)·
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Polynomial (iθ)l+jPm−j(iθ) is even [odd] polynomial if l + m is even [odd].
Since ∫ ∞

−∞
θ2j+1N(dθ) = 0,

therefore,

∫ ∞

0

e−syHns(dy) =
1√

2πnsσs

k∑
ν=0

1
nν

∑
l+m=2ν

m∑
j=0

(−1)l

j!slσl+j
s

P̂(j)
1s hs

×
∫ ∞

−∞
(iθ)l+jPm−j(iθ)N(dθ)

(
1 + O(

1
nk+1

)
)

.

Consequently,

∫ ∞

0

e−syHns(dy) =
1√

2πnsσs

k∑
ν=0

1
nν

2ν∑
l=0

2ν−l∑
j=0

(−1)l

j!slσl+j
s

P̂(j)
1s hs

×
∫ ∞

−∞
(iθ)l+jP2ν−l−j(iθ)N(dθ)

(
1 + O(

1
nk+1

)
)

.

Thus

∫ ∞

0

e−syHns(dy) =
1√

2πnsσs

k∑
ν=0

1
nν

Cνs(
h

vs
)
(

1 + O(
1

nk+1
)
)

where

Cνs =
2ν∑
l=0

2ν−l∑
j=0

(−1)l

j!slσl+j
s

P̂(j)
1s

∑
(k1,k2,...,k2ν−l−j)

ki≥0,
2ν−l−j∑

i=1
iki=2ν−l−j

(−1)
ν+

2ν−l−j∑
i=1

ki

m
2ν+2

2ν−l−j∑
i=1

ki

×
2ν−l−j+2∏

m=3

1
km−2!

( γms

m!σm
s

)km−2

m2k = 1 · 3 · · · (2k − 3) · (2k − 1) and the third sum equals (−1)νm2ν when
2ν = l + j. Now, by Lemma 4 in [9]

E[I[Sn≥nt]h(ξn) | ξ0 = x] = (e−stρ(s))nvs(x)
∫ ∞

0

e−syHns(dy),

whence Theorem 1 is proved since all the estimates hold uniformly for t ∈
[ε, F+].
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2.2 Proof of Theorem 2

By Lemma 4 in [9]

E[I[Sn≥nt]h(ξn) | ξ0 = x]

= (e−stρ(s))nvs(x)
∑
ν≥0

e−sνdEs[I[Ss
n−nt=νd]hs(ξn) | ξ0 = x].

Let ynν = νd
σs
√

n
· It can be proved that for 2k + 4 we have expansion (cf. [3],

Theorem 1 on p.241; [6])

σs
√

n

d
Es[I[Ss

n−nt=νd]hs(ξn) | ξ0 = · ]

= n(ynν)Πshs + n(ynν)
2k+1∑
m=0

Rms(ynν)hs

n
m
2

+ O(
1

n
2k+2

2

),

where Rms(y) = ∂
∂y Qms(y). Further,

n(ynν)Πshs + n(ynν)
2k+1∑
m=0

Rms(ynν)hs

n
m
2

=
1
2π

∫
e−iθynν e−

θ2
2

(2k+1∑
m=0

1
(
√

n)m

m∑
j=0

1
j!

( iθ

σs

)j
Pm−j(iθ)P̂

(j)
1s hs

)
dθ.

Therefore,

∑
ν≥0

e−sνd
(
n(ynν)Πshs + n(ynν)

2k+1∑
m=0

Rms(ynν)hs

n
m
2

)

=
1√
2π

∫
(1− e

−sd− iθd
σs
√

n )
(2k+1∑

m=0

1
(
√

n)m

m∑
j=0

1
j!

( iθ

σs

)j
Pm−j(iθ)P̂

(j)
1s hs

)
N(dθ).

Now let for l ≥ 0

bl =
∂l

∂yl

1− e−sd

1− e−sde−y

∣∣∣
y=0

.
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Whence,

(1− e−sd)
∑
ν≥0

e−sνd
(
n(ynν)Πshs + n(ynν)

2k+1∑
m=0

Rms(ynν)hs

n
m
2

)

=
1√
2π

2k+1∑
l=0

bl
dl

σl
s

1
(
√

n)l

×
∫

(iθ)l

l!

(2k+1∑
m=0

1
(
√

n)m

m∑
j=0

1
j!

( iθ

σs

)j
Pm−j(iθ)P̂

(j)
1s hs

)
N(dθ)

×
(
1 + O(

1
nk+1

)
)

=
1√
2π

2k+1∑
l=0

2k+1−l∑
m=0

m∑
j=0

bl
dl

σl
s

1
(
√

n)l

1
(
√

n)m

1
j!

×
∫

(iθ)l

l!
( iθ

σs

)j
Pm−j(iθ)P̂

(j)
1s hsN(dθ)

(
1 + O(

1
nk+1

)
)
·

Polynomial (iθ)l+jPm−j(iθ) is even [odd] polynomial if l + m is even [odd].
Consequently,

(1− e−sd)
∑
ν≥0

e−sνd
(
n(ynν)Πshs + n(ynν)

2k+1∑
m=0

Rms(ynν)hs

n
m
2

)

=
1√
2π

k∑
ν=0

1
nν

∑
l+m=2ν

m∑
j=0

dlbl

j!l!σl+j
s

P̂(j)
1s hs

×
∫ ∞

−∞
(iθ)l+jPm−j(iθ)N(dθ)

(
1 + O(

1
nk+1

)
)

=
1√
2π

k∑
ν=0

1
nν

2ν∑
l=0

2ν−l∑
j=0

dlbl

j!l!σl+j
s

P̂(j)
1s hs

×
∫ ∞

−∞
(iθ)l+jP2ν−l−j(iθ)N(dθ)

(
1 + O(

1
nk+1

)
)

=
1√
2π

k∑
ν=0

1
nν

Cνs(
h

vs
)
(

1 + O(
1

nk+1
)
)
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where

Cνs =
2ν∑
l=0

2ν−l∑
j=0

dlbl

j!l!σl+j
s

P̂(j)
1s

∑
(k1,k2,...,k2ν−l−j)

ki≥0,
2ν−l−j∑

i=1
iki=2ν−l−j

(−1)
ν+

2ν−l−j∑
i=1

ki

m
2ν+2

2ν−l−j∑
i=1

ki

×
2ν−l−j+2∏

m=3

1
km−2!

( γms

m!σm
s

)km−2

and m2k = 1 · 3 · · · (2k − 3) · (2k − 1). The proof is completed.

3 Remarks

The first three of linear operators Cνs in the non-lattice case are

C0s = Πs,

C1s = { γ4s

24σ4
s

m4 −
γ2
3s

72σ6
s

m6 −
1

sσs

γ3s

6σ3
s

m4}Πs

+{ 1
σs

γ3s

6σ3
s

m4 +
1

sσ2
s

m2}P̂(1)
1s − { 1

2σ2
s

m2}P̂(2)
1s ,

C2s = {− γ6s

720σ6
s

m6 +
γ5sγ3s

720σ8
s

m8 +
γ2
4s

1152σ8
s

m8 −
γ4sγ

2
3s

1728σ10
s

m10

+
γ4
3s

31104σ12
s

m12 −
1

sσs
(− γ5s

120σ5
s

m6 +
γ4sγ3s

144σ7
s

m8 −
γ2
3s

1296σ9
s

m10)

+
1

s2σ2
s

(− γ4s

24σ4
s

m6 +
γ2
3s

72σ6
s

m8)−
1

s3σ3
s

(− γ3s

6σ3
s

)m6 +
1

s4σ4
s

m4}Πs

+{ 1
σs

(− γ5s

120σ5
s

m6 +
γ4sγ3s

144σ7
s

m8 −
γ2
3s

1296σ9
s

m10)

− 1
sσ2

s

(− γ4s

24σ4
s

m6 +
γ2
3s

72σ6
s

m8) +
1

s2σ3
s

(− γ3s

6σ3
s

)m6 −
1

s3σ4
s

m4}P̂(1)
1s

+{ 1
2σ2

s

(− γ4s

24σ4
s

m6 +
γ2
3s

72σ6
s

m8)−
1

2sσ3
s

(− γ3s

6σ3
s

)m6 +
1

2s2σ4
s

m4}P̂(2)
1s

+{ 1
6σ3

s

(− γ3s

6σ3
s

)m6 −
1

6sσ4
s

m4}P̂(3)
1s + { 1

24σ4
s

m4}P̂(4)
1s ,

where mk is k-th moment of standard normal random variable. For the lattice
case denote

b =
e−sd

1− e−sd
·
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On deviations of the sample mean for Markov chains 9

Then every expression (− 1
s )l in the above operators need to be replaced by

dlbl

l! where
b0 = 1,

b1 = −b,

b2 = b2 +
1
2
b,

b3 = −b3 − b2 − 1
6
b,

b4 = b4 +
3
2
b3 +

7
12

b2 +
1
24

b,

b5 = −b5 − 2b4 − 5
4
b3 − 1

4
b2 − 1

120
b.

The above calculations can be implemented using Maple package.
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Abstract. In this paper we discuss the identification problem which consists of
choosing an appropriate identification model and adjusting its parameters according
to some adaptive law, such that the response of the model to an input signal
(or a class of input signals), approximates the response of the real system to the
same input. For identification models we use fuzzy-recurrent high order neural
networks. High order networks are expansions of the first order Hopfield and Cohen-
Grossberg models that allow higher order interactions between neurons. In the
present approach the HONN’s used as approximators of the underlying fuzzy rules.
New learning laws are proposed which ensure that the identification error converges
to zero exponentially fast. There is a core idea in the proposed method: Several high
order neural networks are specialized to work around fuzzy centers separating in
this way the system in neuro-fuzzy subsystems which are associated with a number
of fuzzy rules.
Keywords: Neuro-Fuzzy Systems, Identification, Gradient Descent, Pure Least
Lquares.

1 Introduction

The purpose of this paper is to present the design, analysis, and simulation of
algorithms that can be used for online parameter identification of continuous
time plants.

It has been established that neural networks and fuzzy inference systems
are universal approximators [2], [4], [9],i.e., they can approximate any non-
linear function to any prescribed accuracy provided that sufficient hidden
neurons and training data or fuzzy rules are available. Recently, the com-
bination of these two different technologies has given rise to fuzzy neural or
neuro-fuzzy approaches, that are intended to capture the advantages of both
fuzzy logic and neural networks. Numerous works have shown the viability
of this approach for system modeling [3],[6].

In this paper, we present new adaptive algorithms for identifying nonlin-
ear systems using neural networks and fuzzy logic. The neural architecture
that is used is of the high order neural network (HONN) form and the fuzzy
logic contribution to the algorithm is an estimate of the output fuzzy centers.
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2 D. C. Theodoridis and Y. S. Boutalis and M. A. Christodoulou

In the present approach the HONN’s are used as approximators of the under-
lying fuzzy rules. Therefore, the required a-priori information obtained by
linguistic information or data is very limited. The parameter identification
is then easily addressed by Center-HONN’s, based on the linguistic informa-
tion regarding the structural identification of the output part and from the
numerical data obtained from the actual system to be modeled.

The paper is organized as follows. Section 2 gives the overall scheme of
the neuro-fuzzy model while Section 3 presents its approximation capabilities.
The learning algorithms for parameter identification and the weight updat-
ing laws derived from them are demonstrated in Section 4. Finally, Section
5 presents simulations and comparisons with adaptive neural network repre-
sentations, while Section 6 concludes the work.

2 Neuro-Fuzzy Model

Let us consider a nonlinear function f(x, u), where f : Rn+m → Rn is a
smooth vector field defined on a compact set Ψ ⊂ Rn+m, with input space
u ∈ U ⊂ Rm and state - space x ∈ X ⊂ Rn. Also, we assume that its i/o
relation being governed by the following equation

ẋi(t) = fi(x(t), u(t)) (1)

where fi(·), i = 1, 2, ..., n, is a continuous function and t denotes the temporal
variable.

Assumption 1. Notice that since Ψ ⊂ ℜn+m then Ψ is closed and
bounded set. Also, it is noted that even if Ψ is not compact we may assume
that there is a time instant T such that (x(t), u(t)) remain in a compact
subset of Ψ for all t < T ; i.e. if ΨT := {(x(t), u(t)) ∈ Ψ, t < T}. The
interval ΨT represents the time period over which the approximation is to be
performed.

Following the notation of [8] the above Eq. (1) can be approximated by

f̂i(x(t), u(t)) = −aix̂i +

q
∑

p=1

x̄p
fi
·

(

k
∑

l=1

wpl
fi
· sl(x(t), u(t))

)

(2)

where ai > 0, x̄p
fi

is the p− th fuzzy center of the i− th state variable and the
summation is carried over all the available fuzzy rules. The above equation
can be rewritten in a more compact form including all the state dynamics as

˙̂x = Ax̂ + XfWfsf (x, u) (3)

where A is a n × n stable matrix which for simplicity can be taken to be
diagonal as A = diag[−a1,−a2, ...,−an], Xf is a matrix containing the centers
of the partitions of every fuzzy output variable of f(x, u) and sf (x, u) is a
vector containing high order combinations of sigmoid functions of the state
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x and control input u. Also, Wf is a matrix containing respective neural
weights according to (2) and (3). For notational simplicity we assume that
all output fuzzy variables are partitioned to the same number, q, of partitions.
The exact definition of the above matrices are given detailed in [8].

From the above definitions and Eq. (2) it is obvious that the accuracy
of the approximation of f(x, u) depends on the approximation abilities of
HONN’s and on an initial estimate of the centers of the output membership
functions. These centers can be obtained by experts or by off-line techniques
based on gathered data.

3 Approximation capabilities

The approximation problem consists of determining whether by allowing
enough high order connections and fuzzy centers, there exist weights Wf ,
such that the F-RHONN model could approximate the input-output behav-
ior of an arbitrary dynamical system of the form (1).

In order to have a well-posed problem, we assume that fi is continuous
and satisfies a local Lipschitz condition such that (1) has a unique solution
in the sense of Caratheodory [1]. Based on the above assumptions we obtain
the following theorem.

Theorem 1. Suppose that the system (1) and the model (3) are initially at
the same state x̂(0) = x(0), then for any ε > 0 and any finite T > 0, there
exists an integer k, a matrix W ⋆

f ∈ Rn×q×k and appropriately selected fuzzy

output modified centers x̄p
fi

such that the state x̂(t) of the Fuzzy-RHONN
model (3) with k high order connections, weight values Wf = W ⋆

f and center
values Xf satisfies

sup
0≤t≤T

|x̂(t) − x(t)| ≤ ε.

Proof. The dynamic behavior of the Fuzzy-RHONN model is described by
(3). Adding and subtracting Ax, (1) is rewritten as

ẋ = Ax + g(x, u) (4)

where g(x, u) = f(x, u) − Ax. Since x̂(0) = x(0), the state error e = x̂ − x
satisfies the differential equation

ė = Ae + XfWfsf − g(x, u) (5)

where e(0) = 0. By assumption, (x(t), u(t)) ∈ Ψ for all t ∈ [0, T ], where Ψ is
a compact subset of Rn+m.

Let Ψe = {(x, u) ∈ Rn+m : |(x, u) − (xy, uy)| ≤ ε, (xy, uy) ∈ Ψ}. It can be
seen readily that Ψe is also a compact subset of Rn+m and Ψ ⊂ Ψe. In simple
words Ψe is ε larger than Ψ , where ε is the required degree of approximation.
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Since sf is a continuous function, it satisfies a Lipschitz condition in Ψe, i.e.
there is a constant l such that for all (x1, u), (x2, u) ∈ Ψe

|sf (x1, u) − sf (x2, u)| ≤ l |x1 − x2| . (6)

According to [7], we can prove that the function XfWfsf satisfies the con-
ditions of Stone-Weirstrass Theorem and can approximate any continuous
function over a compact domain. In what follows, we consider the learning
problem of adjusting the weights adaptively, such that the Fuzzy-RHONN
model identifies general dynamic systems.

4 Learning Algorithms for parameter identification

In this section we develop weight adjustment laws under the assumption that
the unknown system is modeled exactly by a Fuzzy-RHONN architecture of
the form (3).

4.1 Gradient descent

In developing this identification scheme we start again from the differential
equation that describes the unknown system with no modeling error,

ẋi = −aixi + x̄fi
W ⋆

fi
sf (x, u). (7)

Based on (7), the identifier is now chosen as

˙̂xi = −aix̂i + x̄fi
Wfi

sf (x, u) (8)

where Wfi
is again the estimate of the unknown matrix W ⋆

fi
. In this case the

state error ei = x̂i − xi satisfies

ėi = −aiei + x̄fi
W̃fi

sf (x, u) (9)

where W̃fi
= Wfi

− W ⋆
fi

.
The next theorem gives the filtered error Fuzzy-RHONN model with the

gradient method for adjusting the weights.

Theorem 2. Consider the filtered error Fuzzy-RHONN model given by (8)
whose weights are adjusted according to equation

Ẇfi
= −x̄T

fi
eis

T
f Pi. (10)

Then for i = 1, 2, ..., n, guarantees the following properties

1. ei, W̃fi
∈ L∞, ei ∈ L2

2. limt→∞ ei(t) = 0
3. limt→∞ Ẇfi

(t) = 0
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Remark 1. The above theorem does not imply that the weight estimation
error W̃fi

= Wfi
− W ∗

fi
converges to zero. In order to achieve convergence

of the weights to their correct value the additional assumption of persistent
excitation needs to be imposed on the vector sf (x, u). In particular, sf ∈ Rk

is said to be persistently exciting if there exist positive scalars β1, β2 and T
such that for all t ≥ 0

β1I ≤

∫ t+T

t

sf (τ)sT
f (τ) dτ ≤ β2I, (11)

where I is the k × k identity matrix.

4.2 Pure Least Squares

The method is simple to apply and analyze in the case where the unknown
parameters appear in a linear form, such as in eq. (7). The pure LS algorithm
can be thought as a gradient algorithm with a time-varying learning rate and
could be written as follows

Ẇfi
= −

x̄T
fi

eiz
T
i Pi

|x̄fi
|
2

, Wfi
(0) = Wf0

(12)

Ṗi = −
Piziz

T
i Pi

n2
s

, Pi(0) = P0 (13)

where zi is a filtered version of sf as will be described below, n2
s ≥ 1 is a

normalization signal designed to guarantee that zi

ns
is bounded. The property

of ns is used to establish the boundedness of the estimated parameters even
when zi is not guaranteed to be bounded. A straightforward choice for ns in
this paper is n2

s = 1+αzT
i zi, α > 0. If zi is bounded, we can take α = 0. The

following lemma is useful in the development of the adaptive identification
algorithm which will be presented in this subsection.

Lemma 1. The system described by Eq. (7) can be expressed as

żi = −aizi + sf , zi(0) = 0, (14)

xi = x̄fi
W ⋆

fi
zi + e−aitxi(0). (15)

Proof. The proof described similarly in [7].

Using the above lemma the dynamical system is described by the following
equation

xi = x̄fi
W ⋆

fi
zi + εi, (16)

where εi = e−aitxi(0) is an exponentially decaying term which appears when
a non zero initial state is applied. After ignoring the exponentially decaying
term εi [7], the fuzzy-RHONN model can be written as

x̂i = x̄fi
Wfi

zi. (17)
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The state error equation, after substituting (16), (17) becomes

ei = x̄fi
W̃fi

zi − εi. (18)

The cost function J(Wfi
) is chosen as

J(Wfi
) =

n
∑

i=1

e2
i

2
=

n
∑

i=1

[(

x̄fi
Wfi

zi − x̄fi
W ⋆

fi
zi

)

− εi

]2

2
. (19)

Depending on the optimization method we result to least squares method
described by (12) and (13). A problem that may be encountered in the
application of the LS’s algorithm is that Pi may become arbitrarily small
and thus slow down adaptation in some directions. This so-called problem
can be prevented by using one of various modifications which prevent Pi(t)
of going to zero. One such modification is the so-called, where if the smallest
eigenvalue of Pi(t) becomes smaller than ρ1 then Pi(t) is reset to Pi(t) = ρ0I,
where ρ0 ≥ ρ1 > 0 are some design constants. In the following theorem we
present the stability proof of the method.

Theorem 3. The pure LS algorithm given by (12), (13) guarantees the fol-
lowing properties

1. ei, Ẇfi
∈ L2 ∩ L∞ , Wfi

, Pi ∈ L∞.
2. limt→∞ Wfi

(t) = W̄Fi
,

whereW̄Fi
is a constantmatrix.

3. If zi

ns
is PE, then Wfi

(t) → W ⋆
fi

as t → ∞.

5 Simulation results

For simulation purposes, we are using the following dynamic equations ap-
pearing in the well known problem of the control of an inverted pendulum.

ẋ1 = x2

ẋ2 =
g sinx1 −

mlx2

2
cos x1 sin x1

mC+m

l
(

4

3
− m cos2 x1

mC+m

) +
cosx1

mC+m

l
(

4

3
− m cos2 x1

mC+m

)u (20)

where x1 = θ and x2 = θ̇ are the angle from the vertical position and the
angular velocity respectively. where g = 9.8 m/s2 is the acceleration due to
gravity, mc is the mass of the cart, m is the mass of the pole, and l is the
half-length of the pole. We choose mc = 1 kg, m = 0.1 kg, and l = 0.5 m in
the following simulation.

In the simulations carried out the aim is not the control of the system but
only to test the identification performance of the proposed scheme. Therefore,
we use Eq. (20) as a means for deriving training data.
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Fig. 1. Approximation errors of angle and angular velocity for RHONN (dashed
line) and F-RHONN (solid line) approach.

It is our intention to compare the approximation abilities of the proposed
dynamic neuro-fuzzy network (8) with RHONN’s, [5] in approximating Eq.
(20). For the RHONN’s, we use the adaptive law which is described in, [5]
(page 19) and for the proposed F-RHONN model we use the adaptive law
which is described by Eq. (10). Numerical training data were obtained by
using Eq. (20) with initial conditions

[

x1(0) x2(0)
]

=
[

π
6
−π

6

]

, and the input
signal has the following form

u(k) = 0.3 sin (πk/25) + 0.1 sin (πk/32) + 0.6 sin (πk/10) (21)

The proposed neuro-fuzzy representation was chosen to use 4 output parti-
tions of fi, x̄f1

=
[

1 2 4 5
]

, x̄f2
=
[

−9 −5 8 9
]

and the number of high order
sigmoidal terms (HOST) used in HONN’s were chosen to be 3 (s(x1), s(x2), s(u))
up to first order. The initial weights are Wfi

(0) = 0 and the recurrent con-
stant ai = 0.28. Also, the parameters of the sigmoidal terms were chosen to
be α1 = 4.86, β1 = 2, γ1 = −0.75 and the adaptive learning rate as Pi = 7,
with i = 1, 2, ..., n.

The RHONN model given from [5] is constructed with the same initial
weights, number of high order terms with these of F-RHONN approach and
ai = 0.05. The parameters of the sigmoidal terms were chosen to be α2 =
2.89, β2 = 2.95, γ2 = −4.45 and the adaptive learning rate as Pi = 6.48, with
i = 1, 2, ..., n. Fig. 1 gives the evolution of identification errors for RHONN
and F-RHONN models while and 2 presents the evolution of random weights
for every approach, respectively. One can see that the dynamic neuro-fuzzy
networks are more powerful than the simple neural networks.

6 Conclusion

This paper presents a new approach for neuro-fuzzy dynamical system iden-
tification based on high order neural network approximators (HONN’s) and
the fuzzy output partition. Instead of having a big RHONN we separate it
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Fig. 2. Evolution of random weights in RHONN and F-RHONN approaches.

to smaller HONN’s which finally gives a Fuzzy-RHONN. This leads to lower
order of magnitude for high order terms while the weights energy becomes
very restricted and difficult to drift into infinite. Future trends, are the ex-
pansion of the algorithm to robust systems and the better fuzzy selection of
a certain number of HONN’s determining the system.
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Summary: Although not well-known, the Bernstein-von Mises theorem (BvM) is a so-called bridge between bayesian and frequentist asymptotics. Basically, it states that under mild conditions the posterior
distribution of the model parameter centered at the maximum likelohood estimator (MLE) is asymptotically equivalent to the sampling distribution of the MLE. This is a powerful tool especially when the classical
asymptotics is tedious or impossible to conduct while bayesian asymptotic properties can be obtianed via MCMC. However, in semiparametric setting with presence of infinite-dimensional parameters, as is e.g. Cox
model for survival data, the results regarding BvM are more difficult to establish but still not impossible. The proposed poster gives short overview of BvM results found in the survival analysis context.

Cox’s regression model

Let us observe a dataset of following type:

•Xi, i = 1, ..., n, survival times of n independent individuals, Xi ∼ Fi, Fi is a distribution function

•Ci, i = 1, ..., n censoring random variables independent on Xi’s

•Zi ∈ Rp, i = 1, ..., n a set of covariates describing the individuals

=⇒ the actual observed dataset is a right-censored set of triplets (Ti, δi, Zi)
n
i=1 where Ti = min(Xi, Ci),

δi = I(Ti = Xi). Denote τ = max{T1, ..., Tn}.

We specify the Cox model is via particular form of the hazard rate which is assumed to satisfy

Λi(t) = Λ(t,Zi) =

∫ t

0
exp{β>Zi}dΛ(s), i = 1, .., n, t ∈ [0, τ ],

with two unknown parameters:

• β is an unknown p-dimensional regression parameter

• Λ(t), t ∈ [0, τ ] is an unknown cumulative hazard rate of a survival time of an individual with covariate
being equal to 0

=⇒ with Λ being an functional (so, an infinitely-dimensional) parameter and β a finite-dimensional pa-
rameter inference on Cox model falls among the semiparametric problems.

Traditional approach to estimate the unknown parameters β and Λ ...

... is based on partial likelihood theory. Let β0 and Λ0 be the true parameters. The estimator
β̂ of β is defined as a solution to the vector equation

n∑
i=1

Zi −
∑
j:Tj≥TiZj exp{β>Zj}∑
k:Tk≥Ti exp{β>Zk}

 = 0

The cumulative baseline hazard function Λ(t) is estimated using the Breslow estimator

Λ̂(t) =
∑
i:Ti≤t

δi∑
j∈Ri

exp{β̂>Zj}

Theorem 1 (Frequentist asymptotics for Cox model, [1]) Let the conditions A-D in
[2] be fulfilled. Then the following is true:

1. √
n(β̂ − β0)

D−−→ N (0,Σ(β0, τ )−1)†

2.

L (
√
n(Λ̂(·)− Λ0(·))|

√
n(β̂ − β0) = x)

D−−→W (V0(·)− xE0(·))†

on the space of functions continuous to the right and with limits to the left, D[0, τ ]. W
denotes the standard Brownian motion.

† Terms Σ(β0, τ ), V0(·) and E0(·) in limiting ditributions are matrix functions of unknown parameters β0 and Λ0 and can

be consistently estimated (for details see [1]).

Bayesian approach: Beta process as a prior for Λ

A prior process on the baseline d.f. F is a process neutral to the right if corresponding

Λ(t) =
∫ t

0
dF (s)

1−F (s−)
is a positive nondecreasing independent increment process (most common exam-

ples are Beta process and Gamma process) such that Λ(0) = 0, 0 ≤ ∆Λ(t) ≤ 1 for all t w.p. 1 and either
∆Λ(t) = 1 for some t > 0 or limt→∞Λ(t) =∞ w.p. 1.

PRIOR:

• Let the baseline c.d.f. F be, a priori, a process neutral to the right, such that the corresponding
prior process for Λ is a Beta process with mean Λpr and scale parameter c that
possesses following Lévy measure

ν(dt, dx) = c(t)x−1(1− x)c(t)−1dx dΛpr(t)

• let π(β) be prior distribution for β which is continuous at β0 with π(β0) > 0, where
β0 is true value of β.

POSTERIOR:

• the posterior of Λ given β is a Lévy process with Lévy measure given in [4]

Theorem 2 (Bernstein - von Mises for Cox model, [2,3]) Under certain conditions
following hold

1.

lim
n→∞

∫
Rp
|fn(x)− φ(x)|dx = 0

with probability 1, where fn is the marginal posterior density of x =
√
n(β − β̂) and φ is

the normal density with mean 0 and variance Σ(β0, τ )−1.

2.

L (
√
n(Λ(·)− Λ̂(·)|

√
n(β − β̂) = x, (Ti,Zi, δi)

n
i=1)

D−−→W (V0(·)− xE0(·)) (1)

on the space of functions continuous to the right and with limits to the left, D[0, τ ], with
probability 1, as n→∞. W denotes the standard Brownian motion.

As a direct result of Theorem 2 we have the convergence of the joint posterior distribution

L (
√
n(Λ(·)− Λ̂(·),β − β̂)|(Ti,Zi, δi)ni=1)

D−−→ (W (V0(·)−XE0(·)), X)

with probability 1, as n → ∞ on D[0, τ ]. X represents p-dimensional multivariate normal distribution
with mean 0 and variance Σ(β0, τ )−1.

=⇒ Then similar result can be obtained for
√
n(A(β,Λ) − A(β̂, Λ̂)), where A is an arbitrary

Hadamard-differentiable functional of model parameters (Λ,β) (apply the functional delta
method, see e.g. [5], Section 20.2).

Remark: Useful examples of Hadamard-differentiable functionals:

• baseline survival function S(t) =
∏
s≤t{1− dΛ(s)}

• survival function for i-th individual S(t;Zi) =
∏
s≤t{1− dΛi(s)} =

∏
s≤t{1− exp{β>Zi}dΛ(s)}

•median residual life ηit0 so that S(ηit0;Zi)/S(t0;Zi) = 0.5, for t0 ∈ (0, τ ) andi = 1, .., n.

RESULT:

•Under mild conditions the posterior distribution of the model parameter centered at
the maximum likelohood estimator (MLE) is asymptotically equivalent to the
sampling distribution of the MLE.

• So, what does it all mean? Practically, the limit posterior distribution does not depend
on prior and it is equivalent to frequential limiting distribution. In general, for functionals of
parameters where asymptotic distribution is tedious to derive, the Bayesian approach gives a
solution.

Illustration
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We illustrate the model on simulated data from the hazard rate
of form λ(t; z) = 0.1t exp{1.5z} where z was randomly generated
from the normal distribution with mean 2 and standard deviation
1. For the prior we chose Beta process with parameters Λpr(t)

= 0.05t and c(t) = 10e−0.05t, similarly as in [4]. We ran 15000
repetitions and used last 3000 for analysis of posterior.

Figure 1.
Upper row from left to right:

1. The histogram of posterior sample of β with theoretical limiting
distribution from Theorem 1 in red line.

2. Several iterations from the posterior sample of the baseline cu-
mulative hazard rate Λ(·).

3. The posterior mean and 95% pointwise credibility band for the
cumulative hazard rate with frequentists’ Breslow estimator in red line alongside.

Bottom row from left to right:

4. Taking in mind the result in (1), following is true

L

(
sup
t∈[0,τ ]

√
n

[V̂0(τ ) + Ê0(τ )>Σ̂(β̂, τ )Ê0(τ )]1/2

(
Λ(·)− Λ̂(·)

)∣∣∣∣∣ (Ti,Zi, δi)
n
i=1

)
D−−→ sup

x∈[0,1]
W (x)

Several iterations from the posterior sample such transformation of the baseline cumulative hazard rate
are plotted with dashed lines in black giving y such that Pr{supt∈[0,τ ]C(t) > y} = 0.05, where with

we C(·) denote the transformated process. Theoretical K-S confidence bands given by Brownian motion
are in red dashed lines.

5. Several iterations from the posterior sample of the baseline survival function S(t) =
∏
s≤t{1− dΛ(s)}.

6. The posterior mean and 95% pointwise credibility bands for the baseline survival function S(t).
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Figure 1: Results of Bayesian analysis of the simulated data using Beta process prior with parameters
Λpr(t) = 0.05t and c(t) = 10e−0.05t. Posterior summaries on regression parameter β is mean(β) = 1.723
and sd(β) = 0.33. The frequentist’ estimator is 1.757 with sd = 0.39.
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IAA101120604.

References.

[1] Andersen, P. K., Gill R. D. (1982): Cox’s regression model for counting processes: A large sample study, Ann. Statist. 10, pp. 1100 – 1120.

[2] De Blasi, P., Hjort, N. L. (2009): The Bernstein-von Mises theorem in semiparametric competing risks models, J. Stat. Plan. and Infer. Vol. 34, No. 4, pp. 1678 – 1700.

[3] Kim, Y.(2006): The Bernstein-von Mises theorem for the proportional hazard model, Ann. Statist. 34, no. 4, pp. 1678 – 1700.

[4] Laud, P. W., Damien, P., Smith, A. (1998): Bayesian nonparametric and covariate analysis of failure time data. In: Dey, D., Muller, P., Sinha, D. (Eds.), Practical
Nonparametric and Semiparametric Bayesian Statistics, Lecture Notes in Statistics Vol. 133. Springer.

[5] Vaart, A. W. van der (2000): Asymptotic statistics (Cambridge Series in Statistical and Probabilistic Mathematics) . Cambridge University Press.

807



808



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010 

  

 

 

Branching process and Monte Carlo simulation for 

solving Fredholm integral equations 

 

 Kianoush Fathi Vajargah, Fatemeh Kamalzade  

 and   Farshid Mehrdoust
 

Department of statistics, Islamic Azad University, North Branch, Tehran, 

Iran 

com.gmail@kamalzadeh.fa,  com.yahoo@10kia_fathi 

 
Department of Mathematics, University of Guilan, Rasht, Iran

 

fmehrdoust@guialn.ac.ir 

 

Abstract:  In this paper we establish a new method for solving nonlinear 

Fredholm integral equations; however the type of one dimension nonlinear 

Fredholm integral equations were solved previously by Albert [1]. Now 

thinking about high dimension of integral equation is a cause of finding a 

marvelous relationship between branching process and Monte Carlo 

simulation, although this method require the optimum probability, integral 

simulation, and Monte Carlo algorithm. 

Key words: Monte Carlo simulation, Markov chain, Fredholm integral 

equations, Branching process 

  

1   Introduction 

 So many different ways exist for solving Fredholm integral equations, but 

the main point is that  they have an acceptable answer only in low 

dimensional integral equations specially in one dimension, the major 

problem is started just in high dimensional of integral equation therefore 

accompanied by this problem the error will increase. Therefore it seems 
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that Monte Carlo method considered is true [1]. In probability theory, a 

branching stochastic process is a Markov process that models a population 

in which each individual in generation n produces some random number of 

individuals in n+1.      

Consider the following function 

 

 

( ) ( , ) ( ) ( )
G

j u g u g x u x dx≡ = ∫                                        (1)    

Where the domain  
dG R⊂  and the point 1 2( , ,..., )nx x x x G≡ ∈  is a 

point Euclidean space and g(x), u(x) belong to Banach space, mark that 

g(x) has been supposed Dirac-delta due to the special usage of this function 

is sampling from probability density function . 

The full model of Fredholm integral equation as follow:  

            

1 2

1 1

(x) ( ) ... ( , , ..., ) ( )
m m

m i i

i iG G

u f x k x y y y u x dxλ
= =

= + ∏ ∏∫∫ ∫      

                            (2)                      

Now we consider this model for double integral equation of the second 

kind 

                (3)        

  The equation 

(3) converges when satisfying: 

 2   A Monte Carlo method for solving nonlinear Fredholm integral   

equations 

               We will explain that finding a relation between branching process, and 

simulating it to solving nonlinear integral equation is the solution of this 

problem. Consider the model of branching process that just has been divided 

(x) ( ) ( , , ) ( ) ( )
G

u f x k x y z u y u z dydzλ= + ∫∫

810



SMTDA 2010: Stochastic Modeling Techniques and Data Analysis 

 International Conference, Chania, Crete, Greece, 8 - 11 June 2010 

  

 

 

to two branches. It begins with one point ( 0x ) then 0x  generate the next 

generation
00
x , 01x , the generating particles behave at the next moment as the 

initial one and etc, and this process continue until generating all points. The 

particle from the k-th generation has the following form  

[ ] ( [ ], )v k l v k L+ = ,  0,1,..., 1L m= −  .            

 

 

                 

               Each particle begins generating with probability 0( )mp x  and die out with 

probability h(x) such that 

0 0( ) 1 ( )mp x h x= − 

This probability is initial probability of each step  and it has direct relation 

with die out probability, Moreover transition probability is 

  
1. ( ) 0mp x ≥

                           

 0 00 0 12. ( , ,..., ) 0mp x x x − ≥ 

0 00 0 1 0

0

3. ... ( , ,..., ) 1
m

m i

i

p x x x dx−
=

=∏∫ ∫ 
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Associated with the sample path 0 1 2 ... nx x x x→ → → →  

where n is given integer number, the Markov chain is being defined by: 

0

00

( )
( ) ( )

( )

n

n m m

m

h x
h w f x

p x =

Γ = ∑ 

where 

1
1

1

( , )

( , )

m m
m m

m m

k x x
w w

p x x

−
−

−

= 

Now we fit the branching process as we mention in table # to Fredholm 

integral equation .This process such an iterative process, therefore we 

choose importance sampling in this case.  
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Definition: Full tree with L generations is called the tree LΓ  where the   

dying out of particles is not visible from zero to L-1-sth generation, but all 

the generation particles of the L-th generation die out. 

If the process has been stopped at the initial point then 0 0 0( ) ( )u x f x= , 

Therefore the Monte Carlo estimation is 

 

0 0
0

0 0 0

( ) ( )
( )

( ) ( )
g

g x f x

p x h x
θ γ = 

  The full model of Monte Carlo estimator is 
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Theorem: The mathematical expectation of the random variable 0( )gθ γ  is 

equal to function ( )LJ u . 
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Proof: See [4]. 

 Lemma1: The transition frequency function 
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Proof: Refer to [2] 

Lemma2: The initial frequency function 
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φ
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Minimizes the functional 
2 2 1

0 0 0( ) ( ) ( )g x u x p x−∫  the minimizes of this 

functional is equal to 
2

0 0 0( ( ) ( ) )g x u x dx∫  . 

Consider the Fredholm integral equation (3), It can suppose that the kernel 

of integral is separable without losing any information. 

Proof: See to [2]. 
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4  Numerical Example 

Here, we present the performances of the above algorithm to obtain 

the unique solution ( ) 1u x =  of the following integral equation. The 

experimental results for three different transition density function 

(0.25,0.5, / 4),x  are outlined in Table 1. 
 

( ) 1 0.1667 0.0094 (8 ) ( ) ( )
D

u x x x y z u y u z dydz= − + −∫∫ 

 where [0,1] [0,1]D = ×  and .x∈�  

 
Table 1  

MC solution and relative for three transition density functions ( 5000)N =   

Transition 

density 

functions 

 

2 ( ) 0.25p x =  

 

2 ( ) 0.5p x =  

 

2 ( ) / 4p x x=  

x MC 

solution 

Relative 

error 

MC 

solution 

Relative 

error 

MC 

solution 

Relative 

error 

0.0 0.9917 0.0083 0.9980 0.0020 1.00 0.00 

0.1 1.0063 0.0063 1.0192 0.0192 0.9999 1.459e-

4 

0.2 0.9893 0.0107 1.0090 0.0090 1.0007 7.417e-

4 

0.3 1.0022 0.0022 1.0041 0.0041 1.0015 0.0015 

0.4 1.0021 0.0021 0.9982 0.0018 1.0003 2.647e-

4 

0.5 1.0125 0.0125 1.0412 0.0412 0.9998 1.869e-
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4 

0.6 1.0067 0.0067 1.0260 0.0260 0.9999 1.314e-

4 

0.7 1.0088 0.0088 1.0334 0.0334 1.0004 3.550e-

4 

0.8 1.0125 0.0125 1.0116 0.0116 1.0006 5.672e-

4 

0.9 1.0084 0.0084 1.0337 0.0337 1.0042 0.0042 

1.0 1.0002 1.92e-4 1.0367 0.0367 0.9996 3.741e-

4 
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5   Conclusion and future study 

 

We have proposed that it is possible to solve Fredholm and by 

extension, Volterra and other related equations of the second kind by 

using branching process and an appropriately defined distribution.  
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Abstract. This article proposes an approach for the cluster stability evaluation.
This method adopts a physical point of view where a physical magnitude of samples
mixing within clusters is considered. Samples closeness is quantified by the relative
potential energy between items belonging to different samples inside the clusters.
Actually, the two-sample energy test statistic of Zech and Aslan[20] based upon
this perception is employed. The partition merit is represented by the worst cluster
corresponding to the maximal potential energy value. To ensure readiness of the
proposed model and to decrease the uncertainty in the model, we draw many pairs
of samples for each given number of clusters and construct an empirical distribution
of the inner clusters potential energy corresponding to the partitions created within
the samples. Among all those distributions, one can expect that the true number
of clusters can be characterized by the empirical distribution which is most concen-
trated at the origin. Numerical experiments, provided by means of the proposed
methodology, demonstrate high ability of the approach.
Keywords: Cluster analysis, Clustering, Partitioning, Unsupervised learning, Clus-
ter stability, Two-sample energy test.

1 Introduction

The cluster analysis encompasses algorithms and methods intended to catego-
rize similar kind of objects in a manner that the connection measure between
two objects is maximal if they fit in the same group and minimal otherwise.
Cluster methodology is used in many fields such as machine learning, data
mining and bioinformatics. The basic premise is that there is a similarity
between elements of data collection which reflects a natural division into
groups. An iterative clustering algorithm, proposed to divide a datum into
groups, commonly requires as an input a suggested number of clusters. The
problem emerging difficulty is associated with a number of meaningful clus-
ters. Particularly, determining the true number of clusters is known as “ill
posed” cluster problem (Jain and Dubes[11] and Gordon[8]). For instance,
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the “right” number of clusters can be affected by the scale of data mea-
surement (see e.g., Chakravarthy and Ghosh[4]). A procedure anticipated
to estimate the true number of clusters is typically applied to compare the
possible number of clusters in a given area. The amount of clusters that
yields the best specified score is accepted as a true number. Many methods
are known to handle the cluster validation problem. Until now, none of them
has been agreed as superior. Two well known methodologies can be reminded
here.

For example, the so-called “elbow” criterion is used in many variations
to indicate the “true” number of clusters (see e.g., Dunn[6], Hubert and
Scultz[10], Calinski and Harabasz[3], Hartigan[9], Krzanowski and Lai[12],
Sugar and James [17], Gordon[7], Milligan and Cooper[16] and Tibshirani et
al.[18]). Within the framework of the stability concept, partitions goodness
is estimated by low variability amid the repeated cluster solutions obtained
for the same dataset (see e.g. Lange et al.[14], Cheng and Milligan[5], Levine
and Domany[15], Ben-Hur et al.[1] and Ben-Hur and Guyon[2]).

In the current article, we purpose a method for the study of cluster stabil-
ity. This method adopts a physical point of view. Such standpoint suggests
using a physical magnitude of samples mixing within clusters constructed by
means of a clustering algorithm. We quantify samples closeness by the rel-
ative potential energy between items belonging to different samples for each
one of the clusters. This potential energy is closely linked with a “gravity”
force between two samples. If the samples within each cluster are well min-
gled, this quantity is sufficiently small. As known from electrostatics, if the
sizes of the samples grow to infinity, then the total potential energy of the
pooled samples, tends to zero, in the case of the samples drawn from the
same population. The Two-Sample Energy test has been constructed based
upon this perception (Zech and Aslan[20]). The statistic of the test measures
the potential energy of the combined samples. Actually, we use this func-
tion as a characteristic of clustered samples similarity. The partition merit
is represented by the worst cluster corresponding to the maximal potential
energy value. To ensure readiness of the proposed model and to decrease
the uncertainty of the model, we draw many pairs of samples for a given
number of clusters and construct an empirical distribution of the potential
energy corresponding to the partitions created within the samples. Among
all those distributions, one can expect that the true number of clusters can
be characterized by the empirical distribution which is most concentrated
at the origin. Numerical experiments, provided by means of the proposed
methodology, demonstrate high ability of the approach.

2 The Two-Sample Energy Test

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two samples of inde-
pendent random elements belonging to the Euclidean space R

d, distributed
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according to F and G, respectively. The two-sample problem examines the
hypothesis

H0 : F (x) = G(x)

against the general alternative

H1 : F (x) �= G(x),

when the distributions F and G are unknown.
The Two-Sample Energy test for this problem considers the sample X

as a system of positive charges equal in value to 1/n and the second sample
Y as a system of negative charges equal in value to −1/m. These charges
provide the total normalized charge of each sample equal to 1. According
to the one-over-distance law in electrostatics, it can be concluded that if the
samples have the same distribution then the total energy of the united sample
asymptotically neglects.

Let us denote by ΦX,R the energy of a charged sample X . This value is
calculated:

ΦX,R =
1

|X |2
|X|∑
i<j

R (|xi − xj |) ,

where the function R is suggested to be a continuous, monotonic decreasing
function of the Euclidean distance between the charges. Correspondingly,
the interaction energy of two samples X and Y is:

ΦX,Y,R = − 1
|X | |Y |

|X|∑
i=1

|Y |∑
j=1

R (|xi − yj |)

The test statistic ΨX,Y,R is defined as:

ΨX,Y,R = ΦX,R + ΦY,R + ΦX,Y,R. (1)

The common cases of R are:

• R (r) = − ln (r) ;
• R (r) = 1

rα , α > 0;
• R (r) = e−rα

, α > 0.

The choice R (r) = − ln (r) ensures that the test is scale invariant.

3 Method Description

Let us consider a finite subset X = {x1, x2 . . . , xn} of the d-dimensional
Euclidean space R

d. For a given set S ⊂ X , we create a partition Πk(S) of S

by splitting it into k nonempty and disjointed sub-groups {πj (S)}k
j=1 called

clusters. The union of these clusters is S.
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As mentioned earlier, we are going to describe cluster stability by means
of the sampling procedure steadiness. We assume that there is a cluster
stable structure which can be reflected by an appropriate clustering algorithm
Δ(X, k) where X is the clustered dataset, and k is the suggested number of
clusters. The algorithm output is a partition of the set X into k clusters.
For this purpose, we draw pairs of samples Sj,1, Sj,2, having the same size m
to assess the potential energy between their elements within the clusters. To
do this we should know the occurrences of the samples within the clusters.
Due to the fact that a cluster structure is latent, these occurrences have to
be simulated. This task, as usual, meets the so-called cluster coordination
problem. Namely, the same cluster could be differently assigned in various
algorithms outcomes. In this paper we use a simulation method proposed by
Volkovich et al.[19].

Let us consider the pool set

Sj = Sj,1 ∪ Sj,2

along with three partitions:

Πk(Sj) = Δ(Sj , k),

Π
(1)
k (Sj,1) = Δ(Sj,1, k),

Π
(2)
k (Sj,2) = Δ(Sj,2, k).

Each item x ∈ Sj is located in the partition Πk(Sj) and in one of the other
two partitions Π

(i)
k (Sj,i), i = 1, 2. A correspondence of cluster tags between

the partitions can be provided according to the minimal misclassification
rate calculated over all data points. So, the labels in the clustered samples
Π

(i)
k (Sj,i), i = 1, 2 are altered, aiming at maximal coincidence with Πk(Sj):

σ∗
i = arg min∑

k

∑
x∈X

I(σ(αk,i(x)) �= α
(i)
k (x)), i = 1, 2,

where I(•) denotes the indicator function and αk,i, α
(i)
k are assignments de-

fined by Πk(Sj) and Π
(i)
k (Sj,i), i = 1, 2, correspondantly.

∑
k is the set of

all possible permutations of the set {1, ..., k}. The Hungarian method [13]
meets this goal by O(k3) complexity. After changing the cluster labels in
Π

(i)
k (Sj,i), i = 1, 2 with respect to σ∗

i , i = 1, 2 the sets

S
(t)
j,i = {x ∈ Sj,i|αk,i(x) = t), i = 1, 2, t = 1, ..., k,

can be interpreted as sub-samples creating the clusters. Following the two
sample test energy methodology, we calculate in each group its inner potential
energy Ψ

S
(t)
j,1,S

(t)
j,2,R

; t = 1, ..., k, according to (1). This value characterizes the
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cluster quality. Subsequently, the partition quality is represented by its worst
cluster having maximal inner potential energy:

Ψ∗
Sj,1,Sj,2,R = max

t
Ψ

S
(t)
j,1,S

(t)
j,2,R

. (2)

Another possibility would be to determine the average of (2) among all k
occurred clusters. However, the first possibility seems to be more stable.

Next, we consider the distributions of (2) constructed by a multitude of
samples for number of clusters in the range k = 2, . . . , k�, where k� is the
maximal number of tested clusters. In order to view those distributions in
the same scale, we perform a normalization. In our approach, we divide the
range of the distances values into g equal range subgroups and characterize
the concentration by the frequency Nk,g of the lowest subgroup which is
expected to provide the greatest value of Nk,g in the case of the true number
of clusters.

An algorithm which implements this procedure, consists of the following
steps:

1. Choose the parameters:

(a) k� : maximal number of clusters to be tested,
(b) J : number of the drawn sample pairs,
(c) m : the samples size,
(d) X : the data to be clustered,
(e) Δ : a clustering algorithm,
(f) R : a distance function,
(g) g : number of range subgroups.

2. For k = 2 to k�

3. for j = 1 to J do
4. Sj,1 = sample(X, m), Sj,2 = sample(X\Sj,1, m);
5. Clustering Sj,1 by means of Δ;

Clustering Sj,2 by means of Δ;
Clustering Sj,1

⋃
Sj,2 by means of Δ;

Solve the coordination problem;
6. Measure the potential energy inside the clusters;
7. Calculate the partition quality according to (2);
8. end for j;
9. Calculate Nk,g;

10. End for k.
11. The “true” k̂ is selected as the one which yields the maximal value of

Nk,g.

Sample(S, m) is a procedure which selects a random sample of size m
from the set S, without replacement.
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4 Numerical Experiments

We exemplify the described approach by means of the numerical experiments
on synthetic and real datasets provided for 3 functions R (r) mentioned in
section 2. We choose k∗ = 7, J = 200 and m = 100 in all tests and perform
10 trials for each experiment. The results are presented via the error-bar
plots of Nk,10 within the trials. The sizes of the error bars equal to two stan-
dard deviations, found inside the trials. The spherical k−means algorithm is
employed.

4.1 Synthetic Data

In the first example the datum is simulated as a mixture of 5 two-dimensional
Gaussian distributions with independent coordinates owning the same stan-
dard deviation σ = 0.35. The components means are placed on the unit cir-
cle with the angular neighboring distance 2π/5. The dataset contains 4000
items. The results shown in Fig. 1 demonstrate that for this combination of
parameters and kernels, a five clusters structure is clearly indicated.

1 2 3 4 5 6 7 8
0

50

100
first function

1 2 3 4 5 6 7 8
0

50

100
second function

1 2 3 4 5 6 7 8
0

50

100

number of clusters

third function

Fig. 1. Error-bar plots of Nk,g for the five components simulated data.

4.2 Real-World Data

In the second example a real dataset is chosen from the text collection
http : //ftp.cs .cornell .edu/pub/smart/.
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This set includes 3 sub-collections, consisting of 1033 medical, 1460 infor-
mation science and 1400 aerodynamics abstracts, correspondingly. We select
the 600 “best” terms, following the common “bag of words” method and
used the data representation by means of two leading principal components.
The results presented in Fig. 2 show that the number of clusters is properly
determined for all functions R (r).

1 2 3 4 5 6 7 8
0

100

200
first function

1 2 3 4 5 6 7 8
0

100

200
second function

1 2 3 4 5 6 7 8
0

100

200

number of clusters

third function

Fig. 2. Error-bar plots of Nk,g the three text collection dataset.

5 Conclusion

We offer a new approach for detecting the true number of clusters based on
a novel point of view where a physical magnitude of samples mixing within
clusters characterizes the partition quality. Pairs of samples are drawn in
order to construct an empirical distribution of the inner cluster potential
defined by the worst partitions clusters. The most concentrated at the origin
distribution indicates the true number of clusters. Numerical experiments,
provided by means of the proposed methodology, demonstrate high ability of
the approach.
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Abstract. Densities of functions of two or more independent random variables
can be estimated by local U-statistics. Frees (1994) gives conditions under which
they converge pointwise at the parametric root-n rate. Giné and Mason (2007) give
conditions under which this rate also holds in Lp-norms. We present several natural
applications in which the parametric rate fails to hold in Lp or even pointwise.

1. The density estimator of a sum of squares of independent observations typ-
ically slows down by a logarithmic factor. For exponents greater than two, the
estimator behaves like a classical density estimator.

2. The density estimator of a product of two independent observations typi-
cally has the root-n rate pointwise, but not in Lp-norms. An application is given
to semi-Markov processes and estimation of an inter-arrival density that depends
multiplicatively on the jump size.

3. The stationary density of a nonlinear or nonparametric autoregressive time
series driven by independent innovations can be estimated by a local U-statistic
(now based on dependent observations and involving additional parameters), but
the root-n rate can fail if the derivative of the autoregression function vanishes at
some point.
Keywords: Density estimator, Local U-statistic, Local von Mises statistic, Con-
vergence rate, Autoregressive time series, Semi-Markov process.

1 Introduction

It is often of interest to estimate densities of known or unknown functions
of independent observations. Consider for example a regression model Y =
r(X) + ε with independent error ε and covariate X. If we have independent
observations (Xi, Yi), i = 1, . . . , n, then the density of the response Y could
be estimated by a kernel estimator based on Y1, . . . , Yn. However, a much
? Supported by NSF Grant DMS 0907014.

?? Supported by NSF Grant DMS 0906551.
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better estimator is obtained if we exploit the independence of ε and X and
write Y as a sum r(X)+ε of independent random variables. Then the density
p of Y can be estimated by a local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

kb(z − r̂(Xi)− ε̂j).

Here kb(z) = k(z/b)/b with kernel k and bandwidth b, r̂ is some estimator
of the regression function r, and ε̂j = Yj − r̂j(Xj) are the corresponding
residuals. Under appropriate conditions, the estimator p̂(z) converges at
the parametric rate n1/2; see Støve and Tjøstheim, 2010 [19], Escanciano
and Jacho-Chávez, 2010 [1], and, for nonlinear regression and with responses
missing at random, Müller, 2010 [5]. It is the purpose of this review to
indicate why such rates are possible, and to illustrate when they fail.

The most straightforward version of the problem is the following. Let
X1, . . . , Xn be independent real-valued observations with density f . We want
to estimate the density p of some transformation T (X1, . . . , Xm) of m of these
observations, with m at least 2. Frees, 1994 [2] proposed as an estimator of
p(z) the local U-statistic

p̂(z) =
1(
n
m

) ∑
1≤i1<···<im≤n

kb(z − T (Xi1 , . . . , Xim))

with kb(x) = k(x/b)/b for a kernel k and a bandwidth b. He showed that this
estimator can be pointwise n1/2-consistent under some assumptions on f and
T . Saavedra and Cao, 2000 [9] consider the function T (X1, X2) = X1 +ϕX2.
It is even possible to obtain n1/2-consistency in various norms, together with
functional central limit theorems in the corresponding spaces. Schick and
Wefelmeyer, 2004 [11], 2007 [13] prove such results for transformations of
the form T (X1, . . . , Xm) = T1(X1) + · · · + Tm(Xm) and T (X1, X2) = X1 +
X2 in the sup-norm and in L1-norms. Giné and Mason, 2007 [3] consider
general transformations T (X1, . . . , Xm) and obtain such results in the Lp-
norms. Their results hold locally uniformly in the bandwidth. More general
results applicable here are in Nickl, 2007 [6] and Nickl, 2009 [7].

These results are less generally valid than appears at first sight. In Section
2 we restrict attention to m = 2 and to transformations of the special form
T (X1, X2) = T1(X1) + T2(X2) and explain under which conditions the local
U-statistic p̂(z) is asymptotically linear, n1/2-consistent, and asymptotically
normal. The rate is typically slower when, say, T1(y) = T1(x) + c(y − x)ν +
o(|y − x|ν) for y to the left or right of some point x, with ν ≥ 2. Then
the density of T1(X) has a strong peak. Specifically, we consider T1(x) =
T2(x) = xν and describe the rates of the local U-statistic. Then we discuss
the two-sample case and applications to regression, to time series driven by
independent innovations, and to renewal processes with multiplicative waiting
times.
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2 Results and Applications

Let X1, . . . , Xn be independent real-valued observations with density f . An
estimator for the density p of a transformation of the form T (X1, X2) =
T1(X1) + T2(X2) is the local U-statistic

p̂(z) =
2

n(n− 1)

∑
1≤i<j≤n

kb(z − T1(Xi)− T2(Xj)),

where kb(z) = k(z/b)/b for a kernel k and a bandwidth b. Suppose that T1(X)
and T2(X) have densities g1 and g2. The estimator p̂(z) has the Hoeffding
decomposition

p̂(z) = p ∗ kb(z) +
1
n

n∑
i=1

(
g1 ∗ kb(z − T2(Xi))− p ∗ kb(z)

+ g2 ∗ kb(z − T1(Xi))− p ∗ kb(z)
)

+ U(z),

where

U(z) =
2

n(n− 1)

∑
1≤i<j≤n

(
kb(z − T1(Xi)− T2(Xi))− g1 ∗ kb(z − T2(Xi))

− g2 ∗ kb(z − T1(Xi)) + p ∗ kb(z)
)

is a degenerate local U-statistic. We have

n(n− 1)E[U2(z)] ≤ 2E[k2
b (z − T1(X1)− T2(X2))] = 2p ∗ k2

b (z)

and

p ∗ k2
b (z) =

1
b

∫
p(z − bu)k2(u) du ≤ ‖p‖∞

b

∫
k2(u) du.

If p is bounded and
∫

k2(u) du is finite, we obtain U(z) = OP (1/(nb1/2)),
which is of order oP (n−1/2) if nb → ∞. The Hoeffding decomposition then
says that the centered local U-statistic p̂(z) − p ∗ kb(z) is approximated by
a sum of two centered and smoothed empirical “estimators” of p(z) (that
involve the unknown densities g1 and g2). Under mild assumptions one can
remove the smoothing; see e.g. Schick and Wefelmeyer, 2004 [11]. If p is
Hölder with exponent α, then the bias p ∗ kb(z)− p(z) is of order o(n−1/2) if
nb2α → 0. This implies that p̂(z) is asymptotically linear,

p̂(z) = p(z)+
1
n

n∑
i=1

(
g1(z−T2(Xi))+g2(z−T1(Xi))−2p(z)

)
+oP (n−1/2). (1)

If E[g2
1(z − T2(X2))] and E[g2

2(z − T1(X1))] are finite, then p̂(z) is n1/2-
consistent and asymptotically normal.
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Remark 1. (Convolution of density estimators.) The density p has the con-
volution representation

p(z) =
∫

g2(z − y)g1(y) dy.

Therefore, it can also be estimated by a convolution of density estimators

ĝconv(z) =
∫

ĝ2(z − y)ĝ1(y) dy

with kernel estimator for g1(y) based on T1(X1), . . . , T1(Xn),

ĝ1(y) =
1
n

n∑
i=1

kb(y − T1(Xi)),

and, correspondingly,

ĝ2(y) =
1
n

n∑
i=1

kb(y − T2(Xi)).

The estimator ĝconv is asymptotically equivalent to ĝ. �

Remark 2. (Transform density estimator or transform observations.) Sup-
pose that T1, say, is strictly increasing and differentiable. Then the density
of T1(X) at y is

g1(y) =
f(T−1

1 (y))
T ′

1(T
−1
1 (y))

.

We obtain an alternative estimator of g1(y) by plugging in a kernel estimator
for f ,

f̂(x) =
1
n

n∑
i=1

kb(x−Xi).

We expect that it depends on T1 whether ĝ1(y) is better than

g̃1(y) =
f̂(T−1

1 (y))
T ′

1(T
−1
1 (y))

.

In the convolution representation p(z) =
∫

g2(z− y)g1(y) dy we can use ĝ1 or
g̃1. If T2 is also strictly increasing and differentiable, we can combine ĝ1 or
g̃1 with ĝ2 or g̃2. �

We now discuss cases in which p̂(z) is not n1/2-consistent.

Remark 3. (Piecewise constant transformations.) The distribution of T1(X)
does not always have a density. Suppose that T1 is piecewise constant,

T1(X) =
t∑

s=1

cs1[X ∈ Is],
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with cs ∈ R, and Is, s = 1, . . . , t, a partition of R. If T2(X) has a density g2,
then T1(X1) + T2(X2) has a density p that is a finite mixture of shifts of g2,

p(z) =
m∑

s=1

asg2(z − cs)

with weights as = P (X ∈ Is). As soon as each interval Is contains at least
one observation, the constants cs can be observed, and p(z) can be estimated
by

p̂(z) =
t∑

s=1

âsĝ2(z − cs),

where âs = (1/n)
∑n

i=1 1[Xi = cs]. The rate of p̂(z) equals the pointwise rate
of ĝ2. �

Even if T1 and T2 are not constant on any interval, p̂(z) can fail to be
n1/2-consistent. In the following we describe a situation in which T1(X)
and T2(X) have densities, but g1(z − T2(X)) does not necessarily have finite
variance. For notational simplicity, assume that f is supported on (0,∞),
and set T1(x) = T2(x) = xν for some ν > 0. Then g1 = g2 = g with

g(y) =
1
ν

y1/ν−1f(y1/ν),

and the stochastic expansion (1) of p̂(z) specializes to

p̂(z) = p(z) +
2
n

n∑
i=1

g(z −Xν
i ) + oP (n−1/2). (2)

In the theorems below, we take the kernel k to be continuously differentiable
with support [−1, 1]. We also assume that f is bounded. First let ν <
2. Then g is square-integrable, and g(z − Xν) has finite variance. By the
arguments of Schick and Wefelmeyer, 2004 [11] and 2009 [17] or Giné and
Mason, 2007 [3], we have the following result.

Theorem 1. Let ν < 2. Suppose the density f is of bounded variation and
f(0+) is positive. Let b ∼ (log n)1/2/n. Then p̂(z) has the stochastic expan-
sion (2), and

n1/2
(
p̂(z)− p(z)

)
⇒ N

(
0, 4 Var(g(z −Xν))

)
.

For ν = 2, square-integrability of g fails just barely, resulting in a rate
for p̂(z) that is only slightly worse than n−1/2. More precisely, Schick and
Wefelmeyer, 2009 [16] prove the following result.

Theorem 2. Let ν = 2. Suppose f is of bounded variation, and f(0+) and
g(z−) are positive. Let b ∼ (log n)1/2/n. Then( n

log n

)1/2(
p̂(z)− p(z)

)
⇒ N(0, f2(0+)g(z−)).
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For ν > 2, the rate of p̂(z) is of order n−1/ν if f is of bounded variation
and f(0+) and g(z−) are positive. Faster rates are possible under additional
smoothness assumptions on p at z.

Theorem 3. Let ν > 2. Suppose f is of bounded variation, and f(0+) and
g(z−) are positive. Let b ∼ 1/n. Then

p̂b(z)− p(z) = OP (n−β).

Even in the case ν ≥ 2, the estimator p̂(z) can be n1/2-consistent if
g(z−) = 0 since this works against the peak of g at 0 in the representation
p(z) = g ∗ g(z). For details we refer to Schick and Wefelmeyer, 2009 [16] and
2009 [17].

We will now briefly discuss possible applications of the above results.

Remark 4. (Several samples.) The above results carry over to m-sample
cases. We restrict attention to m = 2. Suppose X1, . . . , Xn and Z1, . . . , Zn

are real-valued and independent with densities f1 and f2, respectively. An
estimator for the density p of a transformation T1(X) + T2(Z) is the local
von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

kb(z − T1(Xi)− T2(Zj)).

Let g1 and g2 denote the densities of T1(X) and T2(Z). As in the one-sample
case (1) we obtain a stochastic expansion

p̂(z) = p(z) +
1
n

n∑
i=1

(
g1(z − T2(Zi)) + g2(z − T1(Xi))− 2p(z)

)
+ oP (n−1/2).

Appropriate versions of Theorems 1–3 continue to hold. �

Remark 5. (Regression.) Two-sample results can be applied to regression
models Y = r(X) + ε with ε independent of X. If we have independent
observations (Xi, Yi), i = 1, . . . , n, then the density p of Y can be estimated
by the local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

kb(z − r̂(Xi)− ε̂j)

based on some estimator r̂ of the regression function r, and on residuals
ε̂j = Yj − r̂(Xj). Note that the “pseudo-observations” r̂(Xi) and ε̂j are
only approximately independent, so we are close to the two-sample case with
Z = ε, T1(X) = r(X), and T2(ε) = ε. As seen above, we can expect a rate
n−1/2 for p̂(z) if r has a derivative that is bounded away from 0.
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Suppose r is only piecewise monotone and continuously differentiable, and
there are points x with

r(y) = c(y − x)ν + o(|y − x|ν)

for y to the left or right of x. Then the convergence rate of p̂(z) will be
determined by the largest such ν. �

Remark 6. (Time series.) Results for regression carry over to time series
driven by independent innovations. Consider a first-order moving average
process Xi = εi + ϕεi−1, with independent innovations εi that have mean
0, finite variance, and density f . If ϕ 6= 0, the stationary density p can be
estimated by a local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

kb(z − ε̂i − ϕ̂ε̂j)

with ϕ̂ an estimator of ϕ. Saavedra and Cao, 1999 [8] obtain n1/2-consistency;
see also Schick and Wefelmeyer, 2004 [10]. Functional results for higher-order
moving average processes and general linear processes are obtained in Schick
and Wefelmeyer, 2004 [12], 2007 [14], 2008 [15] and 2009 [18]. Nonlinear and
nonparametric time series can also be treated. �

Remark 7. (Renewal processes.) Here is a two-sample case where T (X, Z)
is a product rather than a sum of functions T1(X) and T2(Z). Let (Xi, Ti),
i = 0, . . . , n be observations of a Markov renewal process with real state
space. Assume that the embedded Markov chain is stationary. We make
the structural assumption that the waiting times depend multiplicatively on
some power of the distance between the previous and the present state of the
embedded Markov chain,

Ti − Ti−1 = |Xi −Xi−1|νWi,

where ν > 0 and the Wi are independent with density g and independent
of the embedded Markov chain. Note that Wi is observable as a function of
the observations (Xi−1, Ti−1) and (Xi, Ti). We can estimate the waiting time
density p of Ti − Ti−1 by the local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

kb(z − |Xi −Xi−1|νWj).

Greenwood et al., 2009 [4] give conditions under which p̂(z) has rate n−1/2

and is asymptotically linear and asymptotically normal. �
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Abstract. We consider a branching random walk on Zd (d ≥ 1) with one source
of branching at the origin. The birth-and-death processes are defined by a random
potential V . The evolution of the first moment of the number of particles at a
point x ∈ Zd or the total particle population is described by the Cauchy prob-
lem with a random potential V for the (t-differential x-pseudo-difference) equation
∂tm1 = Am1 + V δ0(x)m1 on Zd (d ≥ 1) with the initial conditions m1(0, ·) = δ0(·)
or m1(0, ·) ≡ 1, where the (x-pseudo-difference) operator A is a generator of sym-
metric random walk on Zd. The long-time behavior of the moments 〈mp

n〉 (p ≥ 1)
for the potentials V with “heavy” upper tails is obtained.
Keywords: Branching random walks, Inhomogeneous environment, Random envi-
ronment, Kolmogorov backward equations, Feynman–Kac representation, Random
moments.

1 Introduction

The present paper is devoted to the study of continuous-time symmetric
branching random walks (BRW) under the assumption that the intensities of
birth and death of particles at the source are random. As well known (see,
Gärtner and Molchanov, 1990 [6], 1998 [7], Molchanov, 1994 [8], 1996 [9]
and bibliography therein) the concept of “strong centers” is used for the
interpretation of the intermittency phenomenon in the theory of random
media. Much attention in the theory of random media, in particular in
connection with the localization problem (see, e.g., Carmona and Lacroix,
1990 [3]), has been devoted to the study of spectral properties of the Anderson
operator κ∆ + V (x) with κ > 0, where ∆ is the discrete Laplacian on Zd

acting in variable x as ∆ψ(x) = 1
2d

∑
|x′−x|=1 ψ(x′)−ψ(x), and the potential

V (x) = V (x, ω), x ∈ Zd, d ≥ 1, is a random function determined by the
random branching medium. The evolution of the first order moments for the
local and total numbers of particles in continuous-time BRW for a spatially
homogeneous random branching environment is described by the operator
κ∆ + V (x). For example, the expected total number of particles (i.e., the

835



2 E. Yarovaya

moment of the first order) satisfies the Cauchy problem for the Anderson
operator with a random potential:

∂tm1(t, x) = κ∆m1(t, x) + V (x)m1(t, x), m1(0, x) ≡ 1. (1)

It has been discovered that the evolution of the field m1(t, x) leads to the
formation of highly irregular time-space structures, characterized by the gen-
eration of rare high peaks accumulating the bulk “mass” of the evolving field
(see, Zeldovich et al 1988 [11], Gärtner and Molchanov, 1990 [6], 1998 [7],
and Molchanov, 1994 [8], 1996 [9]). Such a phenomenon has received the
name “intermittency”. Studying of intermittency in the papers Gärtner and
Molchanov, 1990 [6], 1998 [7] and Molchanov, 1994 [8], 1996 [9] is based
on the asymptotic analysis of the moments 〈m1〉 obtained by averaging the
random moment m1 over medium’s realizations. The angular brackets 〈·〉 in-
dicate the expectation with respect to a random environment. In particular,
these works have shown that intermittency manifests itself as an anomalous,
progressive growth, as t→∞, of the moments 〈mp

1〉 with respect to their or-
der p. For instance, the second moments grow much faster than the squared
first moments: 〈m2

1〉 � 〈m1〉2, 〈m4
1〉 � 〈m2

1〉2, and so on.

Equations for the higher-order moments are similar to equation (1) (see,
Yarovaya, 1990 [10] and Albeverio et al 2000 [1]), but they satisfy inhomoge-
neous Cauchy problems. In addition, the right-hand parts of these equations
for the higher-order moments contain terms which depend on the branching
environment and on the moments of lower orders. In the paper Albeverio et
al 2000 [1] the case where the potential V (x) has a Weibull type upper tail
was studied and the Lyapunov exponents for the moments of all orders were
calculated.

In the present paper, the evolution of the mean number of particles m1 in
an inhomogeneous random environment is determined by the operator A +
V ∆0, where the random walk generator A is a bounded self-adjoint operator
in l2(Zd) defined by the following x-pseudo-difference formula (Au)(x) =∑

x′∈Zd a(x, x′)u(x′), and ∆0 = δ0δ
T
0 . Unlike (1), V is a random variable

depending only on birth-and-death intensities at the source. Here as usual
δ0 = δ0(·) denotes the column-vector on Zd taking the value 1 at the origin
and 0 at other points. To avoid confusion with the standard notation of the
Laplace operator, the above operator is denoted as “slanted delta”∆. The
aim of the paper is to demonstrate that the condition

lim
t→∞

t

ln 〈eV t〉
= 0 (2)

implies growth of the moments 〈mp
n〉, n = 1, 2, . . . , with respect to p, as

t→∞, typical for the phenomenon of intermittency.

836



Branching Walks in Random Environments 3

2 BRW in an Inhomogeneous Random Environment

In the model of a symmetric BRW the random walk of particles is given by
the infinitesimal transition matrix A = ‖a(x, y)‖x,y∈Zd . It is assumed to be
symmetric: a(x, y) = a(y, x), homogeneous: a(x, y) = a(0, y − x) = a(y − x),
irreducible, regular:

∑
x∈Zd a(x) = 0 with a(x) ≥ 0, x 6= 0, a(0) < 0, and

having a finite variance of jumps:
∑

x∈Zd x2a(x) <∞. In virtue of symmetry
and homogeneity of the random walk, the conditions

∑
y∈Z a(x, y) = 0 and∑

x∈Z a(x, y) = 0 are satisfied for the matrix A. In particular, this class
includes the simple symmetric random walk defined by a(x, y) = −a(0)/2d
for |y − x| = 1, a(x, x) = a(0) and a(x, y) = 0 otherwise. If κ = a(0)/2d,
then we get the simple symmetric random walk defined by the operator κ∆
in the Cauchy problem (1).

Suppose now that a branching process at the origin is defined by intensi-
ties of death ξ− and binary splitting ξ+ of particles. In this case a branching
random environment is formed by only one pair of non-negative random
variables, ξ := (ξ−, ξ+) defined on some probability space (Ω,F ,P). It is
assumed that Ω = R2

+.
Therefore, if at time t there are µt(0) > 0 particles at the origin, then

each particle in the time interval [t, t+ h) independently of others can either
jump with the probability p(h, 0, y) = a(y)h + o(h) to the point y 6= 0, or
produce two particles including itself with the probability ξ+h+ o(h), or die
with the probability ξ−h+o(h), or survive (no changes) with the probability
1−

∑
y 6=0 a(y)h−(ξ−+ξ+)h+o(h). The standard method used in the case of

the fixed medium realization ω can be applied to prove that the sojourn time
of a particle at the point x is distributed exponentially with the parameter
−a(0)+ξ+(ω)+ξ−(ω). As above, we suggest that newly born particles evolve
by the same rule, independently of the other particles and the past history.
We also specify the initial conditions by assuming that at time t = 0 there is
a single particle at a point x ∈ Zd. The evolution of the system of particles
on Zd is described by the number µt(y) of particles at time t at each point
y ∈ Zd and the total particle population size µt :=

∑
y∈Zd µt(y).

Hence the generating functions associated with the random variables µt(y)
and µt are defined for z > 0 by

F (z; t, x, y) := E(ω)
x [e−zµt(y)], F (z; t, x) := E(ω)

x [e−zµt ],

where E(ω)
x is the corresponding expectation. The label ω is referring to the

fixed realization of the branching medium ξ, and the subscript x indicates
the initial position of the single original particle. Similar to Albaverio et
al 2000 [1], it can be obtained that the functions F (z; t, x, y) and F (z; t, x)
satisfy the (t-differential x-pseudo-difference) equation

∂tF = AF − [ξ+ + ξ−]δ0(x)F + ξ+δ0(x)F 2 + ξ−δ0(x) (3)

with the initial conditions F (z; 0, x, y) = e−zδy(x) and F (z; 0, x) = e−z. Let
V := ξ+ − ξ−. In this case the following equations for the moment func-
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tions mn(t, x, y), mn(t, x) are obtained formally from the equation for the
generating functions (3) and satisfy the chain of linear differential equations

∂tm1 = Am1 + V δ0(x)m1, (4)

∂tmn = Amn + V δ0(x)mn + ξ+δ0(x)gn[m1, . . . ,mn−1], n = 1, 2, . . . , (5)

with the initial conditions mn(0, ·, y) = δy(·) and mn(0, ·) ≡ 1, where g1 ≡ 0
and gn[m1, . . . ,mn−1](·), for n ≥ 2, is the following function of the variable
x:

gn[m1, . . . ,mn−1](x) :=
n−1∑
i=1

(
n

i

)
mi(x)mn−i(x).

3 Main Results

As well known, the Feynman-Kac representation is a generalization of Kol-
mogorov’s backward equation. Let us point out that the main technical tool
used in the papers of Gärtner et al 2007 [5], Albeverio et al 2000 [1], Gärtner
and Molchanov, 1990 [6], 1998 [7], Yarovaya, 1990 [10] is the Feynman-Kac
repersentation of the solution for the problem (1) with different initial con-
ditions such as m1(0, ·) ≡ 1 or m1(0, ·, y) = δy(·).

Below, we give the Feynman-Kac representations for the solutions of the
Cauchy problems (4). In what follows let xt be a continuous-time “jumping”
trajectory of an auxiliary continuous-time symmetric random walk on Zd

with the generator A, and Ex be the expectation under the condition that
the random walk has started at the point x.

Theorem 1 (Kolmogorov’s backward equation). Define p(t, x, y) =
Exδy(xt). Then p(t, ·, y) ∈ l2(Zd) for each t > 0 and

∂pt = Ap, p(0, x, y) = δy(x), (6)

where the right hand side is interpreted as the linear operator A applied to the
function x 7→ p(t, x, y) by the formula: Ap(t, x, y) =

∑
x′ a(x, x

′)p(t, x′, y).
Moreover, if p∗(t, x, y) satisfies the Cauchy problem (6), then p∗(t, x, y) =

p(t, x, y) with p(t, x, y) = Exδy(xt).

Under assumption that the Cauchy problem (4) P-a.s. has a unique non-
negative solution the following generalizations of Theorem 1 also hold.

Theorem 2. Let V be a positive random variable, and let the Cauchy prob-
lem (4) P-a.s. have a unique non-negative solution. Put

m1(t, x, y) = Ex

[
exp

(
V

∫ t

0

δ0(xs) ds
)
δy(xt)

]
,

m1(t, x) = Ex

[
exp

(
V

∫ t

0

δ0(xs) ds
)]

.
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Then m1(t, x, y) P-a.s. satisfies the Cauchy problem (4) with the initial con-
dition m1(0, ·, y) = δy(·) while m1(t, x) P-a.s. satisfies the Cauchy problem
(4) with the initial condition m1(0, ·) ≡ 1.

Theorem 3. Let V be a positive random variable, let the Cauchy problem
(4) P-a.s. have a unique non-negative solution, and let

lim
t→∞

t

ln 〈eV t〉
= 0. (7)

Then for all integer moments 〈mp
n〉, n ≥ 1, where mn are the solutions of

Cauchy problems (4), (5) with the initial conditions mn(0, ·, y) = δy(·) and
mn(0, ·) ≡ 1, respectively, we get

lim
t→∞

ln 〈mp
n〉

ln 〈epnV t〉
= 1. (8)

The proof is based on the following upper and lower estimates for the
moments 〈mp

n〉. These estimates are obtained by using the Feymann-Kac
representations for the solutions of the studied Cauchy problems. The esti-
mates for n ≥ 2 are cumbersome and the volume of the paper does not allow
for their presentation, so we give below the estimates only for n = 1.

Upper estimate for 〈mp
1〉. Applying Lyapunov’s and Jensen’s inequal-

ities to the Feymann-Kac formula (Theorem 2) and using Fubini’s theorem,
we obtain

〈mp
1(t, x, y)〉 =

〈(
Exe

V
∫ t
0 δ0(xs) dsδy(xt)

)p〉
≤

〈
Exe

pV
∫ t
0 δ0(xs) dsδp

y(xt)
〉

= Ex

〈
epV

∫ t
0 δ0(xs) ds

〉
δy(0) ≤ 1

t

∫ t

0

Ex

〈
eptV

〉
ds δy(0) =

〈
eptV

〉
δy(0),

and similarly

〈mp
1(t, x)〉 =

〈(
Exe

V
∫ t
0 δ0(xs) ds

)p〉
≤

〈
Exe

pV
∫ t
0 δ0(xs) ds

〉
= Ex

〈
e

1
t

∫ t
0 pV tδ0(xs) ds

〉
≤ Ex

〈
1
t

∫ t

0

eptV δ0(xs)) ds

〉
=

1
t

∫ t

0

Ex

〈
eptV

〉
ds.

Here the expectation in the last integrand does not depend on s and is equal
to 〈eptV 〉. Hence we get

〈mp
1(t, x)〉 ≤

〈
eptV

〉
.

Lower estimate for 〈mp
1〉. If y = x = 0, then the required estimate can be

obtained by taking into account in the Feynman–Kac formula from Theorem 2
only those paths of the random walk xs which stay at the initial point x = 0
during the time interval [0, t]. Indeed, let τ denote the time spent by the
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6 E. Yarovaya

random walk at the initial state until exit. Since τ is exponentially distributed
with the parameter −a(0), we have

m1(t, 0, 0) ≥ E0

[
I{τ > t} eV

∫ t
0 δ0(xs) dsδ0(xt)

]
= P{τ > t} · eV t = ea(0)t · eV t,

m1(t, 0) = E0

[
e
∫ t
0 V (xs) ds

]
≥ ea(0)t · eV t

and
〈mp

1(t, 0)〉 ≥ 〈mp
1(t, 0, 0)〉 ≥ epa(0)t

〈
eptV

〉
.

It is not difficult to show that

〈mp
1(t, x)〉 ≥ 〈mp

1(t, x, y)〉 ≥ f(t)epa(0)t
〈
eptV

〉
,

where ln f(t) ≈ t, as t → ∞. Therefore using the obtained upper and lower
estimates we get that condition (7) implies (8).

4 The Potential with Gumbel Type Upper Tail

Here we construct an example in which the distribution of the random po-
tential V satisfy (7). In the next theorem the upper tail of the distribution
of the potential V has the following form:

lnP{V > θ} ∼ − exp
(
θ

c

)
, θ →∞, c > 0. (9)

Theorem 4. Under the assumption (9) for every p ≥ 1 the following relation
holds

ln
〈
epV t

〉
∼ cpt ln t, t→∞,

and conditions (7) are valid.

Proof. Let P (θ) = P{V > θ}. Then by the definition of 〈·〉 we have

〈
epV t

〉
=

∫ ∞

−∞
eptu d(1− P (u)).

Hence ∫ ∞

0

eptu d(1− P (u)) ≤
〈
epV t

〉
≤ 1 +

∫ ∞

0

eptu d(1− P (u)).

Using the representation∫ ∞

0

eptu d(1− P (u)) = P (0) + pt

∫ ∞

0

eptuP (u) du,
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the proof may be reduced to finding the logarithmic asymptotic behavior, as
t→∞, of the following integral

w(t) := pt

∫ ∞

0

eptuP (u) du.

Put Q(u) := lnP (u). Condition (9) implies the existence of a function
z(u) such that z(u) → 0, as u → ∞, and Q(u) = − exp(u/c)(1 + z(u)). So,
for any 0 < ε < 1 we can select t(ε) ≥ 0 such that Q−ε ≤ Q(u) ≤ Q+

ε for
u ≥ t(ε) where Q−ε := −(1+ε) exp(u/c) and Q+

ε := −(1−ε) exp(u/c). Hence

w−ε (t) +W−
ε (t) ≤ w(t) ≤ w+

ε (t) +W+
ε (t), (10)

where

w−ε (t) := pt
∫ t(ε)

0
eptuP (u) du− pt

∫ t(ε)

0
eptu+Q−

ε (u) du,

w+
ε (t) := pt

∫ t(ε)

0
eptuP (u) du− pt

∫ t(ε)

0
eptu+Q+

ε (u) du,

W−
ε (t) := pt

∫∞
0
eptu+Q−

ε (u) du,

W+
ε (t) := pt

∫∞
0
eptu+Q+

ε (u) du.

Then clearly
|w−ε (t)|, |w+

ε (t)| ≤ C∗eptt(ε), (11)

where C∗ is a constant. Each of the functions W−
ε (t), W+

ε (t) may be repre-
sented as an integral, the asymptotic behavior of which can be found by the
saddle point method (see, e.g., de Bruijn, 1958 [2] and Fedoryuk, 1987 [4]).
Thus we get

W−
ε (t) ∼ S−ε (t) exp (pct ln pct− (1 + ε)pct) ,

W+
ε (t) ∼ S+

ε (t) exp (pct ln pct− (1− ε)pct) ,

where the functions S−ε (t) and S+
ε (t) grow, as t → ∞, no faster than the

power functions. Hence by (10), (11) and by the form of the asymptotic
behavior of W−

ε (t) and W+
ε (t) we obtain the following asymptotic upper and

lower estimations

pct(ln pct− (1 + ε)) . lnw(t) . pct(ln pct− (1− ε)),

from which due to arbitrariness of ε, we get lnw(t) ∼ pct ln t, as t→∞. Now
it is easy to verify that (9) implies (7).

5 Conclusion

It is not difficult to show that if a distribution of the potential V satisfies
lnP{V > θ} ∼ −cθ, as θ → ∞, with some c > 0, then ln

〈
epV t

〉
∼ cpt, as
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8 E. Yarovaya

t → ∞, and (7) is not valid. The validity of (7) means that the tail of a
distribution of the potential V is “heavier” than the exponential one.

Moreover, note that (7) implies validity of relation (8) for the models of
BRW in spatially homogeneous random environments too.

Remark at last that principal assumption in Theorems 2 and 3 is the
P-a.s. uniquiness of a non-negative solution for the Cauchy problem (4).
We conjecture that, for a positive random variable V , such a uniquiness is
guaranteed by the condition

〈(ξ+(ln+ V )−1)d 〉 <∞,

where ln+ V := lnmax{V, e}.
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